[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5947772A - Manufacture of field effect transistor - Google Patents

Manufacture of field effect transistor

Info

Publication number
JPS5947772A
JPS5947772A JP15802482A JP15802482A JPS5947772A JP S5947772 A JPS5947772 A JP S5947772A JP 15802482 A JP15802482 A JP 15802482A JP 15802482 A JP15802482 A JP 15802482A JP S5947772 A JPS5947772 A JP S5947772A
Authority
JP
Japan
Prior art keywords
film
donor ions
etched
metal film
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15802482A
Other languages
Japanese (ja)
Inventor
Hiroshi Nakamura
浩 中村
Yoshiaki Sano
佐野 芳明
Toshio Nonaka
野中 敏夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP15802482A priority Critical patent/JPS5947772A/en
Publication of JPS5947772A publication Critical patent/JPS5947772A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To improve reproducibility and controllability by a method wherein the first and second metallic films having thermal resistance are successively formed, the source and drain regions are formed by implanting donor ions with the second metallic film as the mask, and the donor ions are activated by removing only the second metallic film. CONSTITUTION:An active layer 22 serving as the channel part of a field effect transistor is kept formed by selectively implanting the donor ions onto a GaAs semi-insulation substrate 21. The W film 23 and the Ni film 24 are successively deposited over the entire surface by electron beam vapor deposition method. The Ni film 24 and the W film 23 are etched by ion milling method with a photo resist 25 as the mask, resulting in the perfect removal of the Ni film 24, and accordingly the W film 23 is etched about half. When plasma etching is performed, the Ni film 24 and the GaAs semi-insulation substrate 21 are not at all affected, but only the W film 23 is etched. The donor ions are implanted at high density, resulting in the formation of N<+> implanted layers 26, the Ni film 24 is removed by chloric acid, and heat treatment is performed by covering the entire surface with an insulation film.

Description

【発明の詳細な説明】 この発明は、高速でかつ集積化に、祠したGaAs′醒
界効果トランジスタの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing GaAs' superfluous field effect transistors at high speed and with high integration.

Ga As (砒化ガ゛リウム)はSt(シリコン)と
比較して数倍の電子44動度金持ち、かつ容易に半絶縁
性基板が得られるだめ、Ga Asを用いた電界効果ト
ランジスタ(M E S型すなわ1金属−半導体接触型
)は高速の論理集41(回路の基本素子として重要なも
のであり、既に数洒ケ゛−ト以上の規模のGa As論
理集積回路が試作されている。
GaAs (gallium arsenide) has an electron mobility several times higher than that of St (silicon), and a semi-insulating substrate can be easily obtained. The high-speed logic integrated circuit 41 (metal-semiconductor contact type) is important as a basic element of the circuit, and GaAs logic integrated circuits of several scales or more have already been prototyped.

しかしながら、通’7にのホトリソグラフィ(写η、食
刻技術)でケ゛−ト、ソース、ドレインを独立に作製し
た電界効果トランジスタにおいて1ri1、電極間の短
絡を防ぐためにどうしても余裕をもってT(+:電極間
1μm8度は離す必要があり、そのため、ソース抵抗が
^くなつ゛C高速性がある程度失われてしまう。
However, in field effect transistors in which the gate, source, and drain are independently fabricated using common photolithography (etching technology), it is necessary to provide a margin of T(+: It is necessary to separate the electrodes by 1 μm and 8 degrees, and as a result, the source resistance decreases and the high-speed performance is lost to some extent.

セルファジィメント(自己塑合)プロセスは上記の欠点
ケ解決するために、り°−ト電伶とソースドレイン領域
が自動的に近接するように工夫されたものである。セル
フアライメントプロセスにも神々の形態が考えられてい
るが、耐熱性r−)を用いた以下に述べる2柚の方法が
、偵造ふ・よびプo セス(7) 単純さにおいて優ノ
1ている。
In order to solve the above-mentioned drawbacks, the self-plasticization process is devised to automatically bring the gate electrode and the source/drain region close to each other. The self-alignment process is also considered to have a divine form, but the method described below using heat-resistant r-) is superior in terms of simplicity. There is.

一つは第1図に示すように、耐熱1°、1チク゛−ト利
11としてTf−W(チタンタングステン合で1>)ま
たはTi−Wシリザイドi!4i 2を用い、スノ(ツ
タリング法で半絶縁性Ga As基板11全而にゲート
I(利を厚く付着させたあと、プラズマエツチング法を
・用いてケ゛−ト電極形状に加工し、それをマスクと1
7てドナーイオンを高濃度に打ち込んで熱処理しn 4
’Jn打込みに、ケ゛〜トxf+−メ4.J料イづ着前
にイテなっておく。
As shown in FIG. 1, one is Tf-W (titanium tungsten combination > 1) or Ti-W silicide i! with a heat resistance of 1° and a 1-chip gain of 11. After depositing a thick layer of gate electrode (I) on the entire semi-insulating GaAs substrate 11 using 4i2, using a snotzing method, it is processed into a gate electrode shape using a plasma etching method, and then it is masked. and 1
7, implant donor ions at a high concentration and heat-treat.
'Jn input, key xf+-me4. Please make sure that the J fee is ready before it arrives.

第1図(a)は半++es性Ga As基11の全面に
I’iW″rまたは’l’i−Wシリサイド膜12に付
着式せたところを示し、第1図(b)はケ゛−ト加工後
n打込みを行なって熱処理し、ソース・ドレイン両電換
16 、17を形成したところである。
FIG. 1(a) shows the I'iW"r or 'l'i-W silicide film 12 deposited on the entire surface of the semi-++es GaAs group 11, and FIG. After processing, N implantation was performed and heat treatment was performed to form source/drain converters 16 and 17.

’I’i−Wは750℃までi、’i−Wシリザイドは
850℃までの温度でGa Asとの間の整流性接触1
’)か変化しないため、イオン打込み層の結晶性回復な
」、ダート電極をつけたオまの熱処理で十分に行なえる
'I'i-W i up to 750℃, 'i-W silicide with rectifying contact 1 with GaAs at temperatures up to 850℃
Since the crystallinity of the ion-implanted layer does not change, a heat treatment using a dirt electrode is sufficient to restore the crystallinity of the ion-implanted layer.

この構造の最大の問題点は第1図(c)にボすように、
ゲートΦ:極15のプラズマエツチングにおいて、ゲー
ト′市極15が多少でもすそをひくとケ゛−ト電極15
とn杓込み領域14とが接触してし1つことである(1
8の部分)。プラズマエツチング食用いてケ゛−ト市、
極15を完全に芳11に加工するの1、υ11hシいた
め、ある8度の接触はどうしても起こり、そのためケ゛
−トンース間のl1lit kE低下、容量増大をひき
おこす。
The biggest problem with this structure is as shown in Figure 1(c).
Gate Φ: In plasma etching of the electrode 15, if the gate electrode 15 is slightly bent, the gate electrode 15
This is the case when the n-ladling area 14 contacts (1)
part 8). Kate City using plasma etching,
Since it takes 1,υ11h to process the pole 15 into a perfect shape 11, a certain 8 degree contact inevitably occurs, which causes a decrease in l1lit kE between the keys and an increase in capacity.

一方、上記の問題点を1脣決するために耐熱性ケ゛−ト
材料であるW(タングステン)’#’4子ビーム#暦法
で堆積させ、リフトオフ法によって加工するという方法
が’A 5Qされている。\VはTi−Wシリサイドよ
りもすぐれたダート材料としての耐熱性を宿し、またリ
フトオフ法を用いるためにケ゛−ト電極形状は単面でケ
°−トソース間の展j弗の恐れは少ないが、W膜の堆4
Jt技術が非常i/こ難しい。
On the other hand, in order to resolve the above-mentioned problems, a method has been developed in which W (tungsten), which is a heat-resistant matrix material, is deposited by the four-beam method and processed by the lift-off method. . \V has superior heat resistance as a dart material than Ti-W silicide, and since the lift-off method is used, the gate electrode shape is single-sided, so there is less risk of expansion between the gate and source. However, the W film deposit 4
Jt technology is very difficult.

ずなわぢ、Wはあらゆる金属の中で最も融点、沸点の晶
い金属であるため、に)ン発させるためにはかなシ大き
な′喝力を供給する必要かめり、リフトオフに必要な1
00℃以下の基板温度を維持するためには、蒸発源一基
板距離をPVIl、シて輻射熱を減らす(その結果とし
て当然蒸着速度は遅くなる)と同時に基板冷却のだめの
特別な装置6が必要となる。
Since W is a crystalline metal with the highest melting and boiling points of all metals, it is necessary to supply a large amount of exciting force in order to emit light, which is necessary for lift-off.
In order to maintain the substrate temperature below 00°C, it is necessary to reduce the radiant heat by increasing the distance between the evaporation source and the substrate (as a result, the evaporation rate naturally slows down), and at the same time, a special device 6 for cooling the substrate is required. Become.

また、蒸着法で作製したWはかなり多孔質であるだめに
イオン打込み時のイオン衝撃によって膜厚が減少するな
どイオン打込み時のマスクとしての性能は劣り、またイ
オン15行止能の悪さを見込んであらかじめ厚い(40
00〜5000λ)W膜を堆積させようとすると、リフ
トオフが困aitt、になるだけでなく 、GaAsと
Wの刺部が起きやすくiるという問題点がある。
In addition, since W produced by vapor deposition is quite porous, the film thickness decreases due to ion bombardment during ion implantation, and its performance as a mask during ion implantation is poor, and it is expected to have poor ion stopping ability. Thick in advance (40
When attempting to deposit a W film (00 to 5,000 λ), there is a problem that not only lift-off becomes difficult, but also thorns between GaAs and W tend to occur.

この発明は、上記の2種の耐熱1′Lり−)−を用いた
セルファライン構造に本質的な間b’kJ点を解決する
ためになされたもので、門現性、制イ1111件の向上
およびGa As高速論理集積回路のイタ:能、歩留り
、信頼性の大幅な向上を期することのできる′71’i
界効果トランソスタの製造方法を提供することを目的と
する。
This invention was made in order to solve the essential gap b'kJ point in the Selfaline structure using the above two types of heat-resistant 1'L-)-. '71'i, which is expected to significantly improve performance, yield, and reliability of GaAs high-speed logic integrated circuits.
An object of the present invention is to provide a method for manufacturing a field effect transformer.

以下、この発明のt弁効果トランジスタの製造方法の実
施例について図面に基づきuQ IJIJする。第2図
(a)ないし第2図(d)はその−実M11例の工程説
明図である。
Embodiments of the method for manufacturing a T-valve effect transistor according to the present invention will be described below with reference to the drawings. FIGS. 2(a) to 2(d) are process explanatory diagrams of the actual M11 example.

まず、第2図(atに示すように、Ga As半絶縁性
基板21上にドナーイオンを選択打込みして電界効果ト
ランゾスタのチャ坏ル部と々る活性層(nJ脅)22を
形成しておく。この活性層22の活性化のための熱処理
はこの時点で行なってもよいし1、あるいは後のn打込
み八jのY6性化と同時に行なってもよい。
First, as shown in FIG. 2 (at), donor ions are selectively implanted onto a GaAs semi-insulating substrate 21 to form an active layer (nJ layer) 22 that reaches the chamfer part of the field effect transistor. The heat treatment for activating the active layer 22 may be carried out at this point, or may be carried out at the same time as the Y6 conversion in the subsequent n implantation.

この活性層22打込みの典型的な条件はS1イオン、加
速エネルギー60 Kev、注入i1.5〜3Xlj)
%−2である。
Typical conditions for implanting this active layer 22 are S1 ions, acceleration energy 60 Kev, implantation i1.5-3Xlj)
%-2.

その後、第2図(a)に示すように、W膜23を100
0人程度電子びNi にッケル)膜24を3000人程
度電子ビーム蒸眉法Vこ」:つて連続的に4面に堆積さ
ぜる。この除Ga As半絶縁性基&21を冷却する必
要はなく、むしろW膜23とGa As半絶縁性基板2
1との密着性を向上させるためにこのGaAs半絶縁性
基板21を200〜250℃まで加泌する。
Thereafter, as shown in FIG. 2(a), the W film 23 is
About 3,000 people deposited the Ni film 24 continuously on all four sides using an electron beam vaporization method using about 3,000 people. There is no need to cool this removed GaAs semi-insulating substrate 21, but rather the W film 23 and the GaAs semi-insulating substrate 2
In order to improve the adhesion with 1, this GaAs semi-insulating substrate 21 is heated to 200 to 250°C.

次ニ、ダート亀ツ枳パターンの21= トリソダランイ
を行なった佐、第2図(b)に示すようVCポトレソス
ト25をマスクとしてイオンミリング法により、Ni膜
24およびWJlψ23をエツチングする。イオンミリ
ング法は500ev程度に加]・、1ζしプξArイオ
ンの平行ビームを衝突させて物質的(/(l基A・物質
を削シ取る方法であるため、加工断面&:l: ?ユζ
11[F直に近<(SO′以上)、またすそをひくこと
イ、ない。
Next, after performing the trisodarination process 21 of the dirt pattern, the Ni film 24 and the WJlψ 23 are etched by the ion milling method using the VC photoresist 25 as a mask, as shown in FIG. 2(b). The ion milling method involves colliding a parallel beam of Ar ions with approximately 500 ev], 1 ζ
11[F Directly < (more than SO'), and there is no need to draw the hem.

Arイオン電流が1m配11加弗エネルギ500evの
場合、N’i h% 24およびWH23のエッチフグ
速度はそれぞれ600 X/1nin、300人A旧n
s4呈1痰のイ直である。エツチングはNi11負24
が完全になくなり、WIkG23が半分はどエツチング
され/こところで終了する。
When the Ar ion current is 1m, 11cm, energy is 500ev, the etch speed of N'i h% 24 and WH23 is 600X/1nin, 300 people A old n
s4 presentation 1 phlegm is straight. Etching is Ni11 negative 24
completely disappears, and half of WIkG23 is etched/ends here.

この終了点はそれほど精度を妥するものではなく 、 
Nil漠24が完全に疫くなり、WIllJ23がまだ
残っていればよいので、エツチング時間にして±10%
程此のg4差は許される。
This end point does not compromise accuracy much,
As long as Nil Desert 24 is completely destroyed and WIllJ23 is still left, the etching time will be ±10%.
Cheng This g4 difference is forgivable.

次に、第2図(c+に示すように1ポトレソスト25を
レソスト剥離液で取り除き、CF、+02ガスプラズマ
によるプラズマエツチングを行安う。このガスはNil
漠24とGaAs半絶縁性基板21は全く侵さず、W膜
23のみをエツチングする。そのため、このプラズマエ
ツチングを十分に行なえi=J: 第2図(c)のよう
な構造ができる。ここでサイドエツチング効果によりW
 II!+ 23の端はNi1l・424の九1よりも
1000λイ51度内1則へはいり込、む。
Then, as shown in FIG.
The film 24 and the GaAs semi-insulating substrate 21 are not etched at all, and only the W film 23 is etched. Therefore, if this plasma etching is performed sufficiently, i=J: A structure as shown in FIG. 2(c) can be obtained. Here, due to the side etching effect, W
II! The edge of +23 enters the 1st law within 1000λi 51 degrees than the 91 of Ni1l・424.

第2図(cJの構造になったところで、第2図((1)
に示すようにドナーイオンの高濃1及口込み(!]n打
込層26を形成)ヤで行なう。典型的な条件u:siイ
オン、加速エネルギー120〜150 Kev 、注入
ht2〜5 X 1013CM−、2である。活性層以
外の領域にVまイオンが打込且れないようにレソストを
かぶせてお(。Ni 3000人+W100O入rIイ
オンを:34′rj以上戯衰訟せるのに十分な厚さで4
−)る、。
Figure 2 (When the structure of cJ is reached, Figure 2 ((1)
As shown in FIG. 1, donor ions are implanted at a high concentration (!) to form the n-implanted layer 26. Typical conditions are u: si ions, acceleration energy 120-150 Kev, implantation ht2-5 x 1013 CM-,2. To prevent V ions from being implanted in regions other than the active layer, cover with a layer of resin (3000 Ni + 100 O) with a thickness sufficient to cause a drop of more than 34'rj.
−)ru,.

f」込み終了段、第2図(d)のようにt刈iJ俣24
を塩酸によって取り除く。n打込み層26とW膜23′
との間にはzoooX程度のすき間が自動的にできてお
り、接触することはない。この状態で全面に絶縁膜(5
in2.5t3N4.AA’20.、、Al1刈など)
をかぶせて熱処理するか、A s Jl s (アルシ
ン) l 112ガス中での熱処理を行なう。この条件
は温度800〜850℃、時間15〜20m1nである
。この熱処理において、W j!423とGaAs半絶
縁性基板21との間の整流性接触特性にtiはとんど変
化t、1、なく、またW膜23の膜厚が1000Aと薄
いため剥離することはない。
f" end stage, as shown in Figure 2(d),
is removed with hydrochloric acid. N implanted layer 26 and W film 23'
A gap of about zooooX is automatically created between them, and they never come into contact. In this state, there is an insulating film (5
in2.5t3N4. AA'20. ,,Al1 cutting, etc.)
Heat treatment is performed by covering the surface with a gas of A s Jl s (Arsine) l 112 gas. The conditions are a temperature of 800 to 850°C and a time of 15 to 20 m1n. In this heat treatment, W j! In the rectifying contact characteristics between 423 and the GaAs semi-insulating substrate 21, there is almost no change in t, 1, and since the W film 23 is as thin as 1000 Å, it will not peel off.

以上のプロセスで、ケ゛−ト電物とソース、ドレインの
n領域がセルファラインで形成されているので、この後
ケ゛−トから1〜2μm離してソース、ドレインの画電
イ魅をAu −Ge/Niの蒸メイ、熱処理で作製し、
TI/F7′A従などの金属で配線をイエえば銅矛は完
成する。
In the above process, the gate electrode and the source and drain n-regions are formed by self-line, so after this, the source and drain electrodes are separated by 1 to 2 μm from the gate and the Au-Ge layer is placed 1-2 μm away from the gate. /Ni steamed and heat treated,
If you wire the wiring with metal such as TI/F7'A, the copper spear will be completed.

この実h11例によって従来の耐熱性ケ゛−トセル7ア
ライメントフロセスの問題点はすべて用法される。
This practical example eliminates all the problems of the conventional heat-resistant case cell 7 alignment process.

まず、ケ°−ト電極断面形状tよイオンミリン を用い
るためにほとんど垂直であり、さらKWW、>23のサ
イドエツチング効果によって第1図<c+に示した問題
点すなわちダート1j1.極とソース ドレイン領域と
の接触は起こらない。
First, the cross-sectional shape t of the gate electrode is almost vertical due to the use of ion milling, and the side etching effect of KWW>23 causes the problem shown in FIG. 1<c+, namely dirt 1j1. No contact between the poles and the source/drain regions occurs.

きらに厚いNi1M24をイオンロ込カ一時のマスクと
して使用しているために、蒸Bwのイオン阻止能の悪さ
の問題が解決され、またWit児23の膜厚をン鰐<で
きることにより、蒸ifがより容易になるだけでなく熱
処理時の剥離の問題も改善される。
Since the extremely thick Ni1M24 is used as a temporary mask for ion implantation, the problem of poor ion blocking ability of vaporized Bw is solved, and by being able to reduce the film thickness of Wit23, vaporization Not only is this easier, but the problem of peeling during heat treatment is also improved.

Wの電気抵抗率は約5×10Ωcmと’l”i−Wシリ
サイドに比べて1桁以上も低いので1oooA厚のWl
lr、423でもr−)抵抗の大きさシよほとんど問題
にはならない。
The electrical resistivity of W is about 5 x 10 Ωcm, which is more than an order of magnitude lower than 'l''i-W silicide, so Wl with a thickness of 100A is
lr, 423 or r-) The size of the resistance hardly matters.

また、この実施例においては再現性に問題があり、寸だ
熱的制約のきびしいリフトオフ法をダート電極加工に使
用せず、代によシ制御’iIu性、再性現性のすぐれた
イオンミリング法を使用しているために、プロセス全体
としての再現性が大幅に向上している。
In addition, in this example, there is a problem with reproducibility, and the lift-off method, which has severe thermal constraints, is not used for dart electrode processing, and ion milling, which has excellent controllability and reproducibility, is used. The reproducibility of the process as a whole is greatly improved due to the use of this method.

なお、とのりへ明の実施例においては、商融点金属とし
てWを、第2の金属としてNiを使用する例について説
明したが、同様な物理的、化学的性質を持つ他の金属、
合金、金属間化合物および金属硅化物、金属炭化物、金
属璧化物を使用することもできる。それらの材料を使用
したこの実施例と同等な構造も当然この発明の範囲に含
まれるものである。
In addition, in the example of Akira Tonori, an example was explained in which W was used as the commercial melting point metal and Ni was used as the second metal, but other metals having similar physical and chemical properties,
It is also possible to use alloys, intermetallic compounds and metal silicides, metal carbides, metal ferrides. Naturally, structures equivalent to this embodiment using those materials are also included within the scope of the present invention.

以上のように、この発明の電界効果トランジスタの製造
方法によれば、活性層を有する半絶縁性基板上に耐熱性
を有する第1、第2の金属の膜を連続的に形成し、第2
の金属の膜をマスクとしてドナーイオンを打ち込んでソ
ース、ドレイン領域を形成し、第2の金属の膜のみを除
去してドナーイオンを活性化するようにしたので、従来
の類似のプロセスの問題点が解決され、再現性、制御性
が向上する。これにともないGa As高速論理集積回
路の性能、歩留り、信頼性が大幅に向上する。
As described above, according to the method for manufacturing a field effect transistor of the present invention, heat-resistant first and second metal films are successively formed on a semi-insulating substrate having an active layer, and
By using the second metal film as a mask, donor ions are implanted to form the source and drain regions, and only the second metal film is removed to activate the donor ions, which eliminates problems with similar conventional processes. problem is solved, reproducibility and controllability are improved. This will greatly improve the performance, yield, and reliability of GaAs high-speed logic integrated circuits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)ないし第1図(e)は従来の’I”i−W
またはTi−WシリサイドゲートGaAs電界効果トラ
ンジスタの製造工程の概略図、第2図(a)ないし第2
図(d)はこの発明の′電界効果トランジスタの製造方
法の一実施例の工程説明図である。 21・・・GaAs半絶縁性基根、22・・・活性層、
23・・・Wg、24・・・Ni膜、25・・・ホトレ
ジスト、26+ ・・・n打込み層。 特許用ノ印人 沖電気工業株式会社 第1図 第2図 手続補正書 昭和58年ら月20日 特許庁長官若杉和夫 殿 1、事件の表示 昭和57年特 許  願第 158024  号2、発
明の名称 電界効果トランゾスタの製造方法 3、補正をする者 事件との関係     特 許 出願人(029)沖電
気工業株式会社 4、代理人 5、補正命令の日付  昭和  年  月  I+ (
自発)6、補正の対象 明細書の発明の詳細な説明の欄 7、 補正の内容 1)明細書3頁10行「基11」を「基板11」と訂正
する。 2)同7頁4行「物質的」ヲ「物理的」と訂正する。 3)同8頁19行「AsHs (アルシン)IH2ガス
」k r A8H3(アルシン)/H2ガス」と訂正す
る。 4)同9頁15行「イオンミリン」ヲ「イオンミリング
を」と訂正する。 5)同9頁18行「ソースドレイン」全1ソース、ドレ
イン」と訂正する。 6)同10頁11行「代に」全1代りに」と訂正する。 7)同10頁11行「再性現」ヲ1再現」と訂正する。 −32′l
Figures 1(a) to 1(e) show the conventional 'I''i-W
Or a schematic diagram of the manufacturing process of a Ti-W silicide gate GaAs field effect transistor, FIGS. 2(a) to 2
Figure (d) is a process explanatory diagram of an embodiment of the method for manufacturing a field effect transistor according to the present invention. 21... GaAs semi-insulating base, 22... active layer,
23...Wg, 24...Ni film, 25...Photoresist, 26+...N implantation layer. Patent seal person Oki Electric Industry Co., Ltd. Figure 1 Figure 2 Procedural amendment dated May 20, 1982 Kazuo Wakasugi, Commissioner of the Patent Office 1. Indication of the case Patent application No. 158024 No. 158024 2. Invention of the invention Name Field-effect transistor manufacturing method 3, relationship with the case of the person making the amendment Patent Applicant (029) Oki Electric Industry Co., Ltd. 4, Agent 5, Date of amendment order Showa Year Month I+ (
Voluntary) 6. Column 7 of the detailed description of the invention in the specification subject to amendment. Contents of the amendment 1) "Group 11" on page 3, line 10 of the specification is corrected to "substrate 11." 2) On page 7, line 4, ``material'' is corrected to ``physical.'' 3) On page 8, line 19, correct it to read "AsHs (arsine) IH2 gas" k r A8H3 (arsine)/H2 gas. 4) On page 9, line 15, "ion milling" is corrected to "ion milling". 5) On page 9, line 18, ``Source Drain'' is corrected to read ``1 source, 1 drain''. 6) On page 10, line 11, correct it to read ``Yo ni'' in place of all 1.'' 7) Correct the same page 10, line 11, ``Reproduced'' to read ``Reproduced''. -32′l

Claims (1)

【特許請求の範囲】[Claims] 活性層を有する半導体基板表面−にに面1熱件を有する
第1の金属の膜および第2の金Jyy、iの膜を連続的
に形成する工程と、イオンミリング法によって、上記第
2の金属の膜および第1の金属の膜の一部をエツチング
した後さらに第1の金属の膜のみ若干のサイドエッチを
行なう工程と、−1= 1(12i42の金属の膜をマ
スクとしてドナーイオンをソース、ドレイン領域となる
べき領域に注入し、iB 2の金属の膜の除去後熱処理
によってドナーイオンを活性化する工程とを具備するこ
とを特徴と4る電界りb果トランジスタの製造方法。
The above-mentioned second metal film is formed by sequentially forming a first metal film having a heat property of 1 and a second gold film on the surface of a semiconductor substrate having an active layer, and an ion milling method. After etching a part of the metal film and the first metal film, a step of slightly side-etching only the first metal film, and a step of removing donor ions using the -1=1 (12i42) metal film as a mask. 4. A method for manufacturing a field effect transistor, comprising the step of implanting donor ions into regions to become source and drain regions, and activating donor ions by heat treatment after removal of the iB2 metal film.
JP15802482A 1982-09-13 1982-09-13 Manufacture of field effect transistor Pending JPS5947772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15802482A JPS5947772A (en) 1982-09-13 1982-09-13 Manufacture of field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15802482A JPS5947772A (en) 1982-09-13 1982-09-13 Manufacture of field effect transistor

Publications (1)

Publication Number Publication Date
JPS5947772A true JPS5947772A (en) 1984-03-17

Family

ID=15662603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15802482A Pending JPS5947772A (en) 1982-09-13 1982-09-13 Manufacture of field effect transistor

Country Status (1)

Country Link
JP (1) JPS5947772A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142916A (en) * 1984-07-30 1986-03-01 エイ・ティ・アンド・ティ・コーポレーション Method of forming semiconductor device
JPS6181672A (en) * 1984-09-28 1986-04-25 Nec Corp Manufacture of semiconductor device
JPS61102070A (en) * 1984-10-25 1986-05-20 Oki Electric Ind Co Ltd Manufacture of gaas schottky gate fet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946874A (en) * 1972-09-11 1974-05-07
JPS57128071A (en) * 1981-01-30 1982-08-09 Fujitsu Ltd Field-effect type semiconductor device and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946874A (en) * 1972-09-11 1974-05-07
JPS57128071A (en) * 1981-01-30 1982-08-09 Fujitsu Ltd Field-effect type semiconductor device and manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142916A (en) * 1984-07-30 1986-03-01 エイ・ティ・アンド・ティ・コーポレーション Method of forming semiconductor device
JPS6181672A (en) * 1984-09-28 1986-04-25 Nec Corp Manufacture of semiconductor device
JPS61102070A (en) * 1984-10-25 1986-05-20 Oki Electric Ind Co Ltd Manufacture of gaas schottky gate fet

Similar Documents

Publication Publication Date Title
KR900008277B1 (en) Method manufacturing a field effect transistor
JPS6239835B2 (en)
JP2673109B2 (en) Method of manufacturing self-aligned T-gate gallium arsenide metal semiconductor field effect transistor
JPS5947772A (en) Manufacture of field effect transistor
US4586063A (en) Schottky barrier gate FET including tungsten-aluminum alloy
JPS6292481A (en) Manufacture of semiconductor device
JPS627165A (en) Manufacture of semiconductor device
JPS6160591B2 (en)
JPS6273673A (en) Manufacture of field-effect transistor
JPH0578181B2 (en)
JPH11186548A (en) Semiconductor device and manufacture thereof
JPS609120A (en) Manufacture of semiconductor device
JPH0810706B2 (en) Method for manufacturing field effect transistor
JPS60261179A (en) Manufacture of semiconductor element
JPS6190470A (en) Manufacture of compound semiconductor device
JPS59214266A (en) Manufacture of semiconductor integrated circuit device
JPH0472385B2 (en)
JPS6276566A (en) Manufacture of field-effect transistor
JPH0783026B2 (en) Method for manufacturing field effect transistor
JPS6112084A (en) Manufacture of semiconductor device
JPS59191384A (en) Manufacture of semiconductor device
JPS59195874A (en) Manufacture of field-effect transistor
JPS6163063A (en) Manufacture of semiconductor device
JPS6279675A (en) Compound semiconductor device
JPS61242080A (en) Manufacture of semiconductor device