[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5946073A - Semiconductor thin film light emitting element - Google Patents

Semiconductor thin film light emitting element

Info

Publication number
JPS5946073A
JPS5946073A JP57156111A JP15611182A JPS5946073A JP S5946073 A JPS5946073 A JP S5946073A JP 57156111 A JP57156111 A JP 57156111A JP 15611182 A JP15611182 A JP 15611182A JP S5946073 A JPS5946073 A JP S5946073A
Authority
JP
Japan
Prior art keywords
layer
thin film
light emitting
semiconductor
mixed crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57156111A
Other languages
Japanese (ja)
Inventor
Hiroshi Fujiyasu
洋 藤安
Masaru Kaneko
勝 金子
Yoshiki Kurosawa
黒沢 好樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koito Manufacturing Co Ltd
Original Assignee
Koito Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koito Manufacturing Co Ltd filed Critical Koito Manufacturing Co Ltd
Priority to JP57156111A priority Critical patent/JPS5946073A/en
Publication of JPS5946073A publication Critical patent/JPS5946073A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To obtain the desired light emitting colors by a method wherein the semiconductor layers with different forbidden layer of said layers between the layers with large Eg to provide them with a transparent electrode and a backside electrode. CONSTITUTION:A transparent electrode 2 made of InO2+Sn2O3, a ZnS layer 3, a ZnSxSe1-x(0<x<1) layer 4, another ZnS layer 5 and a backside electrode 6 are laminated on a glass plate 1. At this time, a quantum well QW is formed enclosing electrode and holes in the active layer 4 with small Eg facilitating light emission and recoupling improving the light emitting efficiency and reducing the driving voltage. All of the intermediate colors of the proper light emitting colors of the ZnS layer and the ZnSe layer may be produced by means of changing the mixed crystal ratio x. The blue, green, red and infrared colors may be produced by utilizing respectively ZnS-ZnSe, GaAlP-GaP, GaP-GaAsP and GaAlAs- GaAs. On the other hand, the desired light emitting colors may be produced by means of alternately laminating the layers with large Eg and the mixed crystal layers with the mixed crystal materials and the mixed crystal ratio adapted properly.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は新規な半導体薄膜発光素子に関し、特に、好み
の発光色をfIiられ、各種表示装置の発光素子−とし
て好適である新規な〉1“導体薄11!i!発光素fを
提供しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a novel semiconductor thin film light emitting device, and in particular to a novel semiconductor thin film light emitting device, which can emit light of a desired color and is suitable as a light emitting device for various display devices. It is intended to provide a thin 11!i! light-emitting element f.

発明の概要 本発明半導体薄膜発光素rの第1のものは、禁制帯幅の
異なる2種の半導体月利を用い、禁制帯幅の大きな力の
半導体材料から成る」′−導体薄膜層の間に前記2種の
゛ト導体の混晶相才]から成る゛1′°導体薄膜層を挟
持状にした積層体を透明゛電極と背面′11を極との間
に挟置して成ることを特徴とする。これによって禁制帯
幅の小さな方の゛V導体薄膜層を構成している混晶材料
とその混晶比を適宜番、−1ふことによって、好みの発
光色を得ることかできる。
Summary of the Invention The first semiconductor thin film light emitting device of the present invention uses two types of semiconductor materials with different forbidden band widths, and is made of a semiconductor material with a large forbidden band width between the conductive thin film layers. A laminate comprising a 1' conductor thin film layer sandwiched between the transparent electrode and the back surface '11' is sandwiched between the transparent electrode and the back surface '11'. It is characterized by As a result, a desired emission color can be obtained by adjusting the mixed crystal material constituting the V conductor thin film layer with the smaller forbidden band width and the mixed crystal ratio by -1 as appropriate.

また、本発明半導体薄膜発光′、+8rの第2のものは
、禁制帯幅の異なる2種の≧1′°導体材利を川し1、
禁制帯幅の大きな方の゛1′導体材石から成る゛1′4
体薄膜層と前記2種の半導体の混晶材料から成る゛1′
導体薄膜層とを交互に積層し、そして、1lij品材才
゛]から成る複数の半導体薄lり層の混晶比を変化させ
たことを特徴とする。これによって、それぞれ17〜品
比の異なる混晶材料による半導体薄膜層での発光色の合
成色による発光がイ1すられ、従って、混晶材料と1h
i晶比の組み合わせを適宜に選ぶことにより、好1ノの
色の発光色を岩°易に得ることかできる。
In addition, the second semiconductor thin film light emitting device according to the present invention, +8r, uses two types of ≧1′° conductor materials with different forbidden band widths.
``1'4'' made of ``1'' conductor material stone with larger forbidden band width
1' consisting of a body thin film layer and a mixed crystal material of the two types of semiconductors mentioned above.
It is characterized in that conductor thin film layers are alternately laminated, and the mixed crystal ratio of the plurality of thin semiconductor layers made of 1lij material is varied. As a result, the light emitted by the composite color of the emitted light in the semiconductor thin film layer by the mixed crystal materials with different product ratios is improved, and therefore, the mixed crystal materials and the
By appropriately selecting a combination of i-crystal ratios, it is possible to easily obtain a preferred luminescent color.

実施例 以下に、本発明半導体薄膜発光素子の第1のものの5T
細を図示実施例に従って説明する。尚、この実施例では
、禁制帯幅の異なる2種の半導体材料として、硫化亜鉛
(ZnS)とセレン化111(鉛(Z n S e)を
用いた場合を例として説、明する。
Examples Below, 5T of the first semiconductor thin film light emitting device of the present invention will be described.
The details will be explained according to the illustrated embodiment. In this example, a case will be explained in which zinc sulfide (ZnS) and selenide 111 (lead (Z n S e)) are used as two types of semiconductor materials having different forbidden band widths.

従って、混晶材料は亜鉛(Zn)と硫の(S)とセレン
(Se)の3つの構成元素を含む多元材料(ZnSxS
e (t−X )) である。
Therefore, the mixed crystal material is a multi-element material (ZnSxS) containing three constituent elements: zinc (Zn), sulfur (S) and selenium (Se).
e (t-X)).

■は透明基板であり、ガラス板又はシリコン(Si)、
ガリウム−砒素(GaAs)等の単結晶基板から成る。
■ is a transparent substrate, which is a glass plate or silicon (Si),
It consists of a single crystal substrate such as gallium-arsenide (GaAs).

2は透明電極であり、例えはインシラ/−,−−1−i
fの酸化物の薄膜から成り、111記透明基根J17)
フッの面に被着形成される。
2 is a transparent electrode, for example, insira/-,--1-i
It consists of a thin film of oxide of f, 111 transparent base J17)
It is deposited on the surface of the foot.

3は半導体薄1模で、例えは何?化仙鉛t’、 7. 
n S )の100〜1000オンゲス10−八(八)
イぐtの薄膜である。
3 is 1 model of semiconductor thin film, what is the analogy? Kasen lead t', 7.
n S ) 100-1000 onges 10-8 (eight)
It is a thin film of igut.

4は活性層で、11j記?1′導体薄膜3の゛1′導体
材4゛[より禁制帯幅の小さなゝI′導体月利と前記゛
1′導体薄119層3の半導体材料との混晶材7r′]
から成る薄111−1で、前記半導体薄11り3とはへ
テロ接合されている。そして、この活性層4の半導体材
木゛lは[111記゛1′導体薄膜3の半導体材料より
禁1(−1帯幅が小さなもので、例えは前述のように゛
1′:導体薄11り3の゛1′″導体旧石を硫化亜鉛(
ZnS)と1〜だ場合は、セ]/ン化亜鉛(Z n S
 e)と硫化+1j鉛(Z n S )とノ114晶材
料(ZnSxSe 〈1−X ))が考λられる。そし
て、この活性層4の膜厚はlO〜200オンゲストロー
1、(八)である。
4 is the active layer, 11j? 1' conductor material 4 of 1' conductor thin film 3 [Mixed crystal material 7r' of 1' conductor material with smaller forbidden band width and semiconductor material of the 119 layer 3 of 1' conductor thin film]
The semiconductor thin layer 111-1 is heterojunctioned with the semiconductor thin layer 11-3. The semiconductor material 1 of the active layer 4 has a narrower band width than the semiconductor material of the conductor thin film 3. Zinc sulfide (
ZnS) and 1~, then zinc chloride (ZnS)
e), +1j lead sulfide (Z n S ), and a 114-crystalline material (ZnSxSe <1-X )). The film thickness of this active layer 4 is lO~200 angstrow 1.(8).

5は前記半導体薄11り3の半導体材料と同様の゛1′
導体材料(前記例ではZn5)から成る1′・導体薄膜
であり、活性層4とへテロ接合され、その層厚は50〜
500オングストローム(人)である。
5 is the same semiconductor material as the semiconductor material 11 and 3.
It is a 1' conductive thin film made of a conductive material (Zn5 in the above example), is heterojunctioned with the active layer 4, and has a layer thickness of 50 to 50 mm.
It is 500 angstroms (person).

6は半導体薄膜5の背面に接して設けられた背面電極で
ある。この背面電極6は、透明、1′、透明、無彩色、
イ1彩色等適宜のもので良い。
Reference numeral 6 denotes a back electrode provided in contact with the back surface of the semiconductor thin film 5. This back electrode 6 is transparent, 1', transparent, achromatic,
B1 Coloring or other appropriate materials may be used.

第2図(A)は1−記半導体薄膜3.5と活性層4とか
ら成る積層体7を厚み方向に薄くスライスして示す断面
図であり、同図(B)は(A)に対応して各層における
エネルキー憎位の分ろを示すものである。
FIG. 2(A) is a sectional view showing the laminated body 7 consisting of the semiconductor thin film 3.5 and the active layer 4 sliced thinly in the thickness direction, and FIG. 2(B) corresponds to (A). This shows the distribution of energy levels in each layer.

第2図からもわかるように、混晶材木1から成る禁制帯
幅の小さな半導体薄膜層をそれより禁制帯幅の大きな半
導体材料から成る薄lりによって挟んだ層構造とすると
、量子井戸QWが形成され、禁制帯幅のより小さな平導
体層即ち活性層に電子及び止孔が閉じ込められ、ここで
発光再結合をするため、所定の波長の発光がtiIられ
る。また、J二記のような量子井戸構造によると、電子
及び正孔が活性層4に閉じ込められ、発光再結合をし易
くなるため、発光効′:4zが増大し、従って、駆動電
圧をドげることができる。
As can be seen from Fig. 2, if a semiconductor thin film layer made of mixed crystal lumber 1 with a small bandgap is sandwiched between thin layers made of a semiconductor material with a larger bandgap, the quantum well QW will be formed. Electrons and blocking holes are confined in the formed flat conductor layer, that is, the active layer, which has a smaller forbidden band width, and radiative recombination occurs here, so that light emission of a predetermined wavelength is tiI. In addition, according to the quantum well structure as described in J2, electrons and holes are confined in the active layer 4 and are easily recombined by light emission, so that the light emission effect 4z increases and, therefore, the driving voltage can be reduced. can be given.

更に、本発明の半導体薄膜発光素r−によれば、活性層
4を構成する混晶材料の混晶比を変えることにより発光
色を変えることがi+1能となり、2つのゝ1′導体材
料、即ち、ト記例で−(えは、ZnSとZn5eの固有
発光色の中間の色をすべて出すことができる。
Furthermore, according to the semiconductor thin film light emitting device r- of the present invention, it is possible to change the emission color by changing the mixed crystal ratio of the mixed crystal material constituting the active layer 4. That is, in the example given below, it is possible to produce all the colors intermediate between the inherent luminescent colors of ZnS and Zn5e.

本発明゛1′、導体薄膜発光素r−における積層体に用
いられる半導体材料の組み合わせは、基本的には禁制帯
幅の互いに異なるものであればどんな組み合わせでも良
い。他のへテロ接合素−rにおいで性能を左右する鍵と
なる異種材料間における格r不整合は、本発明半導体薄
膜発光素r−の積層体においては、各層がきわめて薄い
ため他のへテロ#i合素子におけるほどには大きな影響
は生しない。そのため、従来、ペテロ接合に用いられて
いる組み合わせはもとより、より広い範囲の組み合わせ
について適用が可能である。例えは、古色系の発光がf
j、)られる前述のZnS−Zn5eの組み合わせ、緑
色系の発光力端IIられるGaA1.P−GaPの組み
合わせ、赤色系の発光が得られるGaP−GaAsPの
絹み合わせ、赤外の発光がfltられるG a A 1
. A s  G a A sのMlみ合わせ笠が挙げ
られる。この外にも、2−2.wL、■−2元、3−2
ノC14−2元化合物の組み合わけも7′;えられ、そ
の適用範囲はきわめて広いもの7″ある。尚、禁制御s
:幅の小さな方の半導体薄HQ層の構成4A斜を2つの
゛1パ導体材料のlJ’1品材利とすることにより、格
r定数を近づけることができるというfi1点がある。
The combination of semiconductor materials used for the laminate in the conductor thin film light emitting device r- of the present invention 1' may basically be any combination as long as they have different forbidden band widths. The case r mismatch between different materials, which is the key to determining the performance of other heterojunction devices, can be avoided because each layer is extremely thin in the stacked structure of the semiconductor thin film light emitting device of the present invention. The effect is not as large as in the #i combination element. Therefore, it is possible to apply not only the combinations conventionally used for petrojunctions but also a wider range of combinations. For example, paleochromic luminescence is f
The above-mentioned ZnS-Zn5e combination, which is given by J,), and the GaA1. P-GaP combination, GaP-GaAsP combination that produces red light emission, Ga A 1 that produces flt infrared light emission
.. An example is the Ml combination hat of As Ga As. In addition to this, 2-2. wL, ■-2 yuan, 3-2
Combinations of C14-binary compounds are also possible, and the range of application is extremely wide.
: There is a fi1 point that the lattice r constant can be made close to each other by making the structure 4A diagonal of the semiconductor thin HQ layer with the smaller width by using lJ'1 material of two 1-pass conductor materials.

別表に、いくつかの゛1′導体の組み合わせを、禁制イ
1f幅、格子定数、バンド間発光波長とノ(にン3りず
In the attached table, some combinations of 1' conductors are shown in terms of forbidden width, lattice constant, and interband emission wavelength.

また、各半導体層3.4.5の製法は適宜の方法によっ
て良く、例えば、電子ビーム式、抵抗加熱式等による真
空蒸着法、ホットウォールエビタキシャAy7’J2 
(HWE) 、分子線エピタキシャル法(MBE)、C
VD法、MOCVD法、原子層エピタキシャル法等が考
えられる。
Further, each semiconductor layer 3.4.5 may be manufactured by an appropriate method, such as a vacuum evaporation method using an electron beam method, a resistance heating method, etc., a hot wall epitaxy Ay7'J2
(HWE), molecular beam epitaxial method (MBE), C
Possible methods include the VD method, MOCVD method, and atomic layer epitaxial method.

第3図は本発明半導体薄膜発光素子−の第2のものの実
施の一例を示すものである。
FIG. 3 shows an example of implementation of the second semiconductor thin film light emitting device of the present invention.

この実施例における積層体7aは外側に禁制帯幅の大き
い方の半導体から成る層3.3(稍厚く100〜100
0人)が配置され、その間に22.fiの半導体の混晶
材料から成る半導体薄IIIA層(厚さ10〜200人
)、即ち活性層4と禁制帯幅の大きい方の半導体から成
る層5(厚さ50〜500人)が交互に積層yれて成る
In this embodiment, the laminate 7a has a layer 3.3 (slightly thick 100 to 100 mm thick) made of a semiconductor having a larger forbidden band width on the outside.
0 people) were placed, and 22. Semiconductor thin IIIA layers (10 to 200 layers thick) made of a mixed crystal material of a semiconductor of fi, that is, an active layer 4 and a layer 5 (50 to 500 layers thick) made of a semiconductor with a larger forbidden band width are alternately formed. It is made up of layers.

そして、活性層41.42.43、・・・4n各層を構
成する混晶材料の4昆晶比はそれぞれ変えられている。
The active layers 41, 42, 43, . . . , 4n have different crystal ratios of mixed crystal materials constituting each layer.

例えば第4図に示すようにlh!晶材料Zn5xSe 
< s−X 1(7)rxJの的を透明基板1側から0
.9.0.8−−−0.1と0.1きざみで変化させる
。そして、ZnS層、Zn5xS(1−x)ともに層厚
20 ’OAとすると、3390人〜4640人の波長
範囲にわたる発光が得られる。
For example, as shown in Figure 4, lh! Crystal material Zn5xSe
< s-X 1(7) Move the rxJ target from the transparent substrate 1 side to 0
.. 9.0.8---Vary in 0.1 increments of 0.1. If both the ZnS layer and Zn5xS(1-x) have a layer thickness of 20' OA, light emission over the wavelength range of 3390 to 4640 can be obtained.

このように、活性層4を複数層形成し、そして、その活
性層4を構成する混晶材料の混晶比をそれぞれ変化させ
ると、各活性層4における発光波長が異り、積層体7a
全体としては活性層41.42.43、・・・4n各層
の発光色の合成色による発光が得られる。
In this way, when a plurality of active layers 4 are formed and the mixed crystal ratios of the mixed crystal materials constituting the active layers 4 are changed, the emission wavelength in each active layer 4 is different, and the laminate 7a
As a whole, light emission is obtained with a composite color of the light emission color of each of the active layers 41, 42, 43, . . . 4n.

発明の効累 以−1−に記載したどころから明らかなように、本発明
半導体薄膜発光素イのtfJlのものにおいては、禁制
帯幅の異なる2種の半導体材料を用い、禁制帯幅の大き
な方の半導体材料から成る半導体薄II!2層の間に前
記2種の半導体の混晶材料から成る半導体層11り層を
挟持状にした積層体を透明電極と背面電極との間に挟置
して成るので、禁制帯幅の小さな方の半導体薄膜層を構
成しているIFi’、晶材利とそのlバー品比を適宜に
遊ぶことによって、brみの発光色を得ることができる
。更に、′亀子及びF[孔が禁制?tF幅の小さな方の
1“導体薄膜層に閉じ込められ、92光再結合を17易
くなるため、発光効率が増大し、従って、駆動11丁を
ドげることがてきる。
As is clear from the description in 1-1-, the semiconductor thin film light emitting device of the present invention, tfJl, uses two types of semiconductor materials with different forbidden band widths. Semiconductor thin II made of the same semiconductor material! A laminate in which a semiconductor layer 11 made of a mixed crystal material of the two types of semiconductors is sandwiched between the two layers is sandwiched between the transparent electrode and the back electrode, so that the forbidden band width is small. By appropriately controlling IFi', the crystal material ratio, and the ratio of the crystal materials constituting the semiconductor thin film layer, a blurred luminescent color can be obtained. Furthermore, 'Kameko and F [holes are prohibited? Since the light is confined in the 1" conductor thin film layer with the smaller tF width and 92 light recombination becomes easier, the light emitting efficiency increases and, therefore, the driving force can be reduced.

また、本発明半導体薄膜発光素子の第2のものにおいて
は、禁制帯幅の異なる2種の゛16導体材料を用い、禁
制帯幅の大鼻な方の半導体材料から成る゛1′導体薄膜
層と前記2種の゛IL導体の混晶材料から成る半導体薄
膜層とを交Tiに積層し、そして、11コ晶材オニ1か
ら成る複数の半導体層11り層の混晶比を変化させたの
で、それぞれ混晶比の異なる混晶材料による゛IL導体
薄膜層での発光色の合成色による発光が得られ、従って
、混晶材料とイI4品比の組り合わせを適宜にfぷこと
により、好みの色の発光色を容具に11することができ
る。
Further, in the second semiconductor thin film light emitting device of the present invention, two types of 16 conductor materials having different forbidden band widths are used, and a 16 conductor thin film layer made of the semiconductor material with the larger forbidden band width is used. and a semiconductor thin film layer made of a mixed crystal material of the above two kinds of IL conductors were laminated on an crossed Ti layer, and the mixed crystal ratio of the plurality of semiconductor layers 11 and 11 made of a 11-co-crystalline material Oni 1 was varied. Therefore, it is possible to obtain light emission with a composite color of the emitted light color in the IL conductor thin film layer due to the mixed crystal materials having different mixed crystal ratios. This allows you to choose your favorite luminescent color for the container.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明半導体f#膜発光素子の第1
のものの実施の一一例を示すもので、第1図はその模型
的側面図、へ′52図は積層体の各層とエネルギー準位
の分布状態との関係を示し、(A)は積層体を厚み方向
に薄くスライスして示す断面IA、(B)は(A)に対
応して各層におけるエネルギー準位の分布を示す図、第
3図及び第4図は本発明半導体薄膜発光1子の第2のす
)のの実施の一例を示すもので、第3図は模型的側面図
、第4図は各層におけるエネルギー準位の分71状態を
示す図である。 符号の説明 2・・・透明電極、  3・・・禁制帯幅の大きな方の
半導体薄膜層、  4・・・混晶材料からなる半導体薄
膜層、  5・・・禁制帯幅の大きな方の半導体層ロタ
層、  6・・・背面電極、7.7ae−・積層体 出 願 人 株式会社 小糸製作所 (・竜図 1・2図 ローL工 わせ−’l即 1・71図 第4図
1 and 2 show the first diagram of the semiconductor f# film light emitting device of the present invention.
Fig. 1 is a schematic side view of the laminate, Fig. Cross section IA is shown by slicing thinly in the thickness direction, (B) is a diagram showing the distribution of energy levels in each layer corresponding to (A), and FIGS. This shows an example of the implementation of the second step, in which FIG. 3 is a schematic side view and FIG. 4 is a diagram showing 71 states of energy levels in each layer. Explanation of symbols 2...Transparent electrode, 3...Semiconductor thin film layer with larger forbidden band width, 4...Semiconductor thin film layer made of mixed crystal material, 5...Semiconductor with larger forbidden band width Layer Rota layer, 6...Back electrode, 7.7ae-・Laminated body Applicant: Koito Seisakusho Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)禁制帯幅の異なる2種の半導体材料を用い、禁制
帯幅の大きな方の半導体材料から成る半導体薄膜層の間
に前記2種の半導体の混晶材料から成る半導体薄膜層を
挟持状にした積層体を透明電極と背面電極との間に挟置
して成ることを特徴とする半導体薄膜発光素子
(1) Two types of semiconductor materials with different forbidden band widths are used, and a semiconductor thin film layer made of a mixed crystal material of the two semiconductors is sandwiched between a semiconductor thin film layer made of the semiconductor material with a larger forbidden band width. A semiconductor thin film light emitting device characterized in that the laminate is sandwiched between a transparent electrode and a back electrode.
(2)禁制帯幅の異なる2種の半導体材料を用い、禁制
帯幅の大きな方の半導体材料から成る半導体ン轡fIg
:層と前記2種の半導体の混晶材料から成る゛ビ;導体
薄膜層とを交互に積層し、そして、41ル晶材料から成
る複数の′1′、導体薄膜層の混晶比を変化ネせたこと
を特徴とする半導体薄膜発光素子
(2) Semiconductor film fIg using two types of semiconductor materials with different forbidden band widths and consisting of the semiconductor material with the larger forbidden band width.
: layers and conductor thin film layers made of mixed crystal materials of the two types of semiconductors are alternately laminated, and the mixed crystal ratio of the conductor thin film layers is varied. Semiconductor thin film light emitting device characterized by a flattened surface
JP57156111A 1982-09-08 1982-09-08 Semiconductor thin film light emitting element Pending JPS5946073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57156111A JPS5946073A (en) 1982-09-08 1982-09-08 Semiconductor thin film light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57156111A JPS5946073A (en) 1982-09-08 1982-09-08 Semiconductor thin film light emitting element

Publications (1)

Publication Number Publication Date
JPS5946073A true JPS5946073A (en) 1984-03-15

Family

ID=15620547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57156111A Pending JPS5946073A (en) 1982-09-08 1982-09-08 Semiconductor thin film light emitting element

Country Status (1)

Country Link
JP (1) JPS5946073A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269690A (en) * 1985-09-24 1987-03-30 Semiconductor Energy Lab Co Ltd Light emitting semiconductor device
US5128728A (en) * 1989-01-13 1992-07-07 National Research Council Of Canada Semiconductor superlattice infrared source
US5459337A (en) * 1993-02-19 1995-10-17 Sony Corporation Semiconductor display device with red, green and blue emission

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269690A (en) * 1985-09-24 1987-03-30 Semiconductor Energy Lab Co Ltd Light emitting semiconductor device
US5128728A (en) * 1989-01-13 1992-07-07 National Research Council Of Canada Semiconductor superlattice infrared source
US5459337A (en) * 1993-02-19 1995-10-17 Sony Corporation Semiconductor display device with red, green and blue emission
US5597740A (en) * 1993-02-19 1997-01-28 Sony Corporation Semiconductor display device and a method of fabricating the same

Similar Documents

Publication Publication Date Title
US5055363A (en) Electroluminescent device of compound semiconductor
JP2008523615A (en) Adaptive short wavelength LED for multicolor, broadband or &#34;white&#34; emission
JP4270885B2 (en) Oxide semiconductor light emitting device
JPH0268968A (en) Compound semiconductor light-emitting device
JPH0342881A (en) Light emitting element of compound semiconductor
JPH03119760A (en) Semiconductor element and manufacture thereof
JPS5946073A (en) Semiconductor thin film light emitting element
US5872023A (en) Method of fabricating of light emitting device with controlled lattice mismatch
US5714014A (en) Semiconductor heterojunction material
JP2004260111A (en) Semiconductor light-emitting element and semiconductor light-emitting device using the same
JPH11233816A (en) Semiconductor light emitting device and manufacture thereof
JPS61222284A (en) Light emitting element
JP2002050795A (en) InGaN LIGHT-EMITTING DIODE
JP3228208B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP4851648B2 (en) Semiconductor components that generate mixed color electromagnetic radiation
JPS5946071A (en) Semiconductor thin film light emitting element
JPH0412600B2 (en)
JPH03268360A (en) Semiconductor device
JP2007042771A (en) P-type wide gap semiconductor
JPS62154789A (en) Semiconductor light emitting element
TWI827271B (en) Optoelectronic device
KR100631968B1 (en) Wavelength Converting Light Emitting Device
JP3514542B2 (en) Brightness modulation type diamond light emitting device
JPH04299876A (en) Semiconductor light emitting element material
JPH04253381A (en) Semiconductor light emitting element and manufacture thereof