JPS5948856B2 - Aluminum alloy for casting - Google Patents
Aluminum alloy for castingInfo
- Publication number
- JPS5948856B2 JPS5948856B2 JP2171680A JP2171680A JPS5948856B2 JP S5948856 B2 JPS5948856 B2 JP S5948856B2 JP 2171680 A JP2171680 A JP 2171680A JP 2171680 A JP2171680 A JP 2171680A JP S5948856 B2 JPS5948856 B2 JP S5948856B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- less
- casting
- alloys
- aluminum alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Preventing Corrosion Or Incrustation Of Metals (AREA)
- Body Structure For Vehicles (AREA)
Description
【発明の詳細な説明】
本発明は高い靭性と良好な耐食性を有する鋳物用アルミ
ニウム合金に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an aluminum alloy for casting having high toughness and good corrosion resistance.
最近、アルミニウム合金製の鋳物は各種産業用機械、車
輌用部品、土木建築用部材等の分野においてその用途が
ますます拡大されている。BACKGROUND OF THE INVENTION Recently, aluminum alloy castings have been increasingly used in the fields of various industrial machines, vehicle parts, civil engineering and construction materials, etc.
ところで、場合によっては著しく高い衝撃力のかかるよ
うな部品や脆性的に破壊すると飛散したりして危険をと
もなう部品、たとえば各種機械の可動部材、通路の仕切
り用に使用されている鋲、ドアのヒンジ、自転車のクラ
ンクあるいは高欄用のポスト等の如きに使用するアルミ
ニウム合金製鋳物は、中程度以上の引張強度と特に衝撃
に耐える高い靭性と腐食による強度劣化を防ぐために良
好な耐食性を要求されている。By the way, in some cases, there are parts that are subject to extremely high impact forces, or parts that are brittle and may scatter if broken, resulting in danger, such as movable parts of various machines, studs used for partitioning aisles, and parts on doors. Aluminum alloy castings used for things such as hinges, bicycle cranks, and parapet posts are required to have medium or higher tensile strength, high toughness to withstand impacts, and good corrosion resistance to prevent strength deterioration due to corrosion. There is.
従来、この種の鋳物用合金としては、Al−8i系のA
C3A、 Al−31−Mg系のAC4C,およびA1
−Mg系のAC7Aが使用されてきたが、これらの合金
は靭性の点で満足されず、更にすぐれた靭性を有する合
金の出現が望まれていた。Conventionally, as this type of casting alloy, Al-8i series A
C3A, Al-31-Mg-based AC4C, and A1
-Mg-based AC7A has been used, but these alloys are not satisfactory in terms of toughness, and there has been a desire for an alloy with even better toughness.
発明者らは中程度以上の引張強度と高い靭性と良好な耐
食性を具備せしめた非熱処理型の鋳物用を目的としたア
ルミニウム合金を開発したものであって、合金成分とし
て重量百分率でMg2.5〜3.5%Si0.1%以下
、Fed、 20%以下、Ti0005〜0.2%、
Bo、0007〜0.01%、CuQ、1%以下、Na
p、001%以下、Be00001〜0.005%、お
よび前記Si。The inventors have developed an aluminum alloy for use in non-heat-treated castings, which has medium or higher tensile strength, high toughness, and good corrosion resistance, and contains Mg2.5 as an alloy component by weight percentage. ~3.5%Si0.1% or less, Fed, 20% or less, Ti0005~0.2%,
Bo, 0007~0.01%, CuQ, 1% or less, Na
p, 001% or less, Be00001 to 0.005%, and the Si.
Fe、 Cu、 Naを除く不純物合計0.1%以下、
かつTi/B30以下、残部AIからなる鋳物用合金で
、非熱処理方式により前記した如き特性を適切に付与で
きることに成功した。Total impurities excluding Fe, Cu, and Na 0.1% or less,
In addition, we succeeded in imparting the above-mentioned properties appropriately using a non-heat treatment method to a foundry alloy consisting of Ti/B of 30 or less and the balance being AI.
本発明の合金における各成分組成の限度理由は以下の通
りである。The reasons for the limits on the composition of each component in the alloy of the present invention are as follows.
Mgは本発明のように熱処理を施さないで強度を改善す
るために必須の元素であって、それが2.5%以下では
引張強度、耐力を十分に得られないので好ましくない。Mg is an essential element for improving strength without heat treatment as in the present invention, and if it is less than 2.5%, sufficient tensile strength and proof stress cannot be obtained, which is not preferable.
またそれが3.5%を越えると強度的には十分であって
も伸び、衝撃値が急激に低下するので、産業用機械、車
輌用部品、土木建築用部材等の如き安全を確保するため
の部品としては問題を生ずる。In addition, if it exceeds 3.5%, even if the strength is sufficient, it will elongate and the impact value will drop sharply, so it is necessary to ensure the safety of industrial machinery, vehicle parts, civil engineering and construction materials, etc. This poses a problem as a component.
最も好ましいMgの範囲は2.7〜3.3%である。The most preferred Mg range is 2.7-3.3%.
Tiは機械的性質を改善させるためのものであって、そ
れが0.05%以下では添加による効果が十分でなく、
0.2%以上となるとTi−Al系の巨大晶出物の出現
などにより靭性を低下させるので好ましくない。Ti is used to improve mechanical properties, and if it is less than 0.05%, the effect of adding it will not be sufficient.
If it exceeds 0.2%, it is not preferable because it reduces toughness due to the appearance of giant Ti-Al crystallized substances.
耐衝撃性を十分に発揮しうるTiの好ましい範囲として
は0.10〜0.15%である。A preferable range of Ti that can sufficiently exhibit impact resistance is 0.10 to 0.15%.
特にBが0.0007〜0.01%存在すると機械的性
質が著しく改善され、実際に大きな製品を鋳造した場合
の実体強度を高める。In particular, when B is present in an amount of 0.0007 to 0.01%, the mechanical properties are significantly improved and the substantial strength is increased when a large product is actually cast.
しかしながらTi/Bの比が30以上となると改善の効
果が減衰するのでTi/13の比は30以下が好ましい
。However, if the Ti/B ratio is 30 or more, the improvement effect is attenuated, so the Ti/13 ratio is preferably 30 or less.
SiならびにFeは各上限値を越えると両者共に伸びお
よび衝撃値を低下させるので、SiO,]−%以下、F
ed、 20%以下が好ましい。Si and Fe both reduce elongation and impact value when their respective upper limits are exceeded;
ed, preferably 20% or less.
特に安全を確保しなくてはならない鋲の如きものを鋳造
するアルミニウム合金としてはSin、 05%以下、
Fed、 15%以下が好ましい。In particular, aluminum alloys used for casting items such as rivets that must ensure safety must contain less than 0.05% Sin,
Fed, preferably 15% or less.
Cuはその含有量が0.1%以上になると耐食性を急激
に悪化させるので0.1%以下が好ましい。If the Cu content exceeds 0.1%, the corrosion resistance will deteriorate rapidly, so it is preferably 0.1% or less.
Naはアルミニウム合金を溶解、溶製あるいは鋳造する
工程で使用するフラックスから入ってしまい、しかもこ
のNaは0.001%以上になると結晶粒界に偏析する
傾向があって、粒界を脆化させ靭性を著しく低下させる
ので0.001%以下が好ましい。Na enters from the flux used in the process of melting, melting, or casting aluminum alloys, and when it exceeds 0.001%, it tends to segregate at grain boundaries, causing grain boundaries to become brittle. It is preferably 0.001% or less since it significantly reduces toughness.
Beは溶湯中に添加されたBeが溶解、溶製および鋳造
工程でMgより優先的に大気と反応して緻密な酸化皮膜
を溶湯面上に形成し、その緻密は酸化皮膜によりMgの
酸化損失を少なくするためのものであって、それが0.
001%以下では添加による効果が十分でなく、またそ
れが0.005%を越えるとBeの酸化がはげしくなっ
て作業環境からして好ましくない。Be added to the molten metal reacts with the atmosphere more preferentially than Mg during the melting, melting, and casting processes to form a dense oxide film on the surface of the molten metal. This is to reduce the 0.
If it is less than 0.001%, the effect of the addition will not be sufficient, and if it exceeds 0.005%, the oxidation of Be will become severe, which is not preferable from the viewpoint of the working environment.
本発明の合金はアルミニウム溶湯に各成分元素を常法に
従って溶解することによって製造することができるが、
Ti、 13およびBeの添加はこれらの元素の歩留
を向上させるために、これらの母合金を使用する方がよ
い。The alloy of the present invention can be manufactured by dissolving each component element in molten aluminum according to a conventional method.
The addition of Ti, 13 and Be improves the yield of these elements, so it is better to use these master alloys.
第1表に本発明の合金とこの種の製品を鋳造するのに使
用されてきた従来合金と比較のための合金の組成および
機械的性質を示す。Table 1 shows the composition and mechanical properties of the alloys of the present invention, conventional alloys that have been used to cast products of this type, and comparative alloys.
これらの合金の製造に使用したアルミニウム地金は純度
99.8%AI、 0.01%Cu、 0,05%Si
、 0.12%Feであり、Beは5%Be−Al母合
金、TiおよびBは5%Ti−1%B−AI母合金、T
iの調整には10%Ti−Al母合金を使用した。The aluminum base metal used to manufacture these alloys has a purity of 99.8% AI, 0.01% Cu, 0.05% Si.
, 0.12% Fe, Be is 5% Be-Al master alloy, Ti and B are 5% Ti-1% B-AI master alloy, T
A 10% Ti-Al master alloy was used to adjust i.
常法によって溶解した溶湯に脱ガス用フラックス02C
160,3%を溶湯温度760℃でフオスフオライザー
を用いて処理した。Degassing flux 02C is added to the molten metal melted by a conventional method.
160.3% was treated using a phosphorizer at a melt temperature of 760°C.
そして鎮静後鋳込温度720℃、金型温度200℃でJ
I34号試験片舟型金型に鋳造した。After cooling, the casting temperature was 720℃ and the mold temperature was 200℃.
A No. I34 test piece was cast in a boat-shaped mold.
これらのものについてアムスラー型万能試験機を使って
引張強度、0.2%耐力、伸び、シャルピー衝撃値を測
定した。The tensile strength, 0.2% proof stress, elongation, and Charpy impact value of these samples were measured using an Amsler type universal testing machine.
合金番号1〜4は本発明の合金、6〜7は従来よりこの
種の鋳物に使用してきた従来合金、8〜11は比較のた
めに組成をかえた比較合金である。Alloy numbers 1 to 4 are alloys of the present invention, numbers 6 to 7 are conventional alloys conventionally used in this type of casting, and numbers 8 to 11 are comparative alloys with different compositions for comparison.
また、合金番号6の合金の熱処理条件は525℃に8時
間保持した後水焼入し、その後160℃に6時間焼戻し
たものである。Further, the heat treatment conditions for the alloy No. 6 were that the alloy was held at 525°C for 8 hours, water quenched, and then tempered at 160°C for 6 hours.
第1表の結果から従来合金5のA1−8i系のAC3A
は伸び、衝撃値共に低く、従来合金6のAl−81−M
g系のAC4Cの熱処理を施したものは熱処理を施さな
いものと比らべ引張強度、耐力共に改善されているが伸
び、衝撃値が十分でなく、また従来合金7のAl−Mg
系のAC7Aは伸び、衝撃値が不足し、いずれの場合も
伸び、衝撃値の低いのが判る。From the results in Table 1, conventional alloy 5 A1-8i series AC3A
has low elongation and impact value, compared to conventional alloy 6 Al-81-M.
The heat-treated AC4C of the g series has improved tensile strength and yield strength compared to those without heat treatment, but elongation and impact values are insufficient, and the Al-Mg of conventional alloy 7
It can be seen that the AC7A type has insufficient elongation and impact value, and in both cases, elongation and impact value are low.
一方本発明合金は上記したように、Mg、 Si。On the other hand, as described above, the alloy of the present invention contains Mg and Si.
Fe、 Ti、 B、 Cu、 Na、 Beノ含有
量およびTi/Bの値を限定することによって、中程度
の引張強度、耐力を有し、さらに高い伸び、衝撃値をも
たせることができることが判る。It can be seen that by limiting the content of Fe, Ti, B, Cu, Na, Be and the value of Ti/B, it is possible to have medium tensile strength and yield strength, as well as high elongation and impact value. .
さらに比較合金8はMgを低く配合したものであるが極
端に引張強度、耐力が低くなる。Furthermore, although Comparative Alloy 8 has a low Mg content, its tensile strength and yield strength are extremely low.
比較合金10はSiを高く配合したものであるが、極端
に衝撃値が低くなる。Although Comparative Alloy 10 has a high content of Si, its impact value is extremely low.
比較合金11はNa含有量の高いものであるが、引張強
度、耐力、伸び、衝撃値共に極端に低くなることが判る
。Although Comparative Alloy 11 has a high Na content, it can be seen that the tensile strength, yield strength, elongation, and impact value are all extremely low.
第2表は本発明合金と従来合金との耐食性を測定した結
果を示すものである。Table 2 shows the results of measuring the corrosion resistance of the alloy of the present invention and the conventional alloy.
試験には第1表に示した合金番号1. 2. 3゜4、
5. 6. 7の合金を使用し上記した機械的性質を
測定するために製作した試験片と同一の鋳造条件で耐食
性測定用試験片(50mm X 40mm X 10m
m)を製造した。Alloy number 1 shown in Table 1 was used for the test. 2. 3゜4,
5. 6. A test piece for corrosion resistance measurement (50 mm x 40 mm x 10 m
m) was produced.
そしてこれらの試験片を5%Nacl溶液(溶液温度2
8℃)に交互浸漬(10分浸漬、50分乾燥を1時間サ
イクルで行う)し、1000時間後の腐食減量を測定し
た。These test pieces were then soaked in a 5% NaCl solution (solution temperature 2
8° C.) (10 minute immersion, 50 minute drying performed in a 1 hour cycle), and the corrosion weight loss after 1000 hours was measured.
腐食減量は各合金について10回測定した平均値である
。The corrosion weight loss is the average value of 10 measurements for each alloy.
第2表から判るように、本発明合金はいずれのものより
も耐食性のよいことが判る。As can be seen from Table 2, the alloy of the present invention has better corrosion resistance than either of the alloys.
以上詳述したように本発明合金は中程度の引張強度と耐
力を有し、かつ高い伸びとすぐれた衝撃値ならびに耐食
性を併有するものであるから、各種の産業用機械部品、
車輌用部品、土木建築用部材等への巾広い利用が期待で
きる発明である。As detailed above, the alloy of the present invention has moderate tensile strength and proof stress, high elongation, and excellent impact value and corrosion resistance, so it can be used for various industrial machine parts,
This invention is expected to be widely used in vehicle parts, civil engineering and construction parts, etc.
Claims (1)
d、 20%以下、Ti0.05〜0.2%、 Bo、
0007〜0.01%、 Cu0,1%以下、Nap
、 001%以下、Be0.001〜0.005%およ
び前記Si、 Fe、 Cu、 Naを除く不純物合計
0.1%以下、かつTi/B30以下、残部AIとから
なる耐食性にすぐれた高靭性の鋳物用アルミニウム合金
。I Mg2.5-3.5%, Si0.1% or less, Fe
d, 20% or less, Ti 0.05-0.2%, Bo,
0007~0.01%, Cu0.1% or less, Nap
, 0.001% or less, Be of 0.001 to 0.005% and a total of impurities excluding the aforementioned Si, Fe, Cu, and Na of 0.1% or less, and Ti/B of 30 or less, with the balance being AI. Aluminum alloy for casting.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2171680A JPS5948856B2 (en) | 1980-02-25 | 1980-02-25 | Aluminum alloy for casting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2171680A JPS5948856B2 (en) | 1980-02-25 | 1980-02-25 | Aluminum alloy for casting |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56119751A JPS56119751A (en) | 1981-09-19 |
JPS5948856B2 true JPS5948856B2 (en) | 1984-11-29 |
Family
ID=12062789
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2171680A Expired JPS5948856B2 (en) | 1980-02-25 | 1980-02-25 | Aluminum alloy for casting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5948856B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5085830A (en) * | 1989-03-24 | 1992-02-04 | Comalco Aluminum Limited | Process for making aluminum-lithium alloys of high toughness |
-
1980
- 1980-02-25 JP JP2171680A patent/JPS5948856B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS56119751A (en) | 1981-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102597784B1 (en) | A aluminum alloy and for die casting and method for manufacturing the same, die casting method | |
US5573606A (en) | Aluminum alloy and method for making die cast products | |
CA2574962C (en) | An al-si-mg-zn-cu alloy for aerospace and automotive castings | |
US4995917A (en) | Manufacturing process for die-cast light-metal wheels of passenger cars | |
US3475166A (en) | Aluminum base alloy | |
US3759758A (en) | High strength aluminum casting alloy | |
KR101935243B1 (en) | Aluminum alloy for die casting, and aluminum alloy die-cast product using same | |
JPS6128739B2 (en) | ||
US4456481A (en) | Hot workability of age hardenable nickel base alloys | |
US4376650A (en) | Hot workability of an age hardenable nickle base alloy | |
JPS5948856B2 (en) | Aluminum alloy for casting | |
JPS6057497B2 (en) | Heat resistant high strength aluminum alloy | |
JPS6135261B2 (en) | ||
US3598577A (en) | Aluminum base alloy | |
JPH09296245A (en) | Aluminum alloy for casting | |
JP3242493B2 (en) | Heat resistant magnesium alloy | |
JPH03249148A (en) | Low thermal expansion aluminum alloy excellent in strength and ductility | |
JPS58100654A (en) | Aluminum alloy for casting with superior heat resistance | |
JPH03126834A (en) | High strength aluminum alloy having excellent elastic modulus and low thermal expansibility | |
JPS60245759A (en) | Casting aluminum alloy | |
JPS6232255B2 (en) | ||
JPS5853702B2 (en) | Aluminum alloy for tough die casting | |
JPS6140300B2 (en) | ||
US3125443A (en) | azzza | |
US1352272A (en) | Alloy |