JPS5944949B2 - Automatic welding method for laminated steel plates - Google Patents
Automatic welding method for laminated steel platesInfo
- Publication number
- JPS5944949B2 JPS5944949B2 JP12295576A JP12295576A JPS5944949B2 JP S5944949 B2 JPS5944949 B2 JP S5944949B2 JP 12295576 A JP12295576 A JP 12295576A JP 12295576 A JP12295576 A JP 12295576A JP S5944949 B2 JPS5944949 B2 JP S5944949B2
- Authority
- JP
- Japan
- Prior art keywords
- welding
- torch
- arc
- torches
- iron plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000003466 welding Methods 0.000 title claims description 119
- 238000000034 method Methods 0.000 title claims description 13
- 229910000576 Laminated steel Inorganic materials 0.000 title claims description 5
- 150000002505 iron Chemical class 0.000 claims description 12
- 230000003111 delayed effect Effects 0.000 claims description 3
- 238000003475 lamination Methods 0.000 claims description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 41
- 229910052742 iron Inorganic materials 0.000 description 20
- 239000011324 bead Substances 0.000 description 13
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 229910000976 Electrical steel Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000005674 electromagnetic induction Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 235000010582 Pisum sativum Nutrition 0.000 description 1
- 240000004713 Pisum sativum Species 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Manufacturing Cores, Coils, And Magnets (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Manufacture Of Motors, Generators (AREA)
- Butt Welding And Welding Of Specific Article (AREA)
Description
【発明の詳細な説明】
本発明は小形電動機、変圧器あるいは放電灯用安定器等
に用いられる珪素鋼板等の積層鉄板を自動溶接する方法
に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for automatically welding laminated iron plates such as silicon steel plates used in small electric motors, transformers, ballasts for discharge lamps, and the like.
小形電動機、変圧器などの小形電磁誘導機器に用いられ
る鉄心は、珪素鋼板を所要枚数積層して端部を積層方向
に溶融溶接して製作される。Iron cores used in small electromagnetic induction devices such as small electric motors and transformers are manufactured by laminating a required number of silicon steel plates and melt-welding the ends in the lamination direction.
この溶接に際しては、一般の消耗電極によるアーク溶接
法も用いられるが小形の鉄心の場合には一般に非消耗電
極によるTIG溶接法が用いられる。第1図はこのとき
の様子を示したもので、同図において1は被溶接物の積
層鉄板であり、上下に配置された銅ブロック2、2’に
より挾持されている。3は溶接トーチ、4はすでに溶接
された溶接ビード、5は溶接電源であり、珪素鋼板のT
IG溶接の場合、通常溶接電源として直流垂下特性のも
のが用いられる。For this welding, a general arc welding method using a consumable electrode is also used, but in the case of a small core, a TIG welding method using a non-consumable electrode is generally used. FIG. 1 shows the situation at this time. In the figure, 1 is a laminated iron plate to be welded, which is held between copper blocks 2 and 2' arranged above and below. 3 is a welding torch, 4 is a welding bead that has already been welded, and 5 is a welding power source.
In the case of IG welding, a welding power source with direct current drooping characteristics is usually used.
積層鉄板1の両面には絶縁層が施されており、このため
溶接電流は銅ブロック2から溶接ビード4を経て溶接ト
ーチ3に流れる。このように電流経路が直角に曲るため
アーク6は溶接トーチ3および溶接ビード4に流れる電
流によつて発生する磁束により図示のように上方に押し
上げられる。溶接トーチが1個のときはこの力は一定で
あり、しかも安定しているのでこの押し上げ力を考慮し
た溶接条件を選択することにより十分に安定した溶接を
行なうことができる。しかし通常は一つの被溶接物には
数本の溶接部があり、これらを一本づつ溶接していたの
では生産性が悪くコスト高となるので、一般には必要な
ビード数に相当する数のトーチを設置して同時に溶接を
進行させる方法が行なわれている。ところが電磁誘導機
器に用いられる積層鉄板は前述のようにその両面に絶縁
性の皮膜を有するため複数の溶接トーチを用いて同時に
アーク溶接を行うとその電流経路が複雑に変化し、アー
クが相互に干渉し合つて不安定となりビードの不揃いや
溶け込み不良などの溶接欠陥が発生する。第2図はこの
ときの様子を説明したもので、同図において3aは第1
の溶接トーチ、3bは第2の溶接トーチである。伺これ
らのトーチは複数の溶接トーチのうちの隣り合うものを
抽出して示したもので他のトーチは省略してある。各溶
接トーチは先ず銅ブロック2との間にアークを発生し、
このアークを積層鉄板1に移行させて図の上方に向つて
同速度で進行する。4a及び4bはそれぞれ溶接トーチ
3a及び3bにより溶接された溶接ビードであり、5a
及び5bはそれぞれ溶接トーチ3a及び3bに給電する
ための溶接電源である。An insulating layer is provided on both sides of the laminated iron plate 1, so that the welding current flows from the copper block 2 through the welding bead 4 to the welding torch 3. Since the current path is bent at right angles in this way, the arc 6 is pushed upward as shown in the figure by the magnetic flux generated by the current flowing through the welding torch 3 and the welding bead 4. When there is only one welding torch, this force is constant and stable, so by selecting welding conditions that take this pushing-up force into consideration, sufficiently stable welding can be performed. However, there are usually several welds on one workpiece, and welding them one by one results in low productivity and high costs. A method is used in which a torch is installed and welding is performed at the same time. However, as mentioned above, the laminated iron plates used in electromagnetic induction equipment have insulating films on both sides, so when arc welding is performed simultaneously using multiple welding torches, the current path changes complicatedly, causing the arcs to interact with each other. They interfere with each other and become unstable, resulting in welding defects such as uneven beads and poor penetration. Figure 2 explains the situation at this time, and in the figure 3a is the first
The welding torch 3b is a second welding torch. These torches are shown by selecting adjacent welding torches from a plurality of welding torches, and other torches are omitted. Each welding torch first generates an arc between it and the copper block 2,
This arc is transferred to the laminated iron plate 1 and advances upward in the figure at the same speed. 4a and 4b are weld beads welded by welding torches 3a and 3b, respectively, and 5a
and 5b are welding power sources for supplying power to the welding torches 3a and 3b, respectively.
ここでいま溶接アークが鉄板1aとの間に生じ、溶接ピ
ード4a,4bも鉄板1aに達しているときを考える。Let us now consider a case where a welding arc is generated between the iron plate 1a and the welding peas 4a and 4b have also reached the iron plate 1a.
このような状態では溶接電流がそれぞれ溶接ビード4a
及び4b内を流れるため溶接トーチ3aおよび3bから
の各電流がバランスして鉄板1に流れる電流が見掛け上
零に近くしかも変動することがないのでアークは安定し
ている。溶接トーチ3aおよび3bのアークにより積層
鉄板1のAおよびBには溶融プールが形成されており、
これが次第に成長してゆきつぎの上方の鉄板に接触した
ときにアークも上方の鉄板に移行し溶接が継続される。
この場合溶接トーチ3a及び3bの溶接条件が全く同一
に設定されていたとしても溶接トーチ3a及び3bによ
つて形成される溶融プールがつぎの上方の鉄板に同時に
達することは殆んどなく、普通は何らかの時間差が生ず
る。いま一例として、溶接トーチ3bによる溶融プール
の方が早く上方の板に接触して鉄板1b(7)C点にプ
ールが達し、アークも移行したときを考える。このとき
溶融プールにより鉄板1aの端Bと鉄板1bの端Cとが
短絡される。その結果溶接トーチ3aのアークは、その
溶融プールがまだ鉄板1bの端Dに達していないにもか
かわらずD部にも放電しうることになる。このとき溶接
電源5aから流れる電流の一部は銅プロツク2と溶接ピ
ード4ピとを経て鉄板1af)A端からトーチ3aに流
れ、残りはA点から空面に絶縁層を有する鉄板1aの中
を通り、B点、溶接トーチ3bによる溶融プール、C点
及び鉄板1bの中を通りD点を経て溶接トーチ3bに分
流する。その結果溶接トーチ3b側の溶融プールにはこ
の溶接トーチ3bの溶接電流と溶接トーチ3aの溶接電
流の上述した分流分とが流れることになり、溶接トーチ
3bのアークはこのトーチ自身の溶接電流により受ける
電磁力と溶接トーチ3aからの分流分により発生する電
.磁力とを同時に受けることになり、大きく押し上げら
れることになる。しかも上記溶接トーチ3aから分流す
る電流は溶接トーチ3aの溶融プールがD点に達した瞬
間に略零となるため溶接ト一3bのアークは急激な変化
を受けて非常に不安定・になる。全く同様に溶接トーチ
3aにおいても上記の現象が起ることがあり、相互に相
手のアークにより悪影響を受けるもので”ある。このよ
うな現象は、積層鉄板の各境界毎に起り、各境界におい
て後行するアークの移行による急激な電流経路の変化が
生じる毎に先行するアークに作用する電磁力が急変する
ことになるので溶接が極めて不安定となり、溶接結果に
影響を及ぼすことになる。上記の現象は、溶接電極の位
置や先端形状を厳密に一致させて溶接電流を高めにし、
溶融プールを大きくするなどによりある程度は減少させ
ることができるが、被溶接物が薄板を打抜き加工したも
のであるため、これらを多数枚積層すると板厚の不揃い
、打抜き加工時のかえり、板の歪などのため積層高さが
部分的に相違することは避けられず、各トーチをいかに
厳密に設定しても全溶接行程中常にアーク発生点を同時
に同一板に移行させることは不可能であり、前述のよう
な不安定現象はさけられない。本発明は、溶接トーチの
位置を積層鉄板の積層方向に一定量以上離すことにより
、或溶接トーチのアークが移行するときに他のトーチの
アークが急激な電磁力の変化を受けないようにしてアー
クを安定化させるようにした積層鉄板の自動溶接方法を
提案したものである。In such a state, the welding current is applied to each weld bead 4a.
and 4b, the currents from the welding torches 3a and 3b are balanced, and the current flowing through the iron plate 1 is apparently close to zero and does not fluctuate, so the arc is stable. Molten pools are formed at A and B of the laminated iron plate 1 by the arc of the welding torches 3a and 3b,
This gradually grows and when it comes into contact with the next upper iron plate, the arc also moves to the upper iron plate and welding continues.
In this case, even if the welding conditions of the welding torches 3a and 3b are set to be exactly the same, the molten pool formed by the welding torches 3a and 3b will almost never reach the next upper steel plate at the same time. There will be some time difference. As an example, consider a case where the molten pool produced by the welding torch 3b comes into contact with the upper plate earlier, reaches point C of the iron plate 1b (7), and the arc also moves. At this time, the molten pool short-circuits the end B of the iron plate 1a and the end C of the iron plate 1b. As a result, the arc of the welding torch 3a can also be discharged to the portion D, even though the molten pool has not yet reached the end D of the iron plate 1b. At this time, part of the current flowing from the welding power source 5a passes through the copper block 2 and the welding pin 4, and flows from the iron plate 1af) A end to the torch 3a, and the rest flows from the A point into the iron plate 1a, which has an insulating layer on the empty surface. , passes through point B, the molten pool formed by the welding torch 3b, point C, and the iron plate 1b, passes through point D, and is branched off to the welding torch 3b. As a result, the welding current of this welding torch 3b and the above-mentioned branched portion of the welding current of the welding torch 3a flow into the molten pool on the side of the welding torch 3b, and the arc of the welding torch 3b is caused by the welding current of this torch itself. The electric current generated by the received electromagnetic force and the shunt from the welding torch 3a. It will be affected by the magnetic force at the same time, and will be pushed up greatly. Moreover, since the current branched from the welding torch 3a becomes approximately zero at the moment the molten pool of the welding torch 3a reaches point D, the arc of the welding torch 3b undergoes rapid changes and becomes extremely unstable. In exactly the same way, the above-mentioned phenomenon may occur in the welding torch 3a, and each is adversely affected by the other's arc.Such a phenomenon occurs at each boundary of the laminated steel plate, and at each boundary, Every time a sudden change in the current path occurs due to the transition of the trailing arc, the electromagnetic force acting on the preceding arc will suddenly change, making welding extremely unstable and affecting the welding result. This phenomenon occurs when the welding current is increased by closely matching the position and tip shape of the welding electrode.
This can be reduced to some extent by enlarging the molten pool, but since the objects to be welded are punched thin plates, stacking a large number of them may result in uneven plate thickness, burrs during punching, and plate distortion. Therefore, it is unavoidable that the stacking heights differ partially, and no matter how strictly each torch is set, it is impossible to always move the arc generation point to the same plate at the same time during the entire welding process. The instability phenomenon described above cannot be avoided. The present invention prevents the arcs of other torches from being subjected to sudden changes in electromagnetic force when the arc of one welding torch shifts by separating the welding torches by a certain amount or more in the lamination direction of the laminated iron plates. This paper proposes an automatic welding method for laminated steel plates that stabilizes the arc.
第3図は、本発明の溶接方法を説明したもので、本発明
においては溶接トーチ3bを溶接トーチぐより一定量だ
け上方の積層鉄板の端Eに対向するように設置し、この
状態を保持したまま溶接トーチ3a及び3bを略同速度
で上方に移動させながらアーク溶接を行う。FIG. 3 explains the welding method of the present invention. In the present invention, the welding torch 3b is installed so as to face the end E of the laminated iron plate a certain amount above the welding torch, and this state is maintained. Arc welding is performed while moving the welding torches 3a and 3b upward at approximately the same speed.
このような状態において今溶接トーチ3aによる溶融プ
ールが鉄板1af)A点にあつて溶接トーチ3aのアー
クがA点からD点に移行した(D点は鉄板1aと1bが
ビード4bで短絡されているからアークが移行し得る)
場合を考える。この場合溶接トーチ3aの溶接電流は第
2図にて説明したのと同様に鉄板1af)A点から鉄板
1a,.B点、ビード4b.C点、鉄板1bの経路を通
ることになり、ビード4bf)B−C間は溶接トーチ3
bの溶接電流以外にトーチ3aの溶接電流も流れて発生
する磁界も急増するがこのB−Cの位置は溶接トーチ3
bが溶接アークを発生しているE点からは十分離れてい
るのでトーチ3bのアーク柱に作用する電磁力は殆んど
変化しない。したがつてトーチ3bはトーチ3aのアー
ク発生点の移行による影響を殆んど受けず安定している
。一方溶接トーチ3aは対向する鉄板の一端がビード4
bによつてすでに短絡されており、またトーチ3bのア
ークが上方の鉄板に移行しても点Dより上方に開放され
ていてトーチ3bの溶接電流の経路が変ることはないの
で、トーチ3aのアーク柱に作用する電磁力も変化せず
、このアークも安定している。溶接トーチ3aと3bと
の溶接線方向の距離は、鉄板1の積層方向の厚さのバラ
ツキや溶融プールの大きさ、或いはアークスポツトの大
きさなどよりもできるだけ大きい方が望ましいが、一方
この距離に相当する分だけ溶接時間が長くなるので一般
のTIG溶接では数重ないし10mm程度とするのが適
当である。また前述のアーク不安定の発生原因およびこ
れを解決する本発明の主旨から明らかなように、これら
のアークの不安定は近くにアークが発生していない短絡
部(第3図の場合はC−B間の溶接ビード)があればよ
いから、3個以上の溶接トーチを用いて同時に溶接を行
なうときはそのうちの1個のトーチのみを先行させ、残
りはそれぞれが隣接する溶接トーチのうち少なくとも一
方よりも相互に干渉しない距離だけ積層方向に遅れた位
置に配置すればよいことがわかる。In this state, the molten pool by the welding torch 3a is now at point A of the iron plate 1af), and the arc of the welding torch 3a has moved from point A to point D (at point D, the iron plate 1a and 1b are short-circuited by the bead 4b). The arc can shift because there is)
Consider the case. In this case, the welding current of the welding torch 3a is changed from point A of the iron plate 1af) to the iron plate 1a, . Point B, bead 4b. The welding torch 3 passes through point C and the path of the iron plate 1b, and the bead 4bf) between B and C.
In addition to the welding current b, the welding current of torch 3a also flows, and the generated magnetic field increases rapidly.
Since point b is sufficiently far from point E where the welding arc is generated, the electromagnetic force acting on the arc column of torch 3b hardly changes. Therefore, the torch 3b is hardly affected by the shift of the arc generation point of the torch 3a and is stable. On the other hand, the welding torch 3a has a bead 4 at one end of the opposing iron plate.
The arc of torch 3b is already short-circuited by point D, and even if the arc of torch 3b moves to the iron plate above, it is open above point D and the path of the welding current of torch 3b does not change. The electromagnetic force acting on the arc column does not change, and this arc is also stable. It is desirable that the distance between the welding torches 3a and 3b in the welding line direction be as large as possible compared to variations in the thickness of the steel plates 1 in the stacking direction, the size of the molten pool, or the size of the arc spot. Since the welding time becomes longer by the amount corresponding to , it is appropriate for general TIG welding to be several times to about 10 mm. Furthermore, as is clear from the above-mentioned cause of arc instability and the purpose of the present invention to solve this problem, instability of these arcs is caused by short circuits where no arc occurs nearby (in the case of Fig. 3, C- When welding using three or more welding torches at the same time, only one of the torches should be used in advance, and each of the remaining welding torches should be welded by at least one of the adjacent welding torches. It can be seen that it is only necessary to arrange them at positions delayed in the stacking direction by a distance that does not interfere with each other.
第4図は8本のトーチを用いて電動機の固定子を溶接す
る場合を示したもので、同図Aは平面図、同図Bは各溶
接トーチの積層方向の位置関係を示す展開図である。同
図においてトーチイは他の7本より先行し、トーチイよ
り距離lずつ遅れてトーチ唄ハ、二、ホと配置し、トー
チホより距離lずつ進んだ位置にトーチへ、ト、チを配
置してある。したがつて第4図Bに示すようにトーチロ
とチ、ハと卜および二とへは同一位置にあることになる
が、各トーチの近傍には隣のトーチによつて溶接された
ビードにより短絡された部分があるので隣接するいずれ
の2本のトーチの組合せの場合にも第3図の関係が成立
し、アークが相互に干渉することはない。しかも第4図
Bのような配置にすることによりトーチが配置される距
離を短くでき一律に一定距離ずつ遅らせる場合にくらべ
て全溶接時間を短くすることができる。周溶接トーチの
間隔dが十分にあり、鉄板の固有抵抗が大きく内部を流
れる電流が小さい場合には、第4図Cに示したように各
トーチを交互に前後させるようにしてもよい。Figure 4 shows the case of welding the stator of an electric motor using eight torches. Figure A is a plan view, and Figure B is a developed view showing the positional relationship of each welding torch in the stacking direction. be. In the same figure, the torch is ahead of the other seven torches, the torch is placed behind the torch by a distance l, and the torch song is placed as ha, two, and ho, and the torch is placed in a position that is a distance l ahead of the torch. be. Therefore, as shown in Figure 4B, the torches RO and 1, C and BO and 2 are at the same position, but there is a short circuit near each torch due to the bead welded by the adjacent torch. Since there is a curved portion, the relationship shown in FIG. 3 holds for any two adjacent torch combinations, and the arcs do not interfere with each other. Moreover, by arranging the torch as shown in FIG. 4B, the distance at which the torch is arranged can be shortened, and the total welding time can be shortened compared to the case where the torch is uniformly delayed by a fixed distance. If the distance d between the circumferential welding torches is sufficient, the specific resistance of the iron plate is large, and the current flowing inside is small, each torch may be moved back and forth alternately as shown in FIG. 4C.
以上のように、本発明によれば、溶接トーチを積層方向
に一定距離ずつ離すようにしたので溶接アークを安定さ
せてビード形状、溶け込みなどを良好にすることができ
、また多数の電極を同時に使用して溶接できるので、溶
接作業能率を向上させてしかも良好な溶接結果を得るこ
とができる利点がある。As described above, according to the present invention, since the welding torches are spaced a certain distance apart in the stacking direction, the welding arc can be stabilized and the bead shape and penetration can be improved, and a large number of electrodes can be connected simultaneously. Since it can be used for welding, it has the advantage of improving welding work efficiency and obtaining good welding results.
第1図は一本の溶接トーチで積層鉄板を溶接する場合を
示す説明図、第2図は複数の溶接トーチを用いる場合を
示ず説明図、第3図は本発明の自動溶接方法を示す説明
図、第4図A及びBはそれぞれ溶接トーチの配置例を示
す平面図及び展開図、第4図Cは溶接トーチの他の配置
例を示す展開図である。
1,1a,1b・・・積層鉄板、3,3a,3b・・・
溶接トーチ、4,4a,4b・・・溶接ビード、5,5
a,5b・・・溶接電源、6・・・アーク。Fig. 1 is an explanatory diagram showing the case where laminated steel plates are welded with a single welding torch, Fig. 2 is an explanatory diagram showing the case where multiple welding torches are used, and Fig. 3 is an explanatory diagram showing the automatic welding method of the present invention. The explanatory drawings and FIGS. 4A and 4B are a plan view and a developed view showing an example of arrangement of welding torches, respectively, and FIG. 4C is a developed view showing another example of arrangement of welding torches. 1, 1a, 1b... laminated iron plate, 3, 3a, 3b...
Welding torch, 4, 4a, 4b... welding bead, 5, 5
a, 5b... Welding power source, 6... Arc.
Claims (1)
溶接により固定する方法において、前記各溶接トーチを
隣接する他の溶接トーチから前記積層鉄板の積層方向に
一定距離だけ離れた位置に配置して溶接を行うことを特
徴とする積層鉄板の自動溶接方法。 2 前記複数の溶接トーチのうちの1個の溶接トーチを
最も先行する位置に配置し、他の各溶接トーチは隣接す
る溶接トーチのうちの少なくとも一方の溶接トーチより
も一定距離積層方向に遅れた位置に配置することを特徴
とする特許請求の範囲第1項に記載の積層鉄板の自動溶
接方法。[Claims] 1. A method of fixing the ends of laminated iron plates by arc welding using a plurality of welding torches, in which each welding torch is fixed a certain distance from another adjacent welding torch in the lamination direction of the laminated iron plates. An automatic welding method for laminated steel plates, which is characterized by performing welding while being placed at a remote location. 2. One welding torch among the plurality of welding torches is placed at the most leading position, and each of the other welding torches is delayed by a certain distance in the stacking direction from at least one of the adjacent welding torches. 2. The automatic welding method for laminated iron plates according to claim 1, wherein the automatic welding method comprises:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12295576A JPS5944949B2 (en) | 1976-10-15 | 1976-10-15 | Automatic welding method for laminated steel plates |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12295576A JPS5944949B2 (en) | 1976-10-15 | 1976-10-15 | Automatic welding method for laminated steel plates |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5349204A JPS5349204A (en) | 1978-05-04 |
JPS5944949B2 true JPS5944949B2 (en) | 1984-11-02 |
Family
ID=14848751
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12295576A Expired JPS5944949B2 (en) | 1976-10-15 | 1976-10-15 | Automatic welding method for laminated steel plates |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5944949B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6188747A (en) * | 1985-10-11 | 1986-05-07 | Mitsubishi Electric Corp | Manufacturing method of laminated iron core |
JP6653560B2 (en) * | 2015-12-11 | 2020-02-26 | 株式会社三井ハイテック | Stator laminated iron core and method of manufacturing the same |
-
1976
- 1976-10-15 JP JP12295576A patent/JPS5944949B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5349204A (en) | 1978-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12081082B2 (en) | Laminated core and method for producing a laminated core | |
US4190760A (en) | Welding apparatus with shifting magnetic field | |
US2137909A (en) | Double spot welding | |
JP2014183623A (en) | Conductor joint method of rotary electric machine and coil for rotary electric machine | |
US20220371123A1 (en) | Laser welding method | |
US3866014A (en) | Method of welding laminated cores | |
US3742122A (en) | Electrical connector | |
JP2018198258A (en) | Transformer and amorphous ribbon | |
JPS5944949B2 (en) | Automatic welding method for laminated steel plates | |
JPS6238845B2 (en) | ||
JPH09149605A (en) | Iron core manufacturing method | |
US3385948A (en) | Seam welding method | |
TWI529025B (en) | Method and apparatus for welding of a pipe which passes through a tunnel in a die | |
JP2022074406A (en) | Stator manufacturing equipment | |
US1345786A (en) | Art of making cores for electrical apparatus | |
JP3505877B2 (en) | Electromagnetic device and method of manufacturing the same | |
JPH09246058A (en) | Wound iron core | |
JPH02187272A (en) | First layer welding method for single-sided welding | |
US1351270A (en) | Squirrel-cage winding construction | |
JPS5854845A (en) | Rotor of rotary electrical machine | |
JPS6387144A (en) | Stator for rotary electric machine | |
JPS59223180A (en) | Method for suppressing shunt of resistance welding | |
JP2019009884A (en) | Stator and rotating electric machine | |
JPS6320465Y2 (en) | ||
JPH091343A (en) | 3-electrode submerged arc welding method |