[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5944339B2 - Radiographic image conversion method - Google Patents

Radiographic image conversion method

Info

Publication number
JPS5944339B2
JPS5944339B2 JP53084743A JP8474378A JPS5944339B2 JP S5944339 B2 JPS5944339 B2 JP S5944339B2 JP 53084743 A JP53084743 A JP 53084743A JP 8474378 A JP8474378 A JP 8474378A JP S5944339 B2 JPS5944339 B2 JP S5944339B2
Authority
JP
Japan
Prior art keywords
image conversion
phosphor
radiation
radiation image
conversion method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53084743A
Other languages
Japanese (ja)
Other versions
JPS5512144A (en
Inventor
昇 小寺
周作 江口
諄二 宮原
誠二 松本
久豊 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP53084743A priority Critical patent/JPS5944339B2/en
Priority to NL7905433A priority patent/NL7905433A/en
Priority to US06/057,092 priority patent/US4236078A/en
Priority to DE2954341A priority patent/DE2954341C2/de
Priority to DE2954339A priority patent/DE2954339C2/de
Priority to DE2954340A priority patent/DE2954340C2/de
Priority to DE19792928246 priority patent/DE2928246A1/en
Publication of JPS5512144A publication Critical patent/JPS5512144A/en
Publication of JPS5944339B2 publication Critical patent/JPS5944339B2/en
Priority to JP1321286A priority patent/JPS61241385A/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7767Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0838Aluminates; Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/661Chalcogenides
    • C09K11/662Chalcogenides with zinc or cadmium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K2/00Non-electric light sources using luminescence; Light sources using electrochemiluminescence
    • F21K2/005Non-electric light sources using luminescence; Light sources using electrochemiluminescence excited by infrared radiation using up-conversion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2012Measuring radiation intensity with scintillation detectors using stimulable phosphors, e.g. stimulable phosphor sheets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C5/00Photographic processes or agents therefor; Regeneration of such processing agents
    • G03C5/16X-ray, infrared, or ultraviolet ray processes
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/64Circuit arrangements for X-ray apparatus incorporating image intensifiers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Measurement Of Radiation (AREA)
  • Radiography Using Non-Light Waves (AREA)
  • Luminescent Compositions (AREA)
  • Lasers (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)

Description

【発明の詳細な説明】 本発明は放射線像変換方法、さらに詳しくは輝尽性螢光
体を利用した放射線像変換方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a radiation image conversion method, and more particularly to a radiation image conversion method using a photostimulable phosphor.

従来放射線画像を得るために銀塩を使用した、いわゆる
放射線写真が利用されているが、近年特に地球規模にお
ける銀資源の枯渇等の問題から銀塩を使用しないで放射
線像を画像化する方法が望まれるようになつた。上述の
放射線写真法にかわる方法として、被写体を透過した放
射線を螢光体に吸収せしめ、しかる後この螢光体をある
種のエネルギーで励起してこの螢光体が蓄積している放
射線エネルギーを螢光として放射せしめ、この螢光を検
出して画像化する方法が考えられている。
Conventionally, so-called radiography using silver salts has been used to obtain radiographic images, but in recent years, due to problems such as depletion of silver resources on a global scale, methods of imaging radiographic images without using silver salts have been developed. I became desired. As an alternative to the radiographic method described above, the radiation transmitted through the object is absorbed by a phosphor, and then this phosphor is excited with a certain type of energy to release the radiation energy stored in the phosphor. A method has been considered in which the fluorescent light is emitted and the fluorescent light is detected and imaged.

具体的な方法として螢光体として熱螢光性螢光体を用い
、励起エネルギーとして熱エネルギーを用いて放射線像
を変換する方法が提唱されている(英国特許第1462
769号および特開昭51−29889号)。
As a specific method, a method has been proposed in which a thermally fluorescent phosphor is used as the phosphor and thermal energy is used as the excitation energy to convert a radiation image (UK Patent No. 1462).
No. 769 and JP-A-51-29889).

この変換方法は支持体上に熱螢光性螢光体層を形成した
パネルを用い、このパネルの熱螢光性螢光体層に被写体
を透過した放射線を吸収させて放射線の強弱に対応した
放射線エネルギーを蓄積させ、しかる後この熱螢光性螢
光体層を加熱することによつて蓄積された放射線エネル
ギーを光の信号として取り出し、この光の強弱によつて
画像を得るものである。しかしながらこの方法は蓄積さ
れた放射線エネルギーを光の信号に変える際に加熱する
ので、パネルが耐熱性を有し、熱によつて変形、変質し
ないことが絶対的に必要であり、従つてパネルを構成す
る熱螢光性螢光体層および支持体の材料等に大きな制約
がある。このように螢光体として熱螢光性螢光体を用い
、励起エネルギーとして熱エネルギーを用いる放射線像
変換方法は応用面で大きな難点がある。一方、励起エネ
ルギーとして可視光線および赤外線の一方また(よ両方
を用(・る放射線像変換方法もまた知られている(米国
特許第3859527号)。
This conversion method uses a panel with a thermofluorescent phosphor layer formed on a support, and the thermofluorescent phosphor layer of this panel absorbs the radiation that has passed through the subject, responding to the intensity of the radiation. By accumulating radiation energy and then heating this thermofluorescent phosphor layer, the accumulated radiation energy is extracted as a light signal, and an image is obtained by varying the intensity of this light. However, since this method heats the accumulated radiation energy when converting it into a light signal, it is absolutely necessary that the panel be heat resistant and not deformed or altered by heat. There are major restrictions on the materials of the thermally fluorescent phosphor layer and the support. As described above, the radiation image conversion method using a thermofluorescent phosphor as a phosphor and using thermal energy as excitation energy has major drawbacks in terms of application. On the other hand, a radiation image conversion method using one or both of visible light and infrared rays as excitation energy is also known (US Pat. No. 3,859,527).

この方法は土述の方法のように蓄積された放射線エネル
ギーを光の信号に変える際に加熱しなくてもよく、従つ
てパネルは耐熱性を有する必要はなく、この点からより
好まし(・放射線像変換方法と言える。しかしながらこ
の方法に使用される螢光体としてはわずかにセリウムお
よびサマリウム付活硫化ストロンチウム螢光体(SrS
:Ce、Sm)、ユーロピウムおよびサマリウム付活硫
化ストロンチウム螢光体(SrS:Eu,.Sm)、ユ
ーロピウムおよびサマリウム付活酸硫化ランタン螢光体
(La2O2S:Eu.Sm)、マンガンおよびハロゲ
ン付活硫化亜鉛・カドミウム螢光体〔(Zn,.Cd)
S:Mn.X、但しXはハロゲンである〕等が知られて
いる程度にすぎず、またこれらの螢光体を用いた方法の
感度は著しく低いものであつて実用的な面から感度の向
土が望まれている。本発明は被写体を透過した放射線を
螢光体に吸収せしめ、しかる後、この螢光体を可視光線
および赤外線の一方または両方である電磁波で励起して
この螢光体が蓄積している放射線エネルギーを螢光とし
て放射せしめ、この螢光を検出する放射線像変換方法に
おいて感度の著しく高い実用的な放射線像変換方法を提
供することを目的とするものである。
This method does not require heating when converting the accumulated radiation energy into optical signals, unlike the method described by Dojo, and therefore the panel does not need to be heat resistant, which makes it more preferable. It can be said to be a radiation image conversion method. However, the phosphors used in this method are only cerium and samarium activated strontium sulfide phosphors (SrS).
:Ce, Sm), europium and samarium activated strontium sulfide phosphor (SrS:Eu,.Sm), europium and samarium activated lanthanum oxysulfide phosphor (La2O2S:Eu.Sm), manganese and halogen activated sulfide Zinc/cadmium phosphor [(Zn,.Cd)
S:Mn. X, where X is a halogen], and the sensitivity of methods using these fluorophores is extremely low, and improvements in sensitivity are desired from a practical standpoint. It is rare. In the present invention, radiation transmitted through an object is absorbed by a phosphor, and then this phosphor is excited with electromagnetic waves, which are either visible light or infrared rays, or both, so that the radiation energy stored in the phosphor is absorbed. It is an object of the present invention to provide a practical radiation image conversion method that has extremely high sensitivity and detects the fluorescence.

本発明者等は上記目的を達成するために上記方法に使用
可能な螢光体を探索してきた。
In order to achieve the above object, the present inventors have been searching for phosphors that can be used in the above method.

その結果、一般式が但しLnはLasY,.Gd及びL
uのうちの少なくとも1つを、XはC1及び/又はBr
を、AはCe及び/又はTbを、XはO<x〈0.1を
満足する数字を表わす。
As a result, the general formula where Ln is LasY, . Gd and L
at least one of u, X is C1 and/or Br
, A represents Ce and/or Tb, and X represents a number satisfying O<x<0.1.

で表わされる希土類付活ランタンオキシハロゲン化物螢
光体に含まれる螢光体の1種もしくは2種以上である螢
光体を用いれば上記方法はきわめて高感度となることを
見出し、本発明を完成するに至つた。
It was discovered that the above method can be extremely sensitive if one or more of the fluorescers contained in the rare earth-activated lanthanum oxyhalide phosphor represented by is used, and the present invention has been completed. I came to the conclusion.

本発明の放射線像変換方法は被写体を透過した放射線を
LnOX:XA螢光体に含まれる螢光体の1種もしくは
2種以上である螢光体に吸収せしめ、しかる後、この螢
光体を500nm以上の長波長可視光線および赤外線の
一方または両方である電磁波で励起してこの螢光体が蓄
積している放射線エネルギーを螢光として放出せしめ、
この螢光を検出することを特徴とする。
In the radiation image conversion method of the present invention, the radiation that has passed through the object is absorbed by a phosphor that is one or more of the phosphors included in the LnOX:XA phosphor, and then this phosphor is Exciting with electromagnetic waves that are one or both of long-wavelength visible light of 500 nm or more and infrared rays, the radiation energy accumulated in this phosphor is released as fluorescence,
It is characterized by detecting this fluorescent light.

一般式において、Lnとしては特にLaが好ましい。本
発明の放射線像変換方法を概略図を用いて具体的に説明
する。
In the general formula, Ln is particularly preferably La. The radiation image conversion method of the present invention will be specifically explained using schematic diagrams.

第1図において11は放射線発生装置、12は被写体、
13は可視ないし赤外輝尽性螢光体層を有する放射線像
変換パネル、14は放射線像変換パネルの放射線潜像を
螢光として放射させるための励起源としての光源、15
は放射線像変換パネルより放射された螢光を検出する光
電変換装置、16は15で検出された光電変換信号を画
像として再生する装置、17は再生された画像を表示す
る装置、18は光源14からの反射光をカットし、放射
線像変換パネル13より放射された光のみを透過させる
ためのフイルタ一である。15以降は13からの光情報
を何らかの形で画像として再生できるものであればよく
、上記に限定されるものではない。
In FIG. 1, 11 is a radiation generating device, 12 is a subject,
13 is a radiation image conversion panel having a visible to infrared stimulable phosphor layer; 14 is a light source as an excitation source for emitting a latent radiation image of the radiation image conversion panel as fluorescent light; 15
16 is a device for reproducing the photoelectric conversion signal detected by 15 as an image; 17 is a device for displaying the reproduced image; 18 is a light source 14 This is a filter for cutting reflected light from the radiation image conversion panel 13 and transmitting only light emitted from the radiation image conversion panel 13. From 15 onwards, it is sufficient that the optical information from 13 can be reproduced as an image in some form, and is not limited to the above.

第1図に示されるように、被写体12を放射線発生装置
11と放射線像変換パネル13の間に配置し、放射線を
照射すると、放射線は被写体12の各部の放射線透過率
の変化に従つて透過し、その透過像(すなわち放射線の
強弱の像)が放射線像変換パネル13に入射する。
As shown in FIG. 1, when a subject 12 is placed between the radiation generating device 11 and the radiation image conversion panel 13 and irradiated with radiation, the radiation passes through each part of the subject 12 as the radiation transmittance changes. , the transmitted image (that is, the image of the intensity of the radiation) is incident on the radiation image conversion panel 13.

この入射した透過像は放射線像変換パネル13の螢光体
層に吸収され、これによつて螢光体層中に吸収した放射
線量に比例した数の電子または正孔が発生し、これが螢
光体のトラツプレベルに蓄積される。すなわち放射線透
過像の蓄積像(一種の潜像)が形成される。次にこの潜
像を光エネルギーで励起して顕在化する。すなわち50
0nm以上の長波長可視光線および赤外線の一方または
両方である電磁波を光源14によつて螢光伸層に照射し
てトラツプレベルに蓄積された電子または正孔を追出し
、蓄積像を螢光として放射せしめる。この放射される螢
光の強弱は蓄積された電子または正孔の数、すなわち放
射線像変換パネル13の螢光体層に吸収された放射線エ
ネルギーの強弱に比例しており、この光信号を例えば光
電子増倍管等Q光電変換装置15で電気信号に変換し、
画像再生装置16によつて画像として再生し、画像表示
装置17によつてこの画像を表示する。次に本発明の放
射線像変換方法において用いられる放射線像変換パネル
および蓄積像を螢光として放射せしめるための励起光源
について詳しく説明する。
This incident transmitted image is absorbed by the phosphor layer of the radiation image conversion panel 13, thereby generating a number of electrons or holes proportional to the amount of radiation absorbed in the phosphor layer. Accumulated at the trap level of the body. That is, an accumulated radiographic image (a kind of latent image) is formed. This latent image is then excited with light energy to become visible. i.e. 50
The phosphorescent layer is irradiated with electromagnetic waves, which are long-wavelength visible light of 0 nm or more and/or infrared rays, by the light source 14 to expel the electrons or holes accumulated at the trap level, and the accumulated image is emitted as fluorescent light. The intensity of this emitted fluorescent light is proportional to the number of accumulated electrons or holes, that is, the intensity of the radiation energy absorbed by the phosphor layer of the radiation image conversion panel 13, and this optical signal is Convert it into an electrical signal with a Q photoelectric conversion device 15 such as a multiplier tube,
The image reproduction device 16 reproduces the image as an image, and the image display device 17 displays this image. Next, the radiation image conversion panel used in the radiation image conversion method of the present invention and the excitation light source for emitting the accumulated image as fluorescence will be explained in detail.

放射線像変換パネルの構造は第2図−aに示されるよう
に支持体21とこの支持体21の片面上に形成された螢
光体層22よりなる。
The structure of the radiation image storage panel is comprised of a support 21 and a phosphor layer 22 formed on one side of the support 21, as shown in FIG. 2-a.

この螢光体層22はLnOX:XA螢光体に含まれる螢
光体の1種もしくは2種以上からなることは言うまでも
ない。ここで使用されるLnOX:XA螢光体は放射線
照射後500nm以上の長波長可視光線および赤外線の
一方または両方である電磁波で励起すると強い輝尽発光
を呈し、特に付活剤Aの含有量が螢光体の母体(LnO
X)に対しておよそ10−6〜10−1特に10−6〜
5X10−3グラム原子である時、輝尽強度は著しく強
くなり、これら放射線像変換パネルの螢光体層とするこ
とによつて特に効率の良い放射線像変換が出来る。次に
放射線像変換パネルの製造法の一例を以下に示す。まず
螢光体8重量部と硝化綿1重量部とを溶剤(アセトン、
酢酸エチルおよび酢酸ブチルの混液)を用いて混合し、
粘度がおよそ50センチストークスの塗布液を調製する
。次にこの塗布液を水平に置いたポリエチレンテレフタ
レートフイルム(支持体)上に均一に塗布し、一昼夜放
置し自然乾燥することによつて約300μの螢光体層を
形成し、放射線像変換パネルとする。支持体として例え
ば透明なガラス板やアルミニウムなどの金属薄板等を用
いても良い。なお、放射線像変換パネルは第2図−bに
示されるような2枚のガラス板等の透明な基板23,2
4間に螢光体を挟みこんで任意の厚さの螢光体層22と
し、その周囲を密封した構造のものでも良い。
It goes without saying that this phosphor layer 22 is made of one or more phosphors included in the LnOX:XA phosphor. LnOX: The matrix of phosphor (LnO
approximately 10-6 to 10-1, especially 10-6 to X)
When the concentration is 5×10 −3 gram atoms, the stimulation intensity becomes extremely strong, and particularly efficient radiation image conversion can be achieved by using the phosphor layer of these radiation image conversion panels. Next, an example of a method for manufacturing a radiation image conversion panel will be shown below. First, 8 parts by weight of the phosphor and 1 part by weight of nitrified cotton were mixed in a solvent (acetone,
mixture of ethyl acetate and butyl acetate),
A coating solution having a viscosity of approximately 50 centistokes is prepared. Next, this coating solution was uniformly applied onto a horizontally placed polyethylene terephthalate film (support) and allowed to stand overnight to air dry to form a phosphor layer of approximately 300 μm, which was then used as a radiation image conversion panel. do. For example, a transparent glass plate or a thin metal plate made of aluminum or the like may be used as the support. The radiation image conversion panel is made of two transparent substrates 23, 2 such as glass plates as shown in FIG. 2-b.
A phosphor layer 22 having an arbitrary thickness may be obtained by sandwiching a phosphor between the two layers, and the periphery of the phosphor layer 22 may be sealed.

本発明の放射線像変換方法において上述の放射線像変換
パネルの螢光体層を励起する光エネルギーの光源として
は、500nm以上の長波長可視領域および赤外領域の
一方または両方にバンドスペクトル分布をもつた光を放
射する光源の他にHe−Neレーザー光(633nm)
、YAGレーザー光(1064nm)、ルビーレーザー
光(694nm)等の単一波長の光を放射する光源が使
用される。
In the radiation image conversion method of the present invention, the light source for the light energy that excites the phosphor layer of the radiation image conversion panel described above has a band spectral distribution in one or both of the long wavelength visible region of 500 nm or more and the infrared region. In addition to the light source that emits light, He-Ne laser light (633 nm)
, YAG laser light (1064 nm), ruby laser light (694 nm), etc., are used.

特にレーザー光を用いる場合は高い励起エネルギーを得
ることが出来る。レーザー光の中でも特にHe−Neレ
ーザー光を用いるのがより好ましい。第3図は本発明の
放射線像変換方法の放射線像変換パネルの螢光体層に用
いられるLaOBr:Ce(10−4)、Tb(10−
4)螢光体に管電圧80KのX線を照射した後、波長の
異なる光工pネルギ一を与えた時放射される螢光の強度
変化を示すもの(いわゆる励起スペクトル)であるが、
第3図から明らかなようにLaOBr:Ce.Tb螢光
体の場合、励起可能な波長範囲は500〜900nmの
範囲にあり、特に500〜700nmが最適励起波長範
囲である。
Especially when using laser light, high excitation energy can be obtained. Among laser beams, it is particularly preferable to use He--Ne laser beam. FIG. 3 shows LaOBr:Ce(10-4) and Tb(10-4) used in the phosphor layer of the radiation image conversion panel in the radiation image conversion method of the present invention.
4) After irradiating the phosphor with X-rays at a tube voltage of 80K, it shows the change in the intensity of the fluorescent light emitted when optical energy of different wavelengths is applied (so-called excitation spectrum).
As is clear from FIG. 3, LaOBr:Ce. In the case of Tb fluorophores, the excitable wavelength range is in the range of 500 to 900 nm, with the optimum excitation wavelength range being particularly 500 to 700 nm.

本発明の方法に用いられるLnOX:XA螢光体の励起
可能な波長範囲は螢光体の組成によつても若干異なるが
、ほぼ500〜900nmの間にあり、最適励起波長範
囲は500〜700nmである。本発明の方法において
螢光体層に蓄積された放射線エネルギーを螢光として放
出せしめるための励起光源としては500nm以上の長
波長可視光線および赤外線の一方または両方が使用出来
るが、赤外線で放射される領域のトラツプは浅く、退行
性(フエーデイング)現象が顕著で、従つて情報の保存
期間が短かく、実用上は余り好ましくない。例えば画像
を得るに際してパネルの螢光体層を赤外線でスキャンニ
ングして励起し、放射される光を電気的に処理する操作
を取り入れることが度々行なわれるが螢光伸層の全面ス
キヤンニングにはある程度の時間がかかるため、同じ放
射線量が照射されていても始めの読出し値と最後の読出
し値にずれが生じる恐れがある。このような理由からも
本発明の放射線像変換方法に用いる螢光体としてはトラ
ツプが深く、より高エネルギーの光、すなわちできるだ
け短波長Q光で効率よく励起されるものがより望ましい
が、上述のごとく本発明の方法に用いられるLnOX:
XA螢光体は最適励起波長範囲が500〜700nmの
可視光領域にあり、従つてフエーデイングが少なく、螢
光体層に蓄積された放射線潜像の蓄積保存能が高いもの
である。また本発明の方法において光エネルギーで励起
する際、励起光の反射光と螢光体層から放射される螢光
とを分離する必要があることと螢光体層から放射される
螢光を受光する光電変換器は一般に600nm以下の短
波長の光エネルギーに対して感度が高くなるという理由
から、螢光体層から放射される螢光はできるだけ短波長
領域にスペクトル分布をもつたものが望ましいが、本発
明の方法に用いられる螢光体はこの条件をも満たすもの
である。すなわち本発明の方法に用いられるLnOX:
XA螢光体はいずれも500nm以下に主ピークを有す
る発光を示し、励起光との分離が容易でしかも受光器の
分光感度とよく一致するため、効率よく受光できる結果
、受像系の感度を高めることが出来る。第4図にLaO
Br:Ce.Tb螢光体に管電圧80KのX線を照射し
た後He−Neレpーザ一光で励起した時の発光スペク
トルを一例として示す。
The excitable wavelength range of the LnOX:XA phosphor used in the method of the present invention varies slightly depending on the composition of the phosphor, but is approximately between 500 and 900 nm, and the optimum excitation wavelength range is between 500 and 700 nm. It is. In the method of the present invention, one or both of long-wavelength visible light of 500 nm or more and infrared rays can be used as an excitation light source for emitting the radiation energy accumulated in the phosphor layer as fluorescent light. The area trap is shallow, the fading phenomenon is significant, and therefore the information storage period is short, which is not very desirable in practice. For example, in order to obtain an image, the phosphor layer of the panel is often scanned and excited with infrared rays, and the emitted light is electrically processed. Because it takes time, there is a risk that there will be a difference between the first read value and the last read value even if the same radiation dose is irradiated. For these reasons, it is more desirable for the phosphor used in the radiation image conversion method of the present invention to have a deep trap and be efficiently excited by higher energy light, that is, the shortest wavelength Q light possible. LnOX used in the method of the present invention:
The XA phosphor has an optimal excitation wavelength range in the visible light region of 500 to 700 nm, and therefore has little fading and a high ability to store the radiation latent image accumulated in the phosphor layer. In addition, when exciting with light energy in the method of the present invention, it is necessary to separate the reflected light of the excitation light and the fluorescent light emitted from the phosphor layer, and the fact that the fluorescent light emitted from the phosphor layer is received. Because photoelectric converters generally have high sensitivity to light energy with a short wavelength of 600 nm or less, it is desirable that the fluorescent light emitted from the phosphor layer has a spectral distribution in the short wavelength region as much as possible. , the phosphor used in the method of the present invention also satisfies this condition. That is, LnOX used in the method of the present invention:
All XA phosphors emit light with a main peak at 500 nm or less, which makes it easy to separate from the excitation light and closely matches the spectral sensitivity of the photoreceiver, allowing efficient light reception and increasing the sensitivity of the image receiving system. I can do it. Figure 4 shows LaO
Br: Ce. As an example, an emission spectrum is shown when a Tb phosphor is irradiated with X-rays at a tube voltage of 80 K and then excited with a single beam of light from a He-Ne laser.

第1表は本発明の放射線像変換方法の感度をSrS:E
u.Sm螢光体を用いた従来公知の放射線像変換方法の
感度と比較して示すものである。
Table 1 shows the sensitivity of the radiation image conversion method of the present invention in SrS:E
u. This figure shows a comparison with the sensitivity of a conventionally known radiation image conversion method using an Sm phosphor.

第1表において感度は放射線像変換パネルに管電圧80
KVf)X線を照射した後、これをHe−Nepレーザ
ー光で励起し、その螢光体層から放射される螢光を受光
器(分光感度S−5の光電子増倍管)で受光した場合の
発光強度で表わしたものであり、SrS:Eu.Sm螢
光体を用いた従来公知の方法の感度を1とした相対値で
示してある。
In Table 1, the sensitivity is 80% for the tube voltage on the radiation image conversion panel.
KVf) After irradiating X-rays, this is excited with He-Nep laser light, and the fluorescence emitted from the phosphor layer is received by a photoreceiver (photomultiplier tube with spectral sensitivity S-5). It is expressed as the emission intensity of SrS:Eu. The sensitivity is expressed as a relative value with the sensitivity of a conventionally known method using an Sm phosphor being set to 1.

上記第1表から明らかなように本発明の放射線像変換方
法(洗2〜腐5)は従来公知の放射線像変換方法(洗1
)よりも著しく高感度である。
As is clear from Table 1 above, the radiation image conversion method (washing 2 to 5) of the present invention is different from the conventional radiation image conversion method (washing 1).
) is significantly more sensitive than

以上説明したように本発明は感度の著しく高い放射線像
変換方法を提供するものであり、従米の放射線写真法に
かわる方法としてその工業的利用価値は非常に大きなも
のである。
As explained above, the present invention provides a radiation image conversion method with extremely high sensitivity, and has great industrial utility value as a method that replaces conventional radiographic methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の放射線像変換方法の械略説明図である
。 11・・・・・・放射線発生装置、12・・・・・・被
写体、13・・・・・・放射線像変換パネル、14・・
・・・・光源、15・・・・・・光電変換装置、16・
・・・・・画像再生装置、17・・・・・・画像表示装
置、18・・・・・・フイルタ一。 第2図−aおよびbは本発明の放射線像変換方法に用い
られる放射線像変換パネルの断面図である。21・・・
・・・支持体、22・・・・・・螢光体層、23,24
・・・・・・透明支持板。 第3図は本発明の放射線像変換方法に用いられるLaO
Br:Ce,.Tb螢光体の励起スペクトルである。
FIG. 1 is a schematic explanatory diagram of the radiation image conversion method of the present invention. 11...Radiation generator, 12...Subject, 13...Radiation image conversion panel, 14...
...Light source, 15...Photoelectric conversion device, 16.
...Image reproduction device, 17...Image display device, 18...Filter 1. FIGS. 2-a and 2-b are cross-sectional views of a radiation image conversion panel used in the radiation image conversion method of the present invention. 21...
... Support, 22 ... Fluorescent layer, 23, 24
...Transparent support plate. Figure 3 shows LaO used in the radiation image conversion method of the present invention.
Br: Ce, . This is an excitation spectrum of Tb phosphor.

Claims (1)

【特許請求の範囲】 1 被写体を透過した放射線を、下記一般式で示される
螢光体の少なくとも1つに吸収せしめ、しかる後、この
螢光体を500nm以上の長波長可視光及び赤外線から
選ばれる電磁波で励起して螢光体が蓄積している放射線
エネルギーを螢光として放出せしめ、この螢光を検出す
ることを特徴とする放射線像変換方法。 一般式 LnOX:xA 但しLnはLa、Y、Gd及びLuの少なくとも1つを
、XはCl及び/又はBrを、AはCe及び/又はTb
を、xは0<x<0.1を満足する数字を表わす。 2 前記電磁波の波長が900nm以下であることを特
徴とする特許請求の範囲第1項記載の放射線像変換方法
。 3 前記電磁波がレーザー光であることを特徴とする特
許請求の範囲第2項記載の放射線像変換方法。 4 前記レーザー光がHe−Neレーザー光であること
を特徴とする特許請求の範囲第3項記載の放射線像変換
方法。
[Claims] 1. The radiation transmitted through the object is absorbed by at least one of the phosphors represented by the following general formula, and then this phosphor is selected from long wavelength visible light of 500 nm or more and infrared rays. 1. A radiation image conversion method characterized in that a phosphor is excited by electromagnetic waves to cause a phosphor to emit accumulated radiation energy as fluorescence, and detect this fluorescence. General formula LnOX:xA where Ln is at least one of La, Y, Gd and Lu, X is Cl and/or Br, A is Ce and/or Tb
, x represents a number satisfying 0<x<0.1. 2. The radiation image conversion method according to claim 1, wherein the wavelength of the electromagnetic wave is 900 nm or less. 3. The radiation image conversion method according to claim 2, wherein the electromagnetic wave is a laser beam. 4. The radiation image conversion method according to claim 3, wherein the laser beam is a He-Ne laser beam.
JP53084743A 1978-07-12 1978-07-12 Radiographic image conversion method Expired JPS5944339B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP53084743A JPS5944339B2 (en) 1978-07-12 1978-07-12 Radiographic image conversion method
NL7905433A NL7905433A (en) 1978-07-12 1979-07-11 METHOD AND APPARATUS FOR RECORDING AND DISPLAYING A RADIATION IMAGE
US06/057,092 US4236078A (en) 1978-07-12 1979-07-12 Method and apparatus for recording and reproducing a radiation image
DE2954341A DE2954341C2 (en) 1978-07-12 1979-07-12
DE2954339A DE2954339C2 (en) 1978-07-12 1979-07-12
DE2954340A DE2954340C2 (en) 1978-07-12 1979-07-12
DE19792928246 DE2928246A1 (en) 1978-07-12 1979-07-12 METHOD AND DEVICE FOR RECORDING AND PLAYING BACK A RADIATION IMAGE
JP1321286A JPS61241385A (en) 1978-07-12 1986-01-24 Radiation image conversion panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53084743A JPS5944339B2 (en) 1978-07-12 1978-07-12 Radiographic image conversion method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1321286A Division JPS61241385A (en) 1978-07-12 1986-01-24 Radiation image conversion panel

Publications (2)

Publication Number Publication Date
JPS5512144A JPS5512144A (en) 1980-01-28
JPS5944339B2 true JPS5944339B2 (en) 1984-10-29

Family

ID=13839162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53084743A Expired JPS5944339B2 (en) 1978-07-12 1978-07-12 Radiographic image conversion method

Country Status (1)

Country Link
JP (1) JPS5944339B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226351Y2 (en) * 1984-12-12 1990-07-18

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685045B2 (en) * 1982-05-19 1994-10-26 富士写真フイルム株式会社 Radiation image information conversion method and apparatus
JPH0616155B2 (en) * 1982-10-20 1994-03-02 コニカ株式会社 Radiation image reading method
US4785183A (en) * 1985-09-18 1988-11-15 Konishiroku Photo Industry Co., Ltd. Method for reading radiation image information
JPH0631910B2 (en) * 1986-12-03 1994-04-27 コニカ株式会社 Radiation image conversion panel with built-in heating element
JP2704454B2 (en) * 1990-07-10 1998-01-26 松下電子工業株式会社 Mask alignment inspection method
US5260573A (en) * 1990-11-21 1993-11-09 Konica Corporation Radiographical image reading apparatus
JP3016630B2 (en) * 1991-07-01 2000-03-06 コニカ株式会社 Radiation image recording and reading device
JP3467285B2 (en) * 1993-04-02 2003-11-17 コニカミノルタホールディングス株式会社 Radiation image processing method
JP3466790B2 (en) * 1995-08-15 2003-11-17 コニカミノルタホールディングス株式会社 Radiation image information reading method and radiation image information reading device
JP3545517B2 (en) * 1995-10-11 2004-07-21 コニカミノルタホールディングス株式会社 Radiation image information reader
EP1017062A3 (en) 1998-12-28 2001-10-04 Fuji Photo Film Co., Ltd. Radiation image conversion panel and method of manufacturing radiation image conversion panel
JP3832173B2 (en) 2000-02-08 2006-10-11 コニカミノルタホールディングス株式会社 Medical image reading device
JP2002345800A (en) 2001-05-23 2002-12-03 Konica Corp Medical image processing device and medical network system
EP1349102A3 (en) 2002-01-28 2005-11-23 Konica Corporation Image acquiring display apparatus, method and apparatus for editing photographing conditions, and program for arranging photographing conditions
JP2003220056A (en) 2002-01-29 2003-08-05 Konica Corp Medical image display, image acquisition display, image display method and display format select program therein
JP2003224703A (en) 2002-01-31 2003-08-08 Konica Corp Image reader and image reading method
JP2003248097A (en) 2002-02-25 2003-09-05 Konica Corp Radiation image conversion panel and its production method
JP2006300647A (en) 2005-04-19 2006-11-02 Fuji Photo Film Co Ltd Phosphor panel manufacturing method
JP2008164339A (en) 2006-12-27 2008-07-17 Konica Minolta Medical & Graphic Inc Radiological image conversion panel
JP4650433B2 (en) 2007-01-25 2011-03-16 コニカミノルタエムジー株式会社 Radiation image conversion panel reading system and radiation image conversion panel
US7718986B2 (en) 2007-01-25 2010-05-18 Konica Minolta Medical & Graphic, Inc. Radiation image conversion panel, production method of the same, and X-ray image capturing system
JP2008185568A (en) 2007-01-31 2008-08-14 Fujifilm Corp Radiological image conversion panel
WO2008117600A1 (en) 2007-03-27 2008-10-02 Konica Minolta Medical & Graphic, Inc. Radiographic image conversion panel, its manufacturing re, and x-ray image pickup system
JP4687693B2 (en) 2007-07-05 2011-05-25 コニカミノルタエムジー株式会社 Radiation image conversion panel and manufacturing method thereof
WO2009122772A1 (en) 2008-03-31 2009-10-08 コニカミノルタエムジー株式会社 Radiation image conversion panel
JP2010264266A (en) * 2010-07-05 2010-11-25 Konica Minolta Medical & Graphic Inc Medical image generation system and control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226351Y2 (en) * 1984-12-12 1990-07-18

Also Published As

Publication number Publication date
JPS5512144A (en) 1980-01-28

Similar Documents

Publication Publication Date Title
JPS5944339B2 (en) Radiographic image conversion method
JPS5944333B2 (en) Radiographic image conversion method
JPH0159566B2 (en)
JPH0159567B2 (en)
JPH0261996B2 (en)
JPS6325320B2 (en)
JPS609542B2 (en) Radiographic image conversion method
JPS6090286A (en) Method for converting radiation image
US4931652A (en) Radiation image recording and reproducing method
JPS59202099A (en) Radiation image conversion
EP0143301B1 (en) Phosphor, radiation image recording and reproducing method and radiation image storage panel employing the same
JPH058237B2 (en)
EP0168057B1 (en) Phosphor, radiation image recording and reproducing method and radiation image storage panel
JPH0731370B2 (en) Radiation image conversion method and radiation image conversion body used therefor
US4605861A (en) Radiation image recording and reproducing method
JP2902228B2 (en) Radiation image conversion panel and radiation image recording / reproducing method
JPH06235799A (en) Method for recording and duplicating irradiated image, device using method thereof, panel for preserving irradiatedimage and light stimulating phospher
JPS6249318B2 (en)
JPS6227118B2 (en)
JPH0373840B2 (en)
JPS60141782A (en) Conversion of radiation image
JPH01221487A (en) Method and apparatus for recording and reproducing radiant image
JPH07287328A (en) Transformation of radiation image and phosphor
JPS58201883A (en) Radiation image conversion
JPS60141781A (en) Conversion of radiation image