JPS5942193A - Laser scribing method - Google Patents
Laser scribing methodInfo
- Publication number
- JPS5942193A JPS5942193A JP57151681A JP15168182A JPS5942193A JP S5942193 A JPS5942193 A JP S5942193A JP 57151681 A JP57151681 A JP 57151681A JP 15168182 A JP15168182 A JP 15168182A JP S5942193 A JPS5942193 A JP S5942193A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- laser
- semiconductor substrate
- stand
- switch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/362—Laser etching
- B23K26/364—Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/007—Marks, e.g. trade marks
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野j
本発明は半導体基板を分割するレーザスクライビング方
法に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention j] The present invention relates to a laser scribing method for dividing a semiconductor substrate.
半導体基板に形成込ハ5た各素子を分割するいわゆるス
クライビング加工にはダイヤモンドブレードで行う機械
的な方法以外にレーザ光を照射して行う方法がある。レ
ーザによるスクライビング加工は機械的切断のようにチ
ッピングを生じさせない利点はあるものの半導体素子へ
の影響がある。The so-called scribing process for dividing each element formed on a semiconductor substrate includes a method using laser light irradiation in addition to a mechanical method using a diamond blade. Although laser scribing has the advantage of not causing chipping unlike mechanical cutting, it does have an impact on semiconductor devices.
分割は機械的にしてもレーザにしてもスフライピング工
程で一般に全切断せず中途部までけがいた状態にし、次
のプレーキング工程で分割するように二工程に分けて行
っている。一工程で済才す目的で全切断しまた場合、素
子に対し直接、熱影響を及ぼす不具合がある。上記レー
ザによる方法の場合、パルス出力の炭酸ガスレーザ、連
続励起QスイッチNd ; YAGレーザ々どが用いら
れている。前者のレーザでは半導材料への吸収が悪く、
後者のレーザでは出力に難点があった
〔発明の目的〕
本発明は半導体基板を吸着し7ているテーブル面および
基板に形成さ力、ている素子への熱影響を直接及ぼすこ
となく一度の照射で基板を分割するスクライビング方法
を提供するものである。Whether it is done mechanically or with a laser, the splitting process is generally done in two steps: one is not cut completely in the swiping process, but the part is scribed halfway, and the next splitting process is done in the blaking process. If the entire process is cut with the intention of completing the process in one step, there is a problem in that the element is directly affected by heat. In the case of the above laser method, a pulse output carbon dioxide laser, a continuous excitation Q-switch Nd; YAG laser, etc. are used. The former laser has poor absorption into semiconductor materials;
The latter type of laser had a problem with the output power. [Object of the Invention] The present invention aims to absorb the semiconductor substrate and generate force on the table surface and the substrate, and to irradiate the semiconductor substrate once without directly exerting a thermal effect on the elements. This provides a scribing method for dividing a substrate.
パルス励起超音波Qスイッチによって出力これかっ集光
されたYAGレーザで半導体基板のPN接合層形成面側
の上記PN層を含む層が骨間作用を起す深さ′まで除去
加工をスクライブ線に沿って連続し、で行うようにした
ものである。Using a focused YAG laser output by a pulse-excited ultrasonic Q-switch, the layer containing the PN layer on the PN bonding layer formation side of the semiconductor substrate is removed along the scribe line to a depth at which an interosseous action occurs. This is done in succession.
本発明を実施するだめの装置を主体にした全体構成につ
いて第1図にて説明する。−上記構成はレーザ発攪部(
J)、電源部(2)および放出−3,−hたレーザ光(
L)による加工部(3)の三つに大きな要素に分けられ
る。、レーザ発振部(1)は一般的な固体レーザ発振部
であって、絶縁框体(図示せず)K収納されている楕円
集光鏡(4)内にNd;YAGロッド(5)、励起用フ
ラノシーランプ(6)が配設されこれらは発振中常時水
冷されている。(7)は高反射鏡、(8)は出方鏡でこ
れらはNd;YAG ロッド(5)の延長軸上に設ける
共j長器鏡にされている。高反射税(7)とNd ;
YAG口、ド(5) (!:の間に超音波θスイッチ(
9)が設けらゎ3ている。(1(ll)(dそのスイッ
チの劇動部である。また電源部(2)はクラ1.シーラ
ンプ(6)に充電した直流電流をスイッチング回路(1
1)およびインダクタンス11を介して供給する主電源
u31と、その回路中に並列に接続をれ7ラツ瀘ランプ
(6)をwX動するだめのシンマー放軍用の直流電流を
放電安定化抵抗U<を介し供給する補助電源u51とか
ら構成されている。一方、加工部(3)はレーザ光(L
)を直角に反射する反射鏡(16)と、反射されたレー
ザ光路上に配設される集光レンズ面と、この集光ランプ
117)の集光位置に破加工物である半導体基板−を載
置するように置かれるXYテーブル(19および制御機
構を備えたXYテーブル用1vg動装置シωとから構成
されてbる。The overall configuration mainly consisting of an apparatus for carrying out the present invention will be explained with reference to FIG. -The above configuration is the laser agitation section (
J), power supply unit (2) and emitted -3, -h laser beam (
It can be divided into three major elements: processing part (3) by L). The laser oscillation unit (1) is a general solid-state laser oscillation unit, in which an elliptical condenser mirror (4) housed in an insulating frame (not shown) includes a Nd; Furano sea lamps (6) are provided and are constantly water-cooled during oscillation. (7) is a high-reflection mirror, and (8) is an outgoing mirror, which are both J-length mirrors provided on the extension axis of the Nd;YAG rod (5). High reflective tax (7) and Nd;
YAG port, C (5) (!: Ultrasonic θ switch (
9) is provided. (1 (ll) (d) This is the active part of the switch. Also, the power supply part (2) supplies the DC current charged to the lamp (6) to the switching circuit (1).
1) and the main power supply u31 supplied via the inductance 11, and the stabilizing resistor U<31 connected in parallel with the main power supply u31 supplied through the inductance 11 to discharge the direct current for the simmer discharge to drive the 7-point filter lamp (6) wX. The auxiliary power supply u51 is supplied via the auxiliary power supply u51. On the other hand, the processing part (3) is exposed to laser light (L
) at right angles, a condensing lens surface disposed on the path of the reflected laser beam, and a semiconductor substrate, which is a broken workpiece, at the condensing position of the condensing lamp 117). It consists of an XY table (19) placed so as to be placed thereon and a 1vg moving device for the XY table equipped with a control mechanism.
なお、半導体基板(1,83けXYテーブル(、を特に
@接装置される仁となく架台t2])上に半導体基板(
I印の周辺かはみでる状態で載1a窟れている。なお、
架台シI)に接する半導体基板賭の一方の面はP N接
合層シ2を形成した面となっている。Note that the semiconductor substrate (1,83 XY table (in particular, the mount t2, which is not connected to the device)) is placed on the semiconductor substrate (
The area around the I mark is visible and is sunken. In addition,
One surface of the semiconductor substrate in contact with the pedestal (I) is a surface on which a PN junction layer (2) is formed.
上記の構成において、−主型#、u3)からパルス電力
をスイッチング回路(1υで制御することにより、フラ
ノシーランプ(6)の発光を′副側I L Nd ;
’1’A()ロッド(5)がパルス幅lで繰り返し周期
1’oでJtin起さノLる。In the above configuration, by controlling the pulse power from the main mold #, u3) by the switching circuit (1υ), the light emission of the flannel lamp (6) is controlled by the secondary side I L Nd ;
'1'A() Rod (5) raises Jtin with a pulse width l and a repetition period of 1'o.
この場合、同時に超音波Qスイッチ(9)に高周波の電
力10 = 200 Ki(zの範囲で(JN−OFF
’を周NJ i+テ繰り返す。この繰り返しのON・0
上゛F周波数(、p)で第2図fa) 、 (blに示
すようなパルス幅の短かいパルス(23・〕の列が時間
差の間尚速に繰り返される0χが1ms、与が50 K
Hzのときは20 μsec間隔でパルス幅が50 X
10−Qsec (50+1秒)程度のパルス幅が狭
くピーク出力の高いレーザ出力波形列(24・・・)が
50パルスまと1って尤の間に一群となって発振される
、このような萬ビーク出力のパルス列が毎秒100〜2
00回発主200回この−ツ(7) パルスW ’47
厚すo、 5 關のシリコンウェハニ集光して照射す
ると、1パルスで深さ9.4 #lX 4で達する。こ
の一群のパルス列でノの幅を変えると主型i (13の
直流電圧が一定でもパルス群の出力ニ坏ルギが変化j〜
、加工深さも比列的に”変化するので、加工深さ、すな
わちスクライビング深さを制御できる。このようなパル
ス群をスクライブ線に沿って照射していくと、連続的な
穴の列や罫を形成することができる。この場合、 、
t(7)闇に一つの尺が形1成できることを示しており
、1つの穴の中区は前記のようにパルス幅の短いパルス
が約50パルス入射することになる。したが−って穴の
加工時には加工穴の内部において次ぎつぎと、しかも4
が小さな高速度の繰り返し率でスの間の平均出力エネル
ギーが従来のCWQスイッチレーザ出力の100倍以上
(即ち1群のパルス合計エネルギーはIJとし、持続時
間χ=1msとすると平均出力1kWと々す、従来のC
WQスイッチスクライバ−では平均出力10Wである)
照射できるこのことは加工中液穴の内部で強力な爆発現
象をおこすことができ、特にQスイッチパルス列の出力
であるので爆発は強力にできる。したがって、穴の内部
から溶融半導体材料が外部に放出されるとともに、穴の
深さが全厚さに達していない場合でも、穴の先端から加
工の行なわれていない下の表11TIには強い衝撃波が
与えられ結晶性の半導体材料には穴加工中1(骨間をお
こさせることができる。この加工走査戯に沿って進行す
る。In this case, at the same time, high-frequency power 10 = 200 Ki (in the range of z (JN-OFF) is applied to the ultrasonic Q switch (9).
'Repeat around NJ i+te. This repeat ON/0
At the upper F frequency (, p), a train of short pulses (23) with a short pulse width as shown in (bl) is repeated rapidly during the time difference.
At Hz, the pulse width is 50 x at 20 μsec intervals.
A laser output waveform train (24...) with a narrow pulse width of about 10-Qsec (50+1 seconds) and a high peak output is oscillated as a group of 50 pulses. Pulse train of 10,000 beak output is 100 to 2 per second
00 times originator 200 times Kono-tsu (7) Pulse W '47
When a silicon wafer with a thickness of 5 mm is focused and irradiated, one pulse reaches a depth of 9.4 #l×4. If we change the width of this group of pulse trains, the output voltage of the pulse group will change even if the main type i (13 DC voltage is constant)
Since the machining depth changes proportionally, the machining depth, that is, the scribing depth, can be controlled. By irradiating such a group of pulses along the scribe line, a continuous row of holes or lines can be created. can be formed. In this case, ,
t(7) This shows that one scale can be formed in the darkness, and about 50 pulses with short pulse widths will be incident on the middle section of one hole as described above. Therefore, when machining a hole, four
At a high repetition rate with a small value, the average output energy during the pulse is more than 100 times that of a conventional CWQ switch laser (i.e., if the total pulse energy of one group is IJ and the duration χ = 1 ms, the average output energy is about 1 kW). , conventional C
WQ switch scriber has an average output of 10W)
This ability to irradiate can cause a powerful explosion inside the liquid hole during processing, and the explosion can be especially powerful since it is the output of a Q-switch pulse train. Therefore, even if the molten semiconductor material is released from the inside of the hole to the outside and the depth of the hole does not reach the full thickness, a strong shock wave will be generated from the tip of the hole in the unprocessed table 11TI. is given, and a hole can be created in a crystalline semiconductor material during hole machining.
以上のことを第3図fa)および+bノにて具体的に説
明する。半導体基板α峰の形状が方形として、その外周
部の加工上査線(ハ)に沿ってレーザ光(旬を集束照射
すC1げ、加工の進行とともに、半導体基板(i樽のレ
ーザ光+L)の入射側には厚み半分以上の深さで加工穴
(20・・)が次々と重なり合って溝状部分に形成され
る。上記加工穴(26−)の形成時に加工穴(2(3・
・・)の底より梨台121)に接し7ている回に向けて
骨間部(27・)が形成され、加工走査線(2つに沿っ
て切断線が形成されることになる。The above will be specifically explained in FIG. 3 fa) and +b. The shape of the semiconductor substrate α peak is rectangular, and the laser beam (C1) is focused and irradiated along the processing scanning line (C) on the outer periphery of the semiconductor substrate. On the incident side of the machined holes (20...) are formed in a groove-like part by overlapping one after another at a depth of more than half the thickness.When forming the machined holes (26-),
An interosseous part (27) is formed from the bottom of the pear table 121) toward the 7th turn, and a cutting line is formed along the processing scanning line (2).
以上のように穴加工時に発生する衝撃波によって一方の
面に到達する骨間を生じる程度の深さに穴加工し、かつ
互い妃重なり合うようにレーザ光照射を走査するようK
したので、従来のようにブレーキングのために強い力を
ウエノ・−に印加する操作を要することなく一度の工程
でもしくは弱いブレーキングの力で全切断できる加工が
可能になった。しかも、レーザ照射か厚みの半分程度に
しか到=さし、でいないので、架台面に接している面に
なるPN接合層への直接的な熱影響の虞れもない。As described above, the hole is drilled to a depth that creates a gap between the bones that reaches one side due to the shock waves generated when drilling the hole, and the laser beam irradiation is scanned so that the holes overlap each other.
As a result, it has become possible to perform complete cutting in one step or with a weak braking force, without requiring the conventional operation of applying a strong force to the wafer for braking. Moreover, since the laser irradiation only reaches about half the thickness, there is no fear of direct thermal influence on the PN bonding layer, which is the surface in contact with the pedestal surface.
また、厚みの大きい半導体基板でおっても、−クルス励
起幅や出力強度を変えることで深い溝加工ができる。こ
の場合でも平均励起電力はNd;YAGロッドの熱的な
応力で破壊に到る以下の所定以下の電゛力に制約できる
からその加工許’8’$Q曲はCW励起Qスイッチレー
ザ出力などより広くとることができる。したがって厚い
基板まで素子の分割を実施することが可能である。また
、従来のレーザ光によるスクライビング加工に比べてス
クライビング溝内への再凝固物の残存が少ないため、た
とえば第3図(a)に示すような加工物の周辺に沿う部
分の加工では枠取り幅を十分率はくでき、その分接合面
積を広く有効に利用できる効果を奏する。Furthermore, even in thick semiconductor substrates, deep grooves can be formed by changing the -Cruz excitation width and output intensity. Even in this case, the average excitation power can be restricted to a predetermined power that is less than Nd; the YAG rod will break due to thermal stress. It can be made wider. Therefore, it is possible to perform element division even on thick substrates. In addition, compared to conventional scribing using a laser beam, there is less re-solidified material remaining in the scribing groove, so for example, when machining the area along the periphery of the workpiece as shown in Figure 3(a), the frame width This has the effect that the bonding area can be used more widely and effectively.
第1図は本発明を説明するための装置の構成を示・ノ゛
図、第2図ta) 、 (b)は上記装置で発生さfL
るパルスの波形図、第3図fa)は本発明における加工
走光の例を示す平面図s I’q図(D)は第3区1(
a)のA−A線に沿って示し′た析面図で必る。Figure 1 shows the configuration of an apparatus for explaining the present invention.
Fig. 3fa) is a plan view showing an example of processing phototaxis in the present invention.
This is required in the analytical surface diagram shown along line A-A in a).
Claims (1)
らレーザビームを集光照射して行うレーザスクライビン
グ方法において、上記レーザビームは繰り返し、パルス
励起超音波Qスイッチによって出力され集光されたYA
Gレーザビームトシ、該ビームで上記PN接合層形成面
側のPN接合層を含む層が9YJ開作用を起す深さまで
除去加工を行うことを喝徴とするレーザスクライビング
方法、In a laser scribing method in which a laser beam is focused and irradiated from the surface opposite to the surface on which the PN junction layer is formed of a semiconductor substrate, the laser beam is repeatedly outputted by a pulse-excited ultrasonic Q-switch and the focused YA
A laser scribing method comprising: using a G laser beam to remove the layer including the PN junction layer on the PN junction layer formation side to a depth that causes a 9YJ opening action;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57151681A JPS5942193A (en) | 1982-09-02 | 1982-09-02 | Laser scribing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57151681A JPS5942193A (en) | 1982-09-02 | 1982-09-02 | Laser scribing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5942193A true JPS5942193A (en) | 1984-03-08 |
Family
ID=15523925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57151681A Pending JPS5942193A (en) | 1982-09-02 | 1982-09-02 | Laser scribing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5942193A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6584660B1 (en) * | 1993-06-08 | 2003-07-01 | Ngk Indulators, Ltd | Method of manufacturing a piezoelectric device |
-
1982
- 1982-09-02 JP JP57151681A patent/JPS5942193A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6584660B1 (en) * | 1993-06-08 | 2003-07-01 | Ngk Indulators, Ltd | Method of manufacturing a piezoelectric device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7146770B2 (en) | Method and system for extending the life of optical components in laser processing equipment | |
CN1938837B (en) | Method of forming a scribe line on a ceramic substrate | |
JP3722731B2 (en) | Laser processing method | |
JP5539625B2 (en) | Laser processing method | |
TW202400340A (en) | Laser processing apparatus, methods of laser-processing workpieces and related arrangements | |
JP2006263754A (en) | Laser beam machining method | |
KR20020070332A (en) | Laser system and method for processing a memory link with a burst of laser pulses having ultrashort pulse widths | |
JP2011147968A (en) | Laser dicing apparatus | |
JP2003088973A (en) | Laser beam machining method | |
JP2002192368A (en) | Laser beam machining device | |
JP2003133690A (en) | Method for forming circuit by using ultra short pulse laser | |
JPH10305384A (en) | Laser processing apparatus | |
JP3867109B2 (en) | Laser processing method | |
TWI295491B (en) | Processing a memory link with a set of at least two laser pulses | |
CN111085786B (en) | Material cutting using laser pulses | |
JP3867110B2 (en) | Laser processing method | |
KR102327249B1 (en) | Optimised laser cutting | |
JP2003088974A (en) | Laser beam machining method | |
JPS5942193A (en) | Laser scribing method | |
JP2003088982A (en) | Laser beam machining method | |
JP3867003B2 (en) | Laser processing method | |
JPH0145225B2 (en) | ||
JP2003088975A (en) | Laser beam machining method | |
JP2005123329A (en) | Method for dividing plate type substance | |
JP2006082232A (en) | Laser processing method |