JPS5947772A - Manufacture of field effect transistor - Google Patents
Manufacture of field effect transistorInfo
- Publication number
- JPS5947772A JPS5947772A JP15802482A JP15802482A JPS5947772A JP S5947772 A JPS5947772 A JP S5947772A JP 15802482 A JP15802482 A JP 15802482A JP 15802482 A JP15802482 A JP 15802482A JP S5947772 A JPS5947772 A JP S5947772A
- Authority
- JP
- Japan
- Prior art keywords
- film
- donor ions
- etched
- metal film
- field effect
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005669 field effect Effects 0.000 title claims abstract description 11
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000000034 method Methods 0.000 claims abstract description 31
- 150000002500 ions Chemical class 0.000 claims abstract description 19
- 239000000758 substrate Substances 0.000 claims abstract description 16
- 238000010438 heat treatment Methods 0.000 claims abstract description 8
- 238000000992 sputter etching Methods 0.000 claims abstract description 8
- 229910052751 metal Inorganic materials 0.000 claims description 19
- 239000002184 metal Substances 0.000 claims description 19
- 238000005530 etching Methods 0.000 claims description 7
- 230000003213 activating effect Effects 0.000 claims description 2
- 239000004065 semiconductor Substances 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims 1
- 239000010931 gold Substances 0.000 claims 1
- 229910052737 gold Inorganic materials 0.000 claims 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 19
- 238000001020 plasma etching Methods 0.000 abstract description 5
- 229920002120 photoresistant polymer Polymers 0.000 abstract description 3
- 238000010894 electron beam technology Methods 0.000 abstract description 2
- 238000007740 vapor deposition Methods 0.000 abstract description 2
- 238000009413 insulation Methods 0.000 abstract 3
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- XTEGARKTQYYJKE-UHFFFAOYSA-N chloric acid Chemical compound OCl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-N 0.000 abstract 1
- 229940005991 chloric acid Drugs 0.000 abstract 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 18
- 229910021332 silicide Inorganic materials 0.000 description 7
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 6
- 238000002513 implantation Methods 0.000 description 5
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 229910017401 Au—Ge Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 206010062717 Increased upper airway secretion Diseases 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000010849 ion bombardment Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 208000026435 phlegm Diseases 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- MAKDTFFYCIMFQP-UHFFFAOYSA-N titanium tungsten Chemical compound [Ti].[W] MAKDTFFYCIMFQP-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/80—Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Electrodes Of Semiconductors (AREA)
- Drying Of Semiconductors (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、高速でかつ集積化に、祠したGaAs′醒
界効果トランジスタの製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing GaAs' superfluous field effect transistors at high speed and with high integration.
Ga As (砒化ガ゛リウム)はSt(シリコン)と
比較して数倍の電子44動度金持ち、かつ容易に半絶縁
性基板が得られるだめ、Ga Asを用いた電界効果ト
ランジスタ(M E S型すなわ1金属−半導体接触型
)は高速の論理集41(回路の基本素子として重要なも
のであり、既に数洒ケ゛−ト以上の規模のGa As論
理集積回路が試作されている。GaAs (gallium arsenide) has an electron mobility several times higher than that of St (silicon), and a semi-insulating substrate can be easily obtained. The high-speed logic integrated circuit 41 (metal-semiconductor contact type) is important as a basic element of the circuit, and GaAs logic integrated circuits of several scales or more have already been prototyped.
しかしながら、通’7にのホトリソグラフィ(写η、食
刻技術)でケ゛−ト、ソース、ドレインを独立に作製し
た電界効果トランジスタにおいて1ri1、電極間の短
絡を防ぐためにどうしても余裕をもってT(+:電極間
1μm8度は離す必要があり、そのため、ソース抵抗が
^くなつ゛C高速性がある程度失われてしまう。However, in field effect transistors in which the gate, source, and drain are independently fabricated using common photolithography (etching technology), it is necessary to provide a margin of T(+: It is necessary to separate the electrodes by 1 μm and 8 degrees, and as a result, the source resistance decreases and the high-speed performance is lost to some extent.
セルファジィメント(自己塑合)プロセスは上記の欠点
ケ解決するために、り°−ト電伶とソースドレイン領域
が自動的に近接するように工夫されたものである。セル
フアライメントプロセスにも神々の形態が考えられてい
るが、耐熱性r−)を用いた以下に述べる2柚の方法が
、偵造ふ・よびプo セス(7) 単純さにおいて優ノ
1ている。In order to solve the above-mentioned drawbacks, the self-plasticization process is devised to automatically bring the gate electrode and the source/drain region close to each other. The self-alignment process is also considered to have a divine form, but the method described below using heat-resistant r-) is superior in terms of simplicity. There is.
一つは第1図に示すように、耐熱1°、1チク゛−ト利
11としてTf−W(チタンタングステン合で1>)ま
たはTi−Wシリザイドi!4i 2を用い、スノ(ツ
タリング法で半絶縁性Ga As基板11全而にゲート
I(利を厚く付着させたあと、プラズマエツチング法を
・用いてケ゛−ト電極形状に加工し、それをマスクと1
7てドナーイオンを高濃度に打ち込んで熱処理しn 4
’Jn打込みに、ケ゛〜トxf+−メ4.J料イづ着前
にイテなっておく。As shown in FIG. 1, one is Tf-W (titanium tungsten combination > 1) or Ti-W silicide i! with a heat resistance of 1° and a 1-chip gain of 11. After depositing a thick layer of gate electrode (I) on the entire semi-insulating GaAs substrate 11 using 4i2, using a snotzing method, it is processed into a gate electrode shape using a plasma etching method, and then it is masked. and 1
7, implant donor ions at a high concentration and heat-treat.
'Jn input, key xf+-me4. Please make sure that the J fee is ready before it arrives.
第1図(a)は半++es性Ga As基11の全面に
I’iW″rまたは’l’i−Wシリサイド膜12に付
着式せたところを示し、第1図(b)はケ゛−ト加工後
n打込みを行なって熱処理し、ソース・ドレイン両電換
16 、17を形成したところである。FIG. 1(a) shows the I'iW"r or 'l'i-W silicide film 12 deposited on the entire surface of the semi-++es GaAs group 11, and FIG. After processing, N implantation was performed and heat treatment was performed to form source/drain converters 16 and 17.
’I’i−Wは750℃までi、’i−Wシリザイドは
850℃までの温度でGa Asとの間の整流性接触1
’)か変化しないため、イオン打込み層の結晶性回復な
」、ダート電極をつけたオまの熱処理で十分に行なえる
。'I'i-W i up to 750℃, 'i-W silicide with rectifying contact 1 with GaAs at temperatures up to 850℃
Since the crystallinity of the ion-implanted layer does not change, a heat treatment using a dirt electrode is sufficient to restore the crystallinity of the ion-implanted layer.
この構造の最大の問題点は第1図(c)にボすように、
ゲートΦ:極15のプラズマエツチングにおいて、ゲー
ト′市極15が多少でもすそをひくとケ゛−ト電極15
とn杓込み領域14とが接触してし1つことである(1
8の部分)。プラズマエツチング食用いてケ゛−ト市、
極15を完全に芳11に加工するの1、υ11hシいた
め、ある8度の接触はどうしても起こり、そのためケ゛
−トンース間のl1lit kE低下、容量増大をひき
おこす。The biggest problem with this structure is as shown in Figure 1(c).
Gate Φ: In plasma etching of the electrode 15, if the gate electrode 15 is slightly bent, the gate electrode 15
This is the case when the n-ladling area 14 contacts (1)
part 8). Kate City using plasma etching,
Since it takes 1,υ11h to process the pole 15 into a perfect shape 11, a certain 8 degree contact inevitably occurs, which causes a decrease in l1lit kE between the keys and an increase in capacity.
一方、上記の問題点を1脣決するために耐熱性ケ゛−ト
材料であるW(タングステン)’#’4子ビーム#暦法
で堆積させ、リフトオフ法によって加工するという方法
が’A 5Qされている。\VはTi−Wシリサイドよ
りもすぐれたダート材料としての耐熱性を宿し、またリ
フトオフ法を用いるためにケ゛−ト電極形状は単面でケ
°−トソース間の展j弗の恐れは少ないが、W膜の堆4
Jt技術が非常i/こ難しい。On the other hand, in order to resolve the above-mentioned problems, a method has been developed in which W (tungsten), which is a heat-resistant matrix material, is deposited by the four-beam method and processed by the lift-off method. . \V has superior heat resistance as a dart material than Ti-W silicide, and since the lift-off method is used, the gate electrode shape is single-sided, so there is less risk of expansion between the gate and source. However, the W film deposit 4
Jt technology is very difficult.
ずなわぢ、Wはあらゆる金属の中で最も融点、沸点の晶
い金属であるため、に)ン発させるためにはかなシ大き
な′喝力を供給する必要かめり、リフトオフに必要な1
00℃以下の基板温度を維持するためには、蒸発源一基
板距離をPVIl、シて輻射熱を減らす(その結果とし
て当然蒸着速度は遅くなる)と同時に基板冷却のだめの
特別な装置6が必要となる。Since W is a crystalline metal with the highest melting and boiling points of all metals, it is necessary to supply a large amount of exciting force in order to emit light, which is necessary for lift-off.
In order to maintain the substrate temperature below 00°C, it is necessary to reduce the radiant heat by increasing the distance between the evaporation source and the substrate (as a result, the evaporation rate naturally slows down), and at the same time, a special device 6 for cooling the substrate is required. Become.
また、蒸着法で作製したWはかなり多孔質であるだめに
イオン打込み時のイオン衝撃によって膜厚が減少するな
どイオン打込み時のマスクとしての性能は劣り、またイ
オン15行止能の悪さを見込んであらかじめ厚い(40
00〜5000λ)W膜を堆積させようとすると、リフ
トオフが困aitt、になるだけでなく 、GaAsと
Wの刺部が起きやすくiるという問題点がある。In addition, since W produced by vapor deposition is quite porous, the film thickness decreases due to ion bombardment during ion implantation, and its performance as a mask during ion implantation is poor, and it is expected to have poor ion stopping ability. Thick in advance (40
When attempting to deposit a W film (00 to 5,000 λ), there is a problem that not only lift-off becomes difficult, but also thorns between GaAs and W tend to occur.
この発明は、上記の2種の耐熱1′Lり−)−を用いた
セルファライン構造に本質的な間b’kJ点を解決する
ためになされたもので、門現性、制イ1111件の向上
およびGa As高速論理集積回路のイタ:能、歩留り
、信頼性の大幅な向上を期することのできる′71’i
界効果トランソスタの製造方法を提供することを目的と
する。This invention was made in order to solve the essential gap b'kJ point in the Selfaline structure using the above two types of heat-resistant 1'L-)-. '71'i, which is expected to significantly improve performance, yield, and reliability of GaAs high-speed logic integrated circuits.
An object of the present invention is to provide a method for manufacturing a field effect transformer.
以下、この発明のt弁効果トランジスタの製造方法の実
施例について図面に基づきuQ IJIJする。第2図
(a)ないし第2図(d)はその−実M11例の工程説
明図である。Embodiments of the method for manufacturing a T-valve effect transistor according to the present invention will be described below with reference to the drawings. FIGS. 2(a) to 2(d) are process explanatory diagrams of the actual M11 example.
まず、第2図(atに示すように、Ga As半絶縁性
基板21上にドナーイオンを選択打込みして電界効果ト
ランゾスタのチャ坏ル部と々る活性層(nJ脅)22を
形成しておく。この活性層22の活性化のための熱処理
はこの時点で行なってもよいし1、あるいは後のn打込
み八jのY6性化と同時に行なってもよい。First, as shown in FIG. 2 (at), donor ions are selectively implanted onto a GaAs semi-insulating substrate 21 to form an active layer (nJ layer) 22 that reaches the chamfer part of the field effect transistor. The heat treatment for activating the active layer 22 may be carried out at this point, or may be carried out at the same time as the Y6 conversion in the subsequent n implantation.
この活性層22打込みの典型的な条件はS1イオン、加
速エネルギー60 Kev、注入i1.5〜3Xlj)
%−2である。Typical conditions for implanting this active layer 22 are S1 ions, acceleration energy 60 Kev, implantation i1.5-3Xlj)
%-2.
その後、第2図(a)に示すように、W膜23を100
0人程度電子びNi にッケル)膜24を3000人程
度電子ビーム蒸眉法Vこ」:つて連続的に4面に堆積さ
ぜる。この除Ga As半絶縁性基&21を冷却する必
要はなく、むしろW膜23とGa As半絶縁性基板2
1との密着性を向上させるためにこのGaAs半絶縁性
基板21を200〜250℃まで加泌する。Thereafter, as shown in FIG. 2(a), the W film 23 is
About 3,000 people deposited the Ni film 24 continuously on all four sides using an electron beam vaporization method using about 3,000 people. There is no need to cool this removed GaAs semi-insulating substrate 21, but rather the W film 23 and the GaAs semi-insulating substrate 2
In order to improve the adhesion with 1, this GaAs semi-insulating substrate 21 is heated to 200 to 250°C.
次ニ、ダート亀ツ枳パターンの21= トリソダランイ
を行なった佐、第2図(b)に示すようVCポトレソス
ト25をマスクとしてイオンミリング法により、Ni膜
24およびWJlψ23をエツチングする。イオンミリ
ング法は500ev程度に加]・、1ζしプξArイオ
ンの平行ビームを衝突させて物質的(/(l基A・物質
を削シ取る方法であるため、加工断面&:l: ?ユζ
11[F直に近<(SO′以上)、またすそをひくこと
イ、ない。Next, after performing the trisodarination process 21 of the dirt pattern, the Ni film 24 and the WJlψ 23 are etched by the ion milling method using the VC photoresist 25 as a mask, as shown in FIG. 2(b). The ion milling method involves colliding a parallel beam of Ar ions with approximately 500 ev], 1 ζ
11[F Directly < (more than SO'), and there is no need to draw the hem.
Arイオン電流が1m配11加弗エネルギ500evの
場合、N’i h% 24およびWH23のエッチフグ
速度はそれぞれ600 X/1nin、300人A旧n
s4呈1痰のイ直である。エツチングはNi11負24
が完全になくなり、WIkG23が半分はどエツチング
され/こところで終了する。When the Ar ion current is 1m, 11cm, energy is 500ev, the etch speed of N'i h% 24 and WH23 is 600X/1nin, 300 people A old n
s4 presentation 1 phlegm is straight. Etching is Ni11 negative 24
completely disappears, and half of WIkG23 is etched/ends here.
この終了点はそれほど精度を妥するものではなく 、
Nil漠24が完全に疫くなり、WIllJ23がまだ
残っていればよいので、エツチング時間にして±10%
程此のg4差は許される。This end point does not compromise accuracy much,
As long as Nil Desert 24 is completely destroyed and WIllJ23 is still left, the etching time will be ±10%.
Cheng This g4 difference is forgivable.
次に、第2図(c+に示すように1ポトレソスト25を
レソスト剥離液で取り除き、CF、+02ガスプラズマ
によるプラズマエツチングを行安う。このガスはNil
漠24とGaAs半絶縁性基板21は全く侵さず、W膜
23のみをエツチングする。そのため、このプラズマエ
ツチングを十分に行なえi=J: 第2図(c)のよう
な構造ができる。ここでサイドエツチング効果によりW
II!+ 23の端はNi1l・424の九1よりも
1000λイ51度内1則へはいり込、む。Then, as shown in FIG.
The film 24 and the GaAs semi-insulating substrate 21 are not etched at all, and only the W film 23 is etched. Therefore, if this plasma etching is performed sufficiently, i=J: A structure as shown in FIG. 2(c) can be obtained. Here, due to the side etching effect, W
II! The edge of +23 enters the 1st law within 1000λi 51 degrees than the 91 of Ni1l・424.
第2図(cJの構造になったところで、第2図((1)
に示すようにドナーイオンの高濃1及口込み(!]n打
込層26を形成)ヤで行なう。典型的な条件u:siイ
オン、加速エネルギー120〜150 Kev 、注入
ht2〜5 X 1013CM−、2である。活性層以
外の領域にVまイオンが打込且れないようにレソストを
かぶせてお(。Ni 3000人+W100O入rIイ
オンを:34′rj以上戯衰訟せるのに十分な厚さで4
−)る、。Figure 2 (When the structure of cJ is reached, Figure 2 ((1)
As shown in FIG. 1, donor ions are implanted at a high concentration (!) to form the n-implanted layer 26. Typical conditions are u: si ions, acceleration energy 120-150 Kev, implantation ht2-5 x 1013 CM-,2. To prevent V ions from being implanted in regions other than the active layer, cover with a layer of resin (3000 Ni + 100 O) with a thickness sufficient to cause a drop of more than 34'rj.
−)ru,.
f」込み終了段、第2図(d)のようにt刈iJ俣24
を塩酸によって取り除く。n打込み層26とW膜23′
との間にはzoooX程度のすき間が自動的にできてお
り、接触することはない。この状態で全面に絶縁膜(5
in2.5t3N4.AA’20.、、Al1刈など)
をかぶせて熱処理するか、A s Jl s (アルシ
ン) l 112ガス中での熱処理を行なう。この条件
は温度800〜850℃、時間15〜20m1nである
。この熱処理において、W j!423とGaAs半絶
縁性基板21との間の整流性接触特性にtiはとんど変
化t、1、なく、またW膜23の膜厚が1000Aと薄
いため剥離することはない。f" end stage, as shown in Figure 2(d),
is removed with hydrochloric acid. N implanted layer 26 and W film 23'
A gap of about zooooX is automatically created between them, and they never come into contact. In this state, there is an insulating film (5
in2.5t3N4. AA'20. ,,Al1 cutting, etc.)
Heat treatment is performed by covering the surface with a gas of A s Jl s (Arsine) l 112 gas. The conditions are a temperature of 800 to 850°C and a time of 15 to 20 m1n. In this heat treatment, W j! In the rectifying contact characteristics between 423 and the GaAs semi-insulating substrate 21, there is almost no change in t, 1, and since the W film 23 is as thin as 1000 Å, it will not peel off.
以上のプロセスで、ケ゛−ト電物とソース、ドレインの
n領域がセルファラインで形成されているので、この後
ケ゛−トから1〜2μm離してソース、ドレインの画電
イ魅をAu −Ge/Niの蒸メイ、熱処理で作製し、
TI/F7′A従などの金属で配線をイエえば銅矛は完
成する。In the above process, the gate electrode and the source and drain n-regions are formed by self-line, so after this, the source and drain electrodes are separated by 1 to 2 μm from the gate and the Au-Ge layer is placed 1-2 μm away from the gate. /Ni steamed and heat treated,
If you wire the wiring with metal such as TI/F7'A, the copper spear will be completed.
この実h11例によって従来の耐熱性ケ゛−トセル7ア
ライメントフロセスの問題点はすべて用法される。This practical example eliminates all the problems of the conventional heat-resistant case cell 7 alignment process.
まず、ケ°−ト電極断面形状tよイオンミリン を用い
るためにほとんど垂直であり、さらKWW、>23のサ
イドエツチング効果によって第1図<c+に示した問題
点すなわちダート1j1.極とソース ドレイン領域と
の接触は起こらない。First, the cross-sectional shape t of the gate electrode is almost vertical due to the use of ion milling, and the side etching effect of KWW>23 causes the problem shown in FIG. 1<c+, namely dirt 1j1. No contact between the poles and the source/drain regions occurs.
きらに厚いNi1M24をイオンロ込カ一時のマスクと
して使用しているために、蒸Bwのイオン阻止能の悪さ
の問題が解決され、またWit児23の膜厚をン鰐<で
きることにより、蒸ifがより容易になるだけでなく熱
処理時の剥離の問題も改善される。Since the extremely thick Ni1M24 is used as a temporary mask for ion implantation, the problem of poor ion blocking ability of vaporized Bw is solved, and by being able to reduce the film thickness of Wit23, vaporization Not only is this easier, but the problem of peeling during heat treatment is also improved.
Wの電気抵抗率は約5×10Ωcmと’l”i−Wシリ
サイドに比べて1桁以上も低いので1oooA厚のWl
lr、423でもr−)抵抗の大きさシよほとんど問題
にはならない。The electrical resistivity of W is about 5 x 10 Ωcm, which is more than an order of magnitude lower than 'l''i-W silicide, so Wl with a thickness of 100A is
lr, 423 or r-) The size of the resistance hardly matters.
また、この実施例においては再現性に問題があり、寸だ
熱的制約のきびしいリフトオフ法をダート電極加工に使
用せず、代によシ制御’iIu性、再性現性のすぐれた
イオンミリング法を使用しているために、プロセス全体
としての再現性が大幅に向上している。In addition, in this example, there is a problem with reproducibility, and the lift-off method, which has severe thermal constraints, is not used for dart electrode processing, and ion milling, which has excellent controllability and reproducibility, is used. The reproducibility of the process as a whole is greatly improved due to the use of this method.
なお、とのりへ明の実施例においては、商融点金属とし
てWを、第2の金属としてNiを使用する例について説
明したが、同様な物理的、化学的性質を持つ他の金属、
合金、金属間化合物および金属硅化物、金属炭化物、金
属璧化物を使用することもできる。それらの材料を使用
したこの実施例と同等な構造も当然この発明の範囲に含
まれるものである。In addition, in the example of Akira Tonori, an example was explained in which W was used as the commercial melting point metal and Ni was used as the second metal, but other metals having similar physical and chemical properties,
It is also possible to use alloys, intermetallic compounds and metal silicides, metal carbides, metal ferrides. Naturally, structures equivalent to this embodiment using those materials are also included within the scope of the present invention.
以上のように、この発明の電界効果トランジスタの製造
方法によれば、活性層を有する半絶縁性基板上に耐熱性
を有する第1、第2の金属の膜を連続的に形成し、第2
の金属の膜をマスクとしてドナーイオンを打ち込んでソ
ース、ドレイン領域を形成し、第2の金属の膜のみを除
去してドナーイオンを活性化するようにしたので、従来
の類似のプロセスの問題点が解決され、再現性、制御性
が向上する。これにともないGa As高速論理集積回
路の性能、歩留り、信頼性が大幅に向上する。As described above, according to the method for manufacturing a field effect transistor of the present invention, heat-resistant first and second metal films are successively formed on a semi-insulating substrate having an active layer, and
By using the second metal film as a mask, donor ions are implanted to form the source and drain regions, and only the second metal film is removed to activate the donor ions, which eliminates problems with similar conventional processes. problem is solved, reproducibility and controllability are improved. This will greatly improve the performance, yield, and reliability of GaAs high-speed logic integrated circuits.
第1図(a)ないし第1図(e)は従来の’I”i−W
またはTi−WシリサイドゲートGaAs電界効果トラ
ンジスタの製造工程の概略図、第2図(a)ないし第2
図(d)はこの発明の′電界効果トランジスタの製造方
法の一実施例の工程説明図である。
21・・・GaAs半絶縁性基根、22・・・活性層、
23・・・Wg、24・・・Ni膜、25・・・ホトレ
ジスト、26+
・・・n打込み層。
特許用ノ印人 沖電気工業株式会社
第1図
第2図
手続補正書
昭和58年ら月20日
特許庁長官若杉和夫 殿
1、事件の表示
昭和57年特 許 願第 158024 号2、発
明の名称
電界効果トランゾスタの製造方法
3、補正をする者
事件との関係 特 許 出願人(029)沖電
気工業株式会社
4、代理人
5、補正命令の日付 昭和 年 月 I+ (
自発)6、補正の対象
明細書の発明の詳細な説明の欄
7、 補正の内容
1)明細書3頁10行「基11」を「基板11」と訂正
する。
2)同7頁4行「物質的」ヲ「物理的」と訂正する。
3)同8頁19行「AsHs (アルシン)IH2ガス
」k r A8H3(アルシン)/H2ガス」と訂正す
る。
4)同9頁15行「イオンミリン」ヲ「イオンミリング
を」と訂正する。
5)同9頁18行「ソースドレイン」全1ソース、ドレ
イン」と訂正する。
6)同10頁11行「代に」全1代りに」と訂正する。
7)同10頁11行「再性現」ヲ1再現」と訂正する。
−32′lFigures 1(a) to 1(e) show the conventional 'I''i-W
Or a schematic diagram of the manufacturing process of a Ti-W silicide gate GaAs field effect transistor, FIGS. 2(a) to 2
Figure (d) is a process explanatory diagram of an embodiment of the method for manufacturing a field effect transistor according to the present invention. 21... GaAs semi-insulating base, 22... active layer,
23...Wg, 24...Ni film, 25...Photoresist, 26+...N implantation layer. Patent seal person Oki Electric Industry Co., Ltd. Figure 1 Figure 2 Procedural amendment dated May 20, 1982 Kazuo Wakasugi, Commissioner of the Patent Office 1. Indication of the case Patent application No. 158024 No. 158024 2. Invention of the invention Name Field-effect transistor manufacturing method 3, relationship with the case of the person making the amendment Patent Applicant (029) Oki Electric Industry Co., Ltd. 4, Agent 5, Date of amendment order Showa Year Month I+ (
Voluntary) 6. Column 7 of the detailed description of the invention in the specification subject to amendment. Contents of the amendment 1) "Group 11" on page 3, line 10 of the specification is corrected to "substrate 11." 2) On page 7, line 4, ``material'' is corrected to ``physical.'' 3) On page 8, line 19, correct it to read "AsHs (arsine) IH2 gas" k r A8H3 (arsine)/H2 gas. 4) On page 9, line 15, "ion milling" is corrected to "ion milling". 5) On page 9, line 18, ``Source Drain'' is corrected to read ``1 source, 1 drain''. 6) On page 10, line 11, correct it to read ``Yo ni'' in place of all 1.'' 7) Correct the same page 10, line 11, ``Reproduced'' to read ``Reproduced''. -32′l
Claims (1)
第1の金属の膜および第2の金Jyy、iの膜を連続的
に形成する工程と、イオンミリング法によって、上記第
2の金属の膜および第1の金属の膜の一部をエツチング
した後さらに第1の金属の膜のみ若干のサイドエッチを
行なう工程と、−1= 1(12i42の金属の膜をマ
スクとしてドナーイオンをソース、ドレイン領域となる
べき領域に注入し、iB 2の金属の膜の除去後熱処理
によってドナーイオンを活性化する工程とを具備するこ
とを特徴と4る電界りb果トランジスタの製造方法。The above-mentioned second metal film is formed by sequentially forming a first metal film having a heat property of 1 and a second gold film on the surface of a semiconductor substrate having an active layer, and an ion milling method. After etching a part of the metal film and the first metal film, a step of slightly side-etching only the first metal film, and a step of removing donor ions using the -1=1 (12i42) metal film as a mask. 4. A method for manufacturing a field effect transistor, comprising the step of implanting donor ions into regions to become source and drain regions, and activating donor ions by heat treatment after removal of the iB2 metal film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15802482A JPS5947772A (en) | 1982-09-13 | 1982-09-13 | Manufacture of field effect transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15802482A JPS5947772A (en) | 1982-09-13 | 1982-09-13 | Manufacture of field effect transistor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5947772A true JPS5947772A (en) | 1984-03-17 |
Family
ID=15662603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15802482A Pending JPS5947772A (en) | 1982-09-13 | 1982-09-13 | Manufacture of field effect transistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5947772A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6142916A (en) * | 1984-07-30 | 1986-03-01 | エイ・ティ・アンド・ティ・コーポレーション | Method of forming semiconductor device |
JPS6181672A (en) * | 1984-09-28 | 1986-04-25 | Nec Corp | Manufacture of semiconductor device |
JPS61102070A (en) * | 1984-10-25 | 1986-05-20 | Oki Electric Ind Co Ltd | Manufacture of gaas schottky gate fet |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4946874A (en) * | 1972-09-11 | 1974-05-07 | ||
JPS57128071A (en) * | 1981-01-30 | 1982-08-09 | Fujitsu Ltd | Field-effect type semiconductor device and manufacture thereof |
-
1982
- 1982-09-13 JP JP15802482A patent/JPS5947772A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4946874A (en) * | 1972-09-11 | 1974-05-07 | ||
JPS57128071A (en) * | 1981-01-30 | 1982-08-09 | Fujitsu Ltd | Field-effect type semiconductor device and manufacture thereof |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6142916A (en) * | 1984-07-30 | 1986-03-01 | エイ・ティ・アンド・ティ・コーポレーション | Method of forming semiconductor device |
JPS6181672A (en) * | 1984-09-28 | 1986-04-25 | Nec Corp | Manufacture of semiconductor device |
JPS61102070A (en) * | 1984-10-25 | 1986-05-20 | Oki Electric Ind Co Ltd | Manufacture of gaas schottky gate fet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR900008277B1 (en) | Method manufacturing a field effect transistor | |
JPS6239835B2 (en) | ||
JP2673109B2 (en) | Method of manufacturing self-aligned T-gate gallium arsenide metal semiconductor field effect transistor | |
JPS5947772A (en) | Manufacture of field effect transistor | |
US4586063A (en) | Schottky barrier gate FET including tungsten-aluminum alloy | |
JPS6292481A (en) | Manufacture of semiconductor device | |
JPS627165A (en) | Manufacture of semiconductor device | |
JPS6160591B2 (en) | ||
JPS6273673A (en) | Manufacture of field-effect transistor | |
JPH0578181B2 (en) | ||
JPH11186548A (en) | Semiconductor device and manufacture thereof | |
JPS609120A (en) | Manufacture of semiconductor device | |
JPH0810706B2 (en) | Method for manufacturing field effect transistor | |
JPS60261179A (en) | Manufacture of semiconductor element | |
JPS6190470A (en) | Manufacture of compound semiconductor device | |
JPS59214266A (en) | Manufacture of semiconductor integrated circuit device | |
JPH0472385B2 (en) | ||
JPS6276566A (en) | Manufacture of field-effect transistor | |
JPH0783026B2 (en) | Method for manufacturing field effect transistor | |
JPS6112084A (en) | Manufacture of semiconductor device | |
JPS59191384A (en) | Manufacture of semiconductor device | |
JPS59195874A (en) | Manufacture of field-effect transistor | |
JPS6163063A (en) | Manufacture of semiconductor device | |
JPS6279675A (en) | Compound semiconductor device | |
JPS61242080A (en) | Manufacture of semiconductor device |