[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5946304A - Power generation - Google Patents

Power generation

Info

Publication number
JPS5946304A
JPS5946304A JP15515582A JP15515582A JPS5946304A JP S5946304 A JPS5946304 A JP S5946304A JP 15515582 A JP15515582 A JP 15515582A JP 15515582 A JP15515582 A JP 15515582A JP S5946304 A JPS5946304 A JP S5946304A
Authority
JP
Japan
Prior art keywords
methanol
power generation
gas
raw material
fed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15515582A
Other languages
Japanese (ja)
Inventor
Yoshihiko Uetoko
上床 珍彦
Michio Nobue
信江 道生
Akira Katou
加藤 アキラ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Engineering Corp
Original Assignee
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Engineering Corp filed Critical Toyo Engineering Corp
Priority to JP15515582A priority Critical patent/JPS5946304A/en
Publication of JPS5946304A publication Critical patent/JPS5946304A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/064Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle in combination with an industrial process, e.g. chemical, metallurgical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To enable to generate the power without limitation of physical feature by a method wherein a liquid alcohol is manufactured from raw material gas obtained by the gasification of fuel, then said alcohol is stored, also the burning of remaining combustible gas is utilized for electrical power generation. CONSTITUTION:Fuel 1 is gasificated by a gasification process 2, cooled by a heat recovery device 3, then directly fed to burning process from a passage 10 via a gas purification process 4, or fed to a methanol synthetic process 5, a product is fed to methanol recovery device 6, a methanol is stored in a methanol storage tank 7, an extracted gas 8 is recycled by a passage 9 or directly fed to a burning process 12. For reducing of electrical power generation, that is, for increasing of the stored nergy as the methanol, a hydrogen 19 is fed to methanol process 5. A burning gas 14 drives a turbine 15 and generates the electrical power 20.

Description

【発明の詳細な説明】 本発明は発電方法に関し、詳しくは石炭1石油等の化石
燃料等の炭化水素系等の燃料物質を用いた発電方法に関
する。本発明は更に詳しくは余剰のエネルギーを貯え又
はこれを使用して電力需要の時間的変動に応じる発電方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power generation method, and more particularly to a power generation method using fuel materials such as hydrocarbons such as fossil fuels such as coal and petroleum. More particularly, the present invention relates to a method of generating electricity by storing or using surplus energy to respond to temporal fluctuations in power demand.

電力の利用は人類に大きな恩恵をもたらし、その需要の
拡大に応えるべく水力、火力、原子力等各種発電方法が
提案され実用されている。
The use of electricity brings great benefits to humanity, and in order to meet the expanding demand, various power generation methods such as hydropower, thermal power, and nuclear power have been proposed and put into practice.

応じなければならない最大需要に対して各種発電設備が
設けられるが、一方電力需要は経時的に大きく変動する
。電力はその性質」−貯蔵がたやすくないので、上記変
動に追随して発電設備の操業も変動させればよいが効率
上これもたやすくない。そこで需要が少ない時間の余剰
電力を他種のエネルギーとして貯蔵する方法として、余
剰電力によりダノ、に揚水を行いより大需要時に水力発
電を行う揚水発電は既に実用されて℃・る。しかしダム
を利用するには各種地理的条件。
Various power generation facilities are installed to meet the maximum demand that must be met, but on the other hand, power demand fluctuates greatly over time. Since electric power is not easy to store, it would be possible to change the operation of the power generation equipment to follow the above fluctuations, but this is not easy in terms of efficiency. Therefore, as a method of storing surplus power during times of low demand as another type of energy, pumped storage power generation, in which the surplus power is used to pump water into a tank and generate hydroelectric power during times of high demand, has already been put into practical use. However, there are various geographical conditions to use a dam.

地勢的条件の制約があり、例えば日本国内ではもはや経
済的に利用可能な箇所は殆どない。地勢」−タノ・の建
設が困雌な島しょ等に於ては揚水発電は全く不r=J能
である。
Due to geographical constraints, for example, there are almost no economically viable locations in Japan. Pumped storage power generation is completely impossible on islands where it is difficult to construct landforms.

かかる状況に鑑シ鋭意本発明者が検削の結果本発明は達
成された。即ち本発明は、 燃料物質のガス化により得られたガスに必要なら前処理
を行って原料ガスとし、以「の]−稈又はそれらの2つ
以上の同時並行的組合わせの少なくとも1つを電力需要
の変動に応じて実施する発電方法。
In view of this situation, the present invention was achieved as a result of thorough inspection by the present inventor. That is, the present invention provides a method of pretreating the gas obtained by gasifying a fuel material, if necessary, to obtain a raw material gas, and at least one of the following: - culm or a simultaneous combination of two or more thereof. A power generation method that responds to fluctuations in electricity demand.

a 原料カスを燃焼させて発電に利用する。a. Burn the raw material waste and use it for power generation.

b 原料゛ノノスから液状アルコ ノ1を製造し貯蔵す
る。
b. Manufacture and store liquid Alcono 1 from the raw material Enonos.

C原1ノノスから液状アルコ−/lを製造し、貯蔵する
と共に、残余の可燃性/Jスを燃焼させて発電に利用す
る。
Liquid alcohol/l is produced from 1 liter of C raw material and stored, and the remaining flammable/J gas is burned and used for power generation.

d 上記すやCで得られた液状ノ”+1.、 =l 、
−71を発電に利用する。
d The liquid obtained in Suya C above +1., =l,
-71 will be used for power generation.

である。It is.

本発明は、従来性われている揚水発電とは全く異ってい
る。即ち、揚水発電に於ては各種方法で既に発電された
電力を位置エネル4−−とじて貯えるのに対し、本発明
では、燃料物質の有するエネルギーを電力に転換する前
に、化学エネルギーとして貯え、これを発電に利用する
。しかも化学エネルギー貯蔵物質たる液状lルー1−ル
は、場合によっては基礎化学原料や燃料として発電以外
の用途にも充分利用できる利点があり、揚水発電用タム
の如き地勢の制約が殆どなく貯蔵できる利点もある。
The present invention is completely different from conventional pumped storage power generation. That is, in pumped storage power generation, the electric power already generated by various methods is stored as potential energy, whereas in the present invention, the energy contained in the fuel material is stored as chemical energy before being converted into electric power. , which is used for power generation. Furthermore, liquid L-L-1-L, which is a chemical energy storage substance, has the advantage that it can be used for purposes other than power generation, such as basic chemical raw materials or fuel, in some cases, and can be stored with almost no geographical constraints such as in pumped-storage power generation tanks. There are also advantages.

本発明でいう液状アルコールは、それが貯蔵及び利用さ
れる環境で液状の、炭素、水素及び酸素から成る化合物
であり、液状アルカノール類、なかでもブタノール、プ
ロパツール、エタノール、メタノールが代表的である。
The liquid alcohol referred to in the present invention is a compound consisting of carbon, hydrogen, and oxygen that is liquid in the environment in which it is stored and used, and liquid alkanols, among which butanol, propatool, ethanol, and methanol are typical examples. .

エネルギー貯蔵には炭素数の多い方がよ(,が化学工程
上の取扱は炭素数の少ない方がたやすい。これらの二種
類以上の混合物であってもよいが物[jlj的。
For energy storage, it is better to have a large number of carbon atoms (but it is easier to handle chemical processes with a small number of carbon atoms.It may be a mixture of two or more of these types, but it is easier to handle them in chemical processes.

化学的性質の隔りの少ない方が取扱℃・が容易で本発明
には好まし℃・。
A temperature with a smaller difference in chemical properties is easier to handle and is preferred for the present invention.

本発明に於て燃料物質とは、液状1111 )1に変換
することのできる可燃性のカスを発生し5る物質であれ
ば特に限定はないが、代表的には石炭1石油等の化石燃
料、又はこれらからc+jl各トド誘導体、動植物から
の抽出成分、木拐、木□炭、樹皮等があげられその少7
Lc (とも1種が必要に応じ適宜粉砕、混合等に代表
される前処理の装用℃・られる。
In the present invention, the fuel substance is not particularly limited as long as it is a substance that generates flammable residue that can be converted into liquid 1111)1, but fossil fuels such as coal and petroleum are typically used. , or from these, c+jl, various sea lion derivatives, extracts from plants and animals, tree bark, charcoal, bark, etc., and a few of them.
Lc (both types are used for pre-treatments such as crushing and mixing as necessary).

本発明に於て燃料物質のガス化により得られたガスに対
し行われることのある前処理の代表的)、(ものは脱硫
に代表される不純物除去や水素CO;  7/−反応 
ヒH刻よh妥 含有成分増加の為のブ      −一   等があり
、これの場合通常は不純物含有カスを予、\り必要温度
に冷却すると共に熱回収を行う工程がf−1随する。
Typical pretreatments that may be performed on the gas obtained by gasifying fuel materials in the present invention include removal of impurities such as desulfurization and hydrogen CO reaction;
There are steps such as carving to increase the content of ingredients, and in this case, a step of pre-cooling the impurity-containing scum to a required temperature and recovering heat is usually included.

本発明に於て上記d、により液状)−ルコーノ!を利用
する方法としては、要は電力が得られれば特に限定はな
いが代表的には1)面接燃焼させて利用する、11)各
種フラノ・1−ンクにより水素と一酸化炭素を得て利用
する、1ii)スチームリフオマ−によりHzと゛して
燃料電池の燃料と1−て利用する等がある。
In the present invention, the above-mentioned d)-Lucono! There are no particular limitations on how to use hydrogen, as long as electricity can be obtained, but typical methods include 1) using it by face-to-face combustion, and 11) obtaining hydrogen and carbon monoxide using various types of flannel burners. 1ii) It is converted to Hz using a steam refrigerant and used as fuel for a fuel cell.

上記Q、c、、 i)及び11)等でガスやメタノール
を発電に利用する際は、カスそのものやガ舌−燃焼して
生成したカスによりガスターヒンを駆動して発電し1カ
スタ−ヒンからの排出ガスをボイラーの熱源としてボイ
ラーからの水蒸気によりタービンを駆動にて発電する等
、エートルギ−を多段に利用して発電することが望まし
い。
When using gas or methanol for power generation in the above Q, c, i) and 11), the scum itself or the scum generated by burning the gas tongue drives the gas star hin to generate electricity, and one caster hin generates electricity. It is desirable to generate electricity by using aetrugy in multiple stages, such as using exhaust gas as a heat source for the boiler and driving a turbine with steam from the boiler to generate electricity.

本発明の方法は上述のとおり特([離島などで便利な方
法であるが、更に、水源の不足する土地では、上記11
1)の燃料電池から排出される水分を回収すれば各種利
用の可能な清水を得ることができる。必要に応じ四B寺
に熱回収を行い、単に冷却すればよい場合は豊富かつ安
価な海水の利用も可能である。
As mentioned above, the method of the present invention is particularly useful in remote islands, etc., but it is also useful in lands lacking water sources.
If the water discharged from the fuel cell in 1) is recovered, fresh water that can be used for various purposes can be obtained. If necessary, it is possible to recover heat from the four B temples and use seawater, which is abundant and inexpensive, if it is only necessary to cool it.

本発明の方法に於てエネルギーを液状7ノ1コールとし
て貯蔵する割合を増したい場合には、液状アルコール合
成工程に例えばメタノール合成などで通常行なわれるリ
サイクル法を利用してもよい。液状アルコールの貯蔵割
合を増す為に炭化水素系燃料物質から出発した場合等に
原料ガス中の水素成分。酬豪糞士瀞が不足する場b)メ
タノール合成工程に原料ガスの他に別途水素を原料とし
て投入する等の方法が代表的であるQ 特に、上記b)の方法は、発電量を時系列的に減らすこ
との困難な、例えば近年利用の増して来た原子力発電等
の他の発電方法による余剰電力も多い場合には好適であ
り、即ち余剰電力により水を電解して得た水素を利用す
る。一般的には、輸送のたやすい電力を本発明の方法を
実施する発電所なし・しその近傍で受は入れ、そこで水
素を得るとよし・。
In the method of the present invention, if it is desired to increase the proportion of energy stored as liquid 7-N-1 alcohol, a recycling method commonly used in methanol synthesis, for example, may be used in the liquid alcohol synthesis step. Hydrogen component in the raw material gas, such as when starting from a hydrocarbon fuel material to increase the storage percentage of liquid alcohol. When there is a shortage of energy, a typical method is b) adding hydrogen as a raw material in addition to the raw material gas to the methanol synthesis process. It is suitable when there is a large amount of surplus power generated by other power generation methods, such as nuclear power generation, which has been increasingly used in recent years, which is difficult to reduce. In other words, hydrogen obtained by electrolyzing water with surplus power is used. do. In general, it is best to receive electricity that is easy to transport near a power plant that implements the method of the present invention, and obtain hydrogen there.

本発明の方法による効果を以下具体的に説明するが、勿
論本発明はこれらの例に限定されプよ見゛0 表1 (第13頁)に示した例のうち、例■は従来知ら
れる方法である。ところで燃料物質をガス化してから燃
焼させる方法は効率のよいフンバインドサイクルが利用
しやすい反面、一般に高温の化学的操作であるガス化は
低負荷の運転は有利でないし困難であるので、ガス化工
程の運転効率を−」二げることか重要である。
The effects of the method of the present invention will be specifically explained below, but of course the present invention is limited to these examples. It's a method. By the way, as a method of gasifying fuel materials and then combusting them, it is easy to use the efficient Humbind cycle, but gasification is generally a high-temperature chemical operation, and low-load operation is not advantageous and difficult. It is important to increase the operational efficiency of the process.

例Iの方法では、年間2月間、昼夜等にわたる電力需要
の変動を考慮すると、年間平均70条程度の運転しかで
きない。これに対し、以下説明する例U及び側層の方法
では、本発明の方法を採用しているので、安全率を考慮
しても、90%という充分高い稼動率が安定的に維持可
能である。
In the method of Example I, considering fluctuations in power demand over two months of the year, day and night, it is possible to operate only about 70 lines per year on average. On the other hand, in Example U and the side layer method described below, since the method of the present invention is adopted, a sufficiently high operating rate of 90% can be stably maintained even considering the safety factor. .

表1の例■は、運転動力等は別として、燃料物質のみで
発電する方法であり、低需要B’lVCは原料ガスの一
部をワンスルー法でメタノールに転換し残余のガスでコ
ンバインドサイクル発電を行い(肛−B)、発電量を8
1万KWH/Hまで1に較べ20万KWH/H落すこと
ができる。
Example ■ in Table 1 is a method of generating electricity using only fuel materials, apart from operating power, etc. In low-demand B'lVC, a part of the raw material gas is converted to methanol using the one-through method, and the remaining gas is used for combined cycle power generation. (anus-B), and the amount of power generation is 8
Up to 10,000 KWH/H can be reduced by 200,000 KWH/H compared to 1.

この運転を、簡単の為12時間行ったとすると、この間
貯えられたメタノ ル、及びメタノール合成を行わずに
(即ちメタノール合成経路をバイパスして)原料ガスを
コンバインドサイクル発電に同じく12時間利用すると
(It−A)、■に較べ20万KWH/H多い+ 31
万KWH/Hの電力が得られ、この間ガス化の稼動率は
安定的に90係に保たれる。表1の例1では、メタノー
ル合成の為の外部水素源として、メタノール合成時に原
料ノノスの他に水素力スを投入する他は例nと同様にし
て、1−Bでの発電量は66万KWH/Hに下げること
ができる一方冒−Aでは実に165万KWH/Hの発電
ができる。
Assuming that this operation is carried out for 12 hours for simplicity, if the methanol stored during this period and the raw material gas are used for combined cycle power generation without methanol synthesis (that is, by bypassing the methanol synthesis route) for the same 12 hours, then ( It-A), 200,000 KWH/H more than ■ 31
Electric power of 10,000 KWH/H is obtained, and the gasification operation rate is stably maintained at 90% during this period. In Example 1 of Table 1, the power generation amount in 1-B is 660,000 yen except that hydrogen power is input in addition to the raw material NONOS during methanol synthesis as an external hydrogen source for methanol synthesis. While it is possible to reduce the power consumption to 1.65 million KWH/H, F-A can actually generate 1.65 million KWH/H.

これらの例では、最大/最小発″電量比は例■で100
/62.イ列冒で100/40であるが、これ要時間が
即らAの運転をする時間が6nニア間でありBの運転を
する時間は18時間とすれば、Bの運転で得られるメタ
ノール量は15倍となりAの運転に投入できるメタノー
ルの時間当り量は3倍となるので、この間にはその分の
寄与により増加した合計実に171万KWH/Hの電力
が得られる。
In these examples, the maximum/minimum power generation ratio is 100 in example ■.
/62. The ratio is 100/40, but if the time required for operation A is 6n near and the time for operation B is 18 hours, then the amount of methanol obtained by operation B is 100/40. is 15 times greater, and the amount of methanol that can be inputted per hour to the operation of A is three times greater. During this period, a total of 1,710,000 KWH/H of electric power can be obtained due to this contribution.

また」二記の諸例では簡単の為略したがAの運転にお℃
゛て一部の原料ガスをメク/−刀〜合成経路に投入し他
の一部を発電に直接用いることでガス化の稼動率を落さ
ずにエネルギーを貯蔵し発電量を下げることもできる。
Also, in the examples in section 2, it is omitted for simplicity, but in the operation of A,
Then, by inputting some of the raw material gas into the meku/-synthesis route and using the other part directly for power generation, it is possible to store energy and reduce the amount of power generation without reducing the gasification operation rate. .

上記の例や説明から理解される諸運転方法の組み合わせ
、及び許される範囲でのガス化稼動率の変化、等を組み
合わせれば、安全率を考慮した上で電力需要の時間的変
動バターノに合わせた運転がたやすくできる。
By combining the various operating methods understood from the above examples and explanations, and changing the gasification operating rate within the permissible range, it is possible to adjust to the temporal fluctuations in electricity demand by considering the safety factor. Easy to drive.

次に第1図によって本発明の典型的な1具体例を説明す
る。燃料物質】はガス化工程2によりガス化され熱回収
器3により冷却されてからガス精製工程4を経て経路1
oから直接燃焼工程に入り及び又はメタノール合成工程
5に入シ生成物流はメタノール回収器6を経てメタンー
ルはメタノール貯槽7に入り、排出ガス8は経路9によ
りリサイクルされる及び又は直接燃焼工程12に入る。
Next, a typical example of the present invention will be explained with reference to FIG. The fuel substance] is gasified in gasification step 2, cooled in heat recovery device 3, and then passed through gas purification step 4 to route 1.
The product stream passes through a methanol collector 6 and the methanol enters a methanol storage tank 7 and the exhaust gas 8 is recycled via path 9 and/or enters a direct combustion step 12. enter.

(従来方法は経路10のみを利用するものである。)リ
サ・rクル割合をへらす、リサイクルをやめる、メタノ
ール合成をやめる、経路11から燃焼工程にメタノ−/
lを投入する等のことによって、ガス化の稼動一定のま
ま順次より高出力発電がなされる。発電量をへらす即ち
、メタノールとして貯蔵されるエネルギーを増すにはこ
の順を逆にたどる、図示の如く水素19をメタノール合
成工程5に投入ずを経て投入された燃料流は空気13に
より燃焼せられ得られた燃オ見ガス14はタービン15
を駆動して電力20を発生させてからボイラー16でス
チームを発生させ、この人手−ノ・がタービン17を駆
動させて電力21を発生する。
(The conventional method uses only route 10.) Reduce the ratio of recycle gas, stop recycling, stop methanol synthesis, and add methanol to the combustion process from route 11.
By inputting 1,000 liters of gas, etc., higher output power generation is sequentially performed while the gasification operation remains constant. To reduce the amount of power generation, that is, increase the energy stored as methanol, follow this order in reverse.As shown in the figure, the hydrogen 19 is not input to the methanol synthesis step 5, and the fuel flow input through the methanol synthesis step 5 is combusted by the air 13. The obtained combustion gas 14 is sent to the turbine 15
is driven to generate electric power 20, then steam is generated in the boiler 16, and this manual operation drives the turbine 17 to generate electric power 21.

タービン17かもの排出スチームは復水器18を経てボ
イラー16へ戻される。熱回収器3゜メタノール回収器
6.復水器189図外の原料ごOニアI浜ハ・ ガスの −m−−後の熱回収等で 得られた熱は勿論適宜本系内外の各所に利用されてよい
。なお第1図による上記説明は本発明の1具体例にすぎ
ないから本発明はこれに限定されない。また、」−配積
々の手法でなお余剰の電力が発生するσ季に本発明の系
で自己完結的にこれを利用するには、水の電解を行って
水素を得、この水素を適宜メタノール合成に利用するこ
とができる。
The exhaust steam from turbine 17 is returned to boiler 16 via condenser 18. Heat recovery device 3゜methanol recovery device 6. The heat obtained by recovering the heat from the raw material gas (not shown) in the condenser 189 may, of course, be utilized in various places inside and outside the main system as appropriate. Note that the above description with reference to FIG. 1 is only one specific example of the present invention, and therefore the present invention is not limited thereto. In addition, in order to use the system of the present invention in a self-contained manner during the σ season when surplus power is still generated by the ``--pile-up method,'' electrolysis of water can be performed to obtain hydrogen, and this hydrogen can be used as appropriate. Can be used for methanol synthesis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の典形的な】具体例を説明する概略の工
程図である。 出願人 東洋エン7シニアリング株式会社代理人  大
  洲  明  峰
FIG. 1 is a schematic process diagram illustrating a typical example of the present invention. Applicant: Toyo En7 Senioring Co., Ltd. Agent: Akimine Osu

Claims (1)

【特許請求の範囲】 燃料物質のカス化により得られたガスに必要なら前処理
を行って原料ガスとし、以下の工程又はそれらの2つ以
上の同時並1テ的組合わせの少なくとも1つを電力需要
の変動に応じて実施する発電方法。 a 原料ガスを燃焼させて発電に利用する。 b 原料ガスから液状アルコ ルを製造し貯蔵する。 C1原料ガスから液状アルコ−ノ1を製造し貯蔵すると
共に、残金のpJ燃性カスを燃焼させて発illに利用
する。 dJ−記すやC1で得られた液状アit、 ニア−/l
を発電に利用する。
[Claims] The gas obtained by scuming the fuel material is subjected to pretreatment if necessary to obtain a raw material gas, and at least one of the following steps or a simultaneous combination of two or more thereof is performed. A power generation method that responds to fluctuations in electricity demand. a The raw material gas is combusted and used for power generation. b Manufacture and store liquid alcohol from raw material gas. Liquid Alco-1 is produced and stored from the C1 raw material gas, and the remaining pJ flammable residue is burned and used for generation. dJ-Liquid it obtained with C1, near/l
is used for power generation.
JP15515582A 1982-09-08 1982-09-08 Power generation Pending JPS5946304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15515582A JPS5946304A (en) 1982-09-08 1982-09-08 Power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15515582A JPS5946304A (en) 1982-09-08 1982-09-08 Power generation

Publications (1)

Publication Number Publication Date
JPS5946304A true JPS5946304A (en) 1984-03-15

Family

ID=15599729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15515582A Pending JPS5946304A (en) 1982-09-08 1982-09-08 Power generation

Country Status (1)

Country Link
JP (1) JPS5946304A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54123642A (en) * 1978-02-21 1979-09-26 Steag Ag Method of and apparatus for supplying fuel for gasssteam turbine generator to be used in peak generation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54123642A (en) * 1978-02-21 1979-09-26 Steag Ag Method of and apparatus for supplying fuel for gasssteam turbine generator to be used in peak generation

Similar Documents

Publication Publication Date Title
Ishaq et al. A review on hydrogen production and utilization: Challenges and opportunities
US9328426B2 (en) Systems and methods for generating oxygen and hydrogen for plant equipment
JP5012559B2 (en) Solar thermal energy storage and transfer method
US5416245A (en) Synergistic process for the production of methanol
US8272216B2 (en) Method for converting solar thermal energy
AU2009216073B2 (en) Method of converting solar heat energy
US20100003184A1 (en) Method for storing solar thermal energy
JPH0565237A (en) Energy supply method using methanol as medium
US20190024002A1 (en) A combined system for producing fuel and thermal energy and a method for poduction of fuel and thermal energy
Spazzafumo Storing renewable energies in a substitute of natural gas
Ghasemi et al. Exergoeconomic and exergoenvironmental analyzes of a new biomass/solar-driven multigeneration energy system: an effort to maximum utilization of the waste heat of gasification process
Zhou et al. Proposal of a tri-generation system by co-combustion of groundnut shell biomass and synthesis gas exiting from a solid oxide fuel cell: Environmental assessment and multi-objective optimization
KR101617754B1 (en) Distributed power generation through coal and industrial waste water gasification
EP3286282A1 (en) Method for generating electric energy by means of fluctuating renewable energy sources
JPS5946304A (en) Power generation
GB2134601A (en) Electric power generating plant with energy storage
Ghergheleş et al. Hydrogen–the fuel of the future
Kahraman Design and evaluation of integrated waste to energy multigenerational systems
Steinberg Nuclear power for the production of synthetic fuels and feedstocks
Steinberg Fossil fuel and greenhouse gas mitigation technologies
Kini et al. Power from rice husk for rice mills-a case study
Sharma et al. BIOMASS BASED POWER GENERATION
JPH04306569A (en) Distributed type regenerable power generation system
Long Method of storing electric power
JPS59172939A (en) Generating method