JPS5938307B2 - Method of forming metal compound film - Google Patents
Method of forming metal compound filmInfo
- Publication number
- JPS5938307B2 JPS5938307B2 JP11126178A JP11126178A JPS5938307B2 JP S5938307 B2 JPS5938307 B2 JP S5938307B2 JP 11126178 A JP11126178 A JP 11126178A JP 11126178 A JP11126178 A JP 11126178A JP S5938307 B2 JPS5938307 B2 JP S5938307B2
- Authority
- JP
- Japan
- Prior art keywords
- metal compound
- film
- sputtering
- metal
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3464—Sputtering using more than one target
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
- C23C14/0036—Reactive sputtering
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Description
【発明の詳細な説明】
本発明は、基板の表面に金属酸化物または金属窒化物な
どの被膜(以下、これらを「金属化合物被膜」と総称)
を形成する方法に関し、特にリアアクティブ・スパッタ
リングによつて純粋金属と安定金属化合物との間の任意
の組成比率を有する非化学量論的金属化合物の被膜を形
成する方法に関する。Detailed Description of the Invention The present invention provides a coating of metal oxide or metal nitride (hereinafter collectively referred to as "metal compound coating") on the surface of a substrate.
The present invention relates to a method for forming a non-stoichiometric metal compound film having an arbitrary composition ratio between a pure metal and a stable metal compound by reactive sputtering.
例えば半導体製造の分野においては、Si基板などの表
面にSiO2、Si3N4、Fe2O3、Cr2O3等
の金属酸化物や金属窒化物の薄膜を形成する技術が非常
に重要である。For example, in the field of semiconductor manufacturing, techniques for forming thin films of metal oxides or metal nitrides such as SiO2, Si3N4, Fe2O3, Cr2O3, etc. on the surface of Si substrates are very important.
かかる金属化合物被膜の形成方法として化学気相(CV
D)法、真空蒸着法、スパッタリング法があるが特にス
パッタリング法は付着性が良好、熱歪や内部ストレスが
小さい、被膜の膜厚制御を高精度で行えるほどの利点を
有することから最も多く利用されている。スパッタリン
グ法による金属化合物被膜の形成にはまたRFスパッタ
リング方式と、リアクティブ・スパッタリング方式とが
ある。Chemical vapor phase (CV) is a method for forming such a metal compound film.
D) method, vacuum evaporation method, and sputtering method, but the sputtering method is the most commonly used because it has the advantages of good adhesion, low thermal distortion and internal stress, and the ability to control the film thickness with high precision. has been done. Formation of a metal compound film by the sputtering method also includes an RF sputtering method and a reactive sputtering method.
RFスパッタリング方式は金属化合物からなる種々の絶
縁物質をスパッタリング・ターゲットとして使用し、例
えばアルゴン(Ar)などの不活性ガス雰囲気中で高周
波電圧が印加してスパッタリングを行うものであり、タ
ーゲット材料と同質の金属化合物被膜を形成することが
可能である。これはスパッタリングが基本的に真空蒸着
法などと異り、ターゲットから飛び出た分子が分解(還
元など)を起さないでそのまま基板に付着されることに
よる。この性質は安定な化合物の場合に特に顕著である
。またリアクティブ・スパッタリング方式は純粋金属の
ターゲットを使用し、アルゴン(Ar)などの不’ 活
性ガスと金属化合物の生成に必要な活性ガス(O2、N
2、NH4)とを混合した雰囲気中でスパッタリングを
行うものであり、活性ガス分圧や印加電圧などのパラメ
ータが所定値以上であれば所定の金属化合物の被膜が基
板に付着形成される。しかるに、近年の半導体製造の分
野においては、半導体の電気的特性の多様化あるいは改
善を図るために、通常の化学量論的に安定した金属化合
物に対し或る程度不安定ないわゆる非化学量論的金属化
合物の被膜、すなわち純粋金属囚とこれの物質(B)と
の安定した化合物(ABz)との不安定領域に位置する
化合物(ABx,ただしO<x<z)の被膜を形成する
ことが必要な場合が多くなつている。しかしながら、前
述したRFスパツタリング方式およびリアクテイブ・ス
パツタリング方式のいずれによつてもかかる非化学量論
的金属化合物被膜の形成は非常に困難である。The RF sputtering method uses various insulating materials made of metal compounds as sputtering targets, and performs sputtering by applying a high frequency voltage in an inert gas atmosphere such as argon (Ar). It is possible to form a metal compound film of. This is because sputtering is fundamentally different from vacuum evaporation methods, in that molecules ejected from the target are attached to the substrate as they are without decomposition (reduction, etc.). This property is particularly noticeable in the case of stable compounds. In addition, the reactive sputtering method uses a pure metal target and uses an inert gas such as argon (Ar) and active gases (O2, N
Sputtering is performed in an atmosphere mixed with NH4), and if parameters such as active gas partial pressure and applied voltage are at or above predetermined values, a film of a predetermined metal compound will be deposited on the substrate. However, in recent years in the field of semiconductor manufacturing, in order to diversify or improve the electrical properties of semiconductors, so-called non-stoichiometric compounds, which are unstable to some extent compared to ordinary stoichiometrically stable metal compounds, have been developed. Forming a film of a metal compound, that is, a film of a compound (ABx, where O<x<z) located in the unstable region of a stable compound (ABz) of a pure metal prisoner and its substance (B). are increasingly necessary. However, it is very difficult to form such a non-stoichiometric metal compound film by either the RF sputtering method or the reactive sputtering method described above.
すなわち、RFスパツタリング方式ではターゲツト材料
として所望の被膜と同質の非化学量論的金属化合物を用
いなければならないが、これは非常に困難である。一方
、リアクテイブ・スパツタリング方式においては、活性
ガス分圧や印加電圧などのパラメータの変化に応じてス
パツタリング・レートが変化する(つまり、ABXにお
ける組成比率6x1が変る)が、その変化特性はパラメ
ータの変化に対しほぼステツプ応答的なものである。す
なわちパラメータが或る特定値の付近においてわずかに
変化した場合に、スパツタリング・レートはほぼ純金属
に近い被膜(x+O)を形成するレートからほぼ安定金
属化合物(x+z)の被膜を形成するレートへ、あるい
はその逆へとステツプ状に急変化する特性を有する。従
つて純粋金属(4)と安定金属化合物(ABz)との中
間領域に位置する任意の組成の非化学量論的金属化合物
(ABx)の被膜を形成するためには、パラメータの高
精度の制御が必要であるが、これは実際には極めて困難
である。またリアクテイブ・スパツタリング方式には、
直流電圧印加型(DC型)ではターゲツト表面に金属化
合物被膜が形成されてスパツタ効率が極度に低下する(
つまり誘電体の場合だと表面が「正」に帯電し、スパツ
タされなくなる)などの欠点もある。従つて本発明の目
的は、前述したような任意の組成の非化学量論的金属化
合物被膜を精度良く且つ簡単な形成可能な方法を提供す
ることにある。本発明の方法は、上記の目的を達成する
ために、同一金属材料からなる少くとも2つのスパツタ
リング・ターゲツトを不活性ガスに活性ガス(B)を混
入した雰囲気の単一のベルジヤ内にセツトし、それぞれ
のターゲツトのスパツタリング・レートが互いに異なる
様にそれぞれのターゲツトに互いに異なる電圧を同時に
印加し、該ベルジヤ内で被膜を形成すべき基板をそれぞ
れのターゲツトに交互に繰返して対向する如く移動させ
ながらスパツタリングを行うことにより、基板に純粋金
属(4)に近い薄膜と安定金属化合物(ABz)に近い
薄膜とを交互に且つ多層に積層形成し、全体的に純粋金
属と安定金属化合物との任意の中間領域に位置する非化
学量論的金属化合物(ABx,ただしO<x〈z)の被
膜を形成するようにしたものである。すなわち本発明の
方法は、スパツタリング・パラメータの制御が容易で形
成の簡単な純粋金属ならびに安定金属化合物の薄膜を基
板に交互に積層構造に形成し、各薄膜相互間の拡散現象
によつて結果的に均質な非化学量論的金属化合物被膜が
得られるようにしたものである。金属化合物ABxのA
(5Bとの組成比率“x゛は各薄膜の付着量を制御する
ことによつて任意に変えることができる。以下、本発明
につき添付図面を参照し一実施例にもとずいて詳細に説
明する。第1図は本発明の方法の実施に使用するスパツ
タリング装置の基本構成例を図解的に示す図である。That is, in the RF sputtering method, it is necessary to use a non-stoichiometric metal compound of the same quality as the desired coating as a target material, but this is extremely difficult. On the other hand, in the reactive sputtering method, the sputtering rate changes according to changes in parameters such as active gas partial pressure and applied voltage (that is, the composition ratio 6x1 in ABX changes), but the change characteristics are It is almost like a step response. That is, when the parameters change slightly around a certain value, the sputtering rate changes from a rate that forms a film that is almost pure metal (x+O) to a rate that forms a film that is almost a stable metal compound (x+z). Or, it has the characteristic of rapidly changing in a step-like manner to the contrary. Therefore, in order to form a film of a non-stoichiometric metal compound (ABx) with an arbitrary composition located in the intermediate region between a pure metal (4) and a stable metal compound (ABz), it is necessary to control the parameters with high precision. is necessary, but this is extremely difficult in practice. In addition, the reactive sputtering method has
In the DC voltage application type (DC type), a metal compound film is formed on the target surface, resulting in an extremely low sputtering efficiency (
In other words, in the case of dielectric materials, the surface becomes positively charged and is no longer susceptible to spatter. Therefore, an object of the present invention is to provide a method capable of forming a non-stoichiometric metal compound film having an arbitrary composition as described above with high accuracy and simply. In order to achieve the above object, the method of the present invention comprises setting at least two sputtering targets made of the same metal material in a single bell gear in an atmosphere containing an inert gas and an active gas (B). Different voltages are simultaneously applied to each target so that the sputtering rates of the targets are different from each other, and the substrates to be coated are alternately moved to face each target within the bell gear. By performing sputtering, a thin film close to a pure metal (4) and a thin film close to a stable metal compound (ABz) are alternately laminated in multiple layers on the substrate, resulting in an arbitrary layer of pure metal and stable metal compound as a whole. A film of a non-stoichiometric metal compound (ABx, where O<x<z) is formed in the intermediate region. That is, in the method of the present invention, thin films of pure metals and stable metal compounds, which are easy to form and whose sputtering parameters can be easily controlled, are alternately formed on a substrate in a laminated structure, and the resultant film is formed by the diffusion phenomenon between each thin film. A homogeneous non-stoichiometric metal compound coating can be obtained. A of metal compound ABx
(The composition ratio "x" with 5B can be changed arbitrarily by controlling the amount of each thin film attached.The present invention will be described in detail below based on one embodiment with reference to the attached drawings. FIG. 1 is a diagram schematically showing an example of the basic configuration of a sputtering apparatus used for carrying out the method of the present invention.
この装置はベルジヤ(図示せず)内にターゲツト支持台
1および基板ホルダー2を有し、ベルジヤ内室は2つの
プラズマ室C1およびC2に仕切られている。そして各
プラズマ室におけるスパーク方式は平板磁界型(プレー
ナマグネトロン)直流2極方式としてある。プラズマ室
C1およびC2にはそれぞれ、同質の純粋金属材料(S
i,Feなど)からなるスパツタリング・ターゲツトT
1およびT2がセツトされる。This apparatus has a target support 1 and a substrate holder 2 in a bell gear (not shown), and the interior of the bell gear is partitioned into two plasma chambers C1 and C2. The spark system in each plasma chamber is a planar magnetic field type (planar magnetron) DC two-pole system. The plasma chambers C1 and C2 are each equipped with a homogeneous pure metal material (S
i, Fe, etc.)
1 and T2 are set.
またプラズマ室C1およびC2内は不活性ガス(Arな
ど)と活性ガス(02,N2,NH4など)とを混合し
た雰囲気としてある。一方、基板ホルダー2の下面には
金属化合物被膜を形成すべき基板3(点線で示す)を多
数個取り付け、基板ホルダー2を回転軸4で回転するこ
とにより各々の基板3が順にプラズマ室C1およびC2
、従つてターゲツトT1およびT2の上側を交互に通過
するようにしてある。以下、上記の装置を使用して例え
ばSiの基板の表面にSi(5Si02との間の任意の
組成比率のSiOx(0くx〈2)の被膜を形成する場
合の具体例を説明する。Furthermore, the atmosphere in the plasma chambers C1 and C2 is a mixture of an inert gas (Ar, etc.) and an active gas (02, N2, NH4, etc.). On the other hand, a large number of substrates 3 (indicated by dotted lines) on which metal compound coatings are to be formed are attached to the lower surface of the substrate holder 2, and by rotating the substrate holder 2 about the rotation shaft 4, each substrate 3 is sequentially transferred to the plasma chamber C1 and C2
, thus passing alternately over the targets T1 and T2. Hereinafter, a specific example will be described in which a film of SiOx (0x<2) having an arbitrary composition ratio between Si (5Si02) is formed on the surface of a Si substrate using the above-mentioned apparatus.
ターゲツトT1およびT2は純粋金属Siから作られる
。プラズマ室内の雰囲気はArと02との混合ガスであ
り、それらの組成およびプラズマ室内圧は以下のような
範囲の任意の値に設定するのが良い(プラズマ室Cl,
C2共に等しくする)。かかる条件下で各プラズマ室C
1およびC2にターゲツト電圧を印加すれば、それぞれ
のプラズマ室において印加電圧に応じたスパツタリング
が行われる。Targets T1 and T2 are made from pure metal Si. The atmosphere in the plasma chamber is a mixed gas of Ar and O2, and the composition and pressure in the plasma chamber are preferably set to arbitrary values in the following ranges (plasma chamber Cl,
C2 are both equal). Under such conditions, each plasma chamber C
When a target voltage is applied to C1 and C2, sputtering is performed in each plasma chamber according to the applied voltage.
そこで第2図に示す如く金属化合物SiOxのスパツタ
リング・レート(縦軸)がターゲツト電圧V(横軸)に
対し、ほぼステツプ状に変化する特性にもとづき、プラ
ズマ室Cl,C2に印加するターゲツト電圧Vl,V2
をそれぞれ第2図に示す如く設定すると、プラズマ室C
1では純粋金属Siに近い薄膜が形成され、一方、プラ
ズマ室C2では安定金属化合物SiO2に近い薄膜が形
成されることになる。従つて基板ホルダー2を回転させ
てやればそれぞれの基板3の表面に第3図に示す如く、
Si−SiO2−Si−SiO2・・・の多層積層構造
被膜5が形成される。一般には各薄膜の膜厚を数〜数+
オングストロームにし、基板ホルダーを1回転/1分間
の回転速度で約60分間運転して120層程度の被膜と
する。この被膜5は隣り合うSi、薄膜およびSiO.
2薄膜相互間の拡散現象により、実質的に全体のSiお
よびOの比率に応じた組成の非化学量論的金属化合物S
iOxとなる。組成比率6x″はSi薄膜およびSiO
2薄膜の付着量の比率を適宜変えることによつてO<X
〈2の範囲で任意に変えることが可能であり、そのため
には例えばターゲツトTl,T2と基板ホルダー2との
間に絞り(図示せず)を設けてその開口面積比を制御す
るような方法が簡便である。Therefore, as shown in FIG. 2, based on the characteristic that the sputtering rate (vertical axis) of the metal compound SiOx changes almost stepwise with respect to the target voltage V (horizontal axis), the target voltage Vl applied to the plasma chambers Cl and C2 is changed. ,V2
are set as shown in Fig. 2, the plasma chamber C
In plasma chamber C2, a thin film close to pure metal Si is formed, while in plasma chamber C2, a thin film close to stable metal compound SiO2 is formed. Therefore, if the substrate holder 2 is rotated, the surface of each substrate 3 will be coated as shown in FIG.
A multilayer laminated structure film 5 of Si-SiO2-Si-SiO2... is formed. In general, the thickness of each thin film is set from several to several +
The substrate holder is operated at a rotation speed of 1 rotation/1 minute for about 60 minutes to form a film of about 120 layers. This coating 5 consists of adjacent Si, thin films and SiO.
Due to the diffusion phenomenon between the two thin films, a non-stoichiometric metal compound S whose composition substantially depends on the overall Si and O ratio is formed.
It becomes iOx. The composition ratio 6x'' is Si thin film and SiO
By appropriately changing the ratio of the adhesion amount of two thin films, O<X
It is possible to arbitrarily change the opening area ratio within the range of 2. For this purpose, for example, a method of providing an aperture (not shown) between the targets Tl, T2 and the substrate holder 2 and controlling the aperture area ratio is possible. It's simple.
上述の実施例ではそれぞれのプラズマ室に互に異るター
ゲツト電圧を印加してSi薄膜およびSiO2薄膜を形
成するようにしたが、それぞれのプラズマ室における活
性ガス(02)の分圧を互いに異る圧力とすることによ
つても同様の結果を得ることができる。以上の説明から
明らかなように、本発明の方法によれば純粋金属(4)
と安定金属化合物(ABz)との間の任意の組成比率(
x)を有する不安定な非化学量論的金属化合物(ABx
)の被膜を非常に容易且つ確実に形成することができ、
その技術的および経済的効果は著大である。In the above embodiment, different target voltages were applied to the respective plasma chambers to form the Si thin film and the SiO2 thin film, but the partial pressure of the active gas (02) in each plasma chamber was changed to Similar results can be obtained by applying pressure. As is clear from the above explanation, according to the method of the present invention, pure metal (4)
and the stable metal compound (ABz) (
x) with an unstable non-stoichiometric metal compound (ABx
) can be formed very easily and reliably,
Its technical and economic effects are significant.
なお本発明の方法は例示の半導体製造の分野に限らず、
他の多くの分野にも広く適用可能である。Note that the method of the present invention is not limited to the field of semiconductor manufacturing as exemplified.
It is also widely applicable to many other fields.
第1図は本発明の方法の実施に使用するスパツタリング
装置の基本構成例を図解的に示す図、第2図はターゲツ
ト電圧Vに対するSiOxのスパツタリング・レートの
特性を示す線図、第3図は基板に形成される多属構造被
膜(Si−SiO2−Si−SiO2−・・・)の断面
図である。
図において、1はターゲツト支持台、2は基板ホルダー
3は基板、5は多層構造被膜、をそれぞれ示す。FIG. 1 is a diagram schematically showing an example of the basic configuration of a sputtering apparatus used to carry out the method of the present invention, FIG. 2 is a diagram showing the characteristics of SiOx sputtering rate with respect to target voltage V, and FIG. FIG. 2 is a cross-sectional view of a multi-metal structure film (Si-SiO2-Si-SiO2-...) formed on a substrate. In the figure, 1 is a target support, 2 is a substrate holder, 3 is a substrate, and 5 is a multilayer structure coating.
Claims (1)
ッタリング・ターゲットを不活性ガスに活性ガス(B)
を混入した雰囲気の単一のベルジヤ内にセットし、それ
ぞれのターゲットのスパッタリング・レートが互いに異
なる様にそれぞれのターゲットに互いに異なる電圧を同
時に印加し、該ベルジヤ内で被膜を形成すべき基板をそ
れがそれぞれのターゲットに交互に繰り返して対向する
如く移動させながらスパッタリングを行うことにより基
板に純粋金属(A)に近い薄膜と安定金属化合物(AB
z)に近い薄膜とを交互に且つ多層に形成し、全体的に
純粋金属と安定金属化合物との間の任意の組成比率の非
化学量論的金属化合物(ABx、ただし0<x<z)の
被膜を形成することを特徴とする金属化合物被膜の形成
方法。1 At least two sputtering targets made of the same metal material (A) are injected into an inert gas and an active gas (B).
is set in a single bell gear with an atmosphere mixed with By performing sputtering while repeatedly moving the target to face each target, a thin film close to pure metal (A) and a stable metal compound (AB) are deposited on the substrate.
A non-stoichiometric metal compound (ABx, where 0<x<z) with an arbitrary composition ratio between the pure metal and the stable metal compound, by forming thin films close to z) alternately and in multiple layers. A method for forming a metal compound film, the method comprising forming a film of.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11126178A JPS5938307B2 (en) | 1978-09-12 | 1978-09-12 | Method of forming metal compound film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11126178A JPS5938307B2 (en) | 1978-09-12 | 1978-09-12 | Method of forming metal compound film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5538947A JPS5538947A (en) | 1980-03-18 |
JPS5938307B2 true JPS5938307B2 (en) | 1984-09-14 |
Family
ID=14556707
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11126178A Expired JPS5938307B2 (en) | 1978-09-12 | 1978-09-12 | Method of forming metal compound film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5938307B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5913608A (en) * | 1982-07-12 | 1984-01-24 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of thin metallic nitride film |
JPH01156465A (en) * | 1987-12-11 | 1989-06-20 | Nippon Kentetsu Co Ltd | Sputtering device |
JPH01298153A (en) * | 1988-05-25 | 1989-12-01 | Raimuzu:Kk | Formation of laminated film |
-
1978
- 1978-09-12 JP JP11126178A patent/JPS5938307B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5538947A (en) | 1980-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6238527B1 (en) | Thin film forming apparatus and method of forming thin film of compound by using the same | |
US5158933A (en) | Phase separated composite materials | |
US4731172A (en) | Method for sputtering multi-component thin-film | |
JPS5938307B2 (en) | Method of forming metal compound film | |
JPS63140077A (en) | Method and apparatus for producing thin dielectric film | |
JP2000012366A (en) | Manufacture of soft magnetic film | |
CN110735121A (en) | method for preparing unconventional refractive index mixed film based on magnetron sputtering | |
JPS59224116A (en) | Production device for amorphous silicon film | |
JPS6372866A (en) | Decorative coating method with titanium nitride | |
US4205299A (en) | Thin film resistor | |
SU1758085A1 (en) | Method of vacuum deposition of thin dielectric films | |
JPS58132A (en) | Forming method for oxide glass thin-film | |
JPH021231B2 (en) | ||
SATO et al. | Thin film SiO2 deposition by RF sputtering onto the anodic Ta2O5 film | |
JPH1136066A (en) | Target for sputtering | |
JPH06349811A (en) | Manufacture of dielectric thin film and manufacturing apparatus | |
JPH05263229A (en) | Production of aluminum oxide thin film | |
JPH03232798A (en) | Method for forming garnet thin film | |
JPS62120627A (en) | Magnetic recording medium | |
JPH03126867A (en) | Sputtering method | |
KR19980021240A (en) | Semiconductor device manufacturing method | |
JPH03122267A (en) | Thin layer of disoriented aluminium nitride microcrystal formed on a surface and method of forming it | |
JPH0243357A (en) | Production of thin superconducting film | |
JPH06104896B2 (en) | Method for producing multilayer thin film | |
JPH04127508A (en) | Mn-al ferromagnetic thin film and manufacture thereof |