JPS5936833B2 - semiconductor equipment - Google Patents
semiconductor equipmentInfo
- Publication number
- JPS5936833B2 JPS5936833B2 JP14913378A JP14913378A JPS5936833B2 JP S5936833 B2 JPS5936833 B2 JP S5936833B2 JP 14913378 A JP14913378 A JP 14913378A JP 14913378 A JP14913378 A JP 14913378A JP S5936833 B2 JPS5936833 B2 JP S5936833B2
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor layer
- layer
- semiconductor
- groove
- glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004065 semiconductor Substances 0.000 title claims description 34
- 239000011521 glass Substances 0.000 claims description 19
- 239000000758 substrate Substances 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims 1
- 230000000903 blocking effect Effects 0.000 description 9
- 230000005684 electric field Effects 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 230000015556 catabolic process Effects 0.000 description 6
- 239000002585 base Substances 0.000 description 4
- 229910052681 coesite Inorganic materials 0.000 description 4
- 229910052906 cristobalite Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 229910052682 stishovite Inorganic materials 0.000 description 4
- 229910052905 tridymite Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000012528 membrane Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0657—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
- H01L29/0661—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body specially adapted for altering the breakdown voltage by removing semiconductor material at, or in the neighbourhood of, a reverse biased junction, e.g. by bevelling, moat etching, depletion etching
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Thyristors (AREA)
- Formation Of Insulating Films (AREA)
Description
【発明の詳細な説明】 本発明は高耐圧半導体装置に関する。[Detailed description of the invention] The present invention relates to a high voltage semiconductor device.
従来、半導体装置の耐圧を高めるために、耐圧を主とし
て負担する接合を半導体基体の主表面に形成された環状
構内にて終端させ、この溝をカラス等の安定化材で充填
してなる構造が知られている。Conventionally, in order to increase the withstand voltage of a semiconductor device, a structure was created in which the junction that mainly bears the burden of withstand voltage was terminated in an annular structure formed on the main surface of the semiconductor substrate, and this groove was filled with a stabilizing material such as glass. Are known.
この構造について、プレーナ型逆阻止サイリスタを例に
とつて説明する。第1図においてサイリスタ基体10は
PE層11。This structure will be explained using a planar reverse blocking thyristor as an example. In FIG. 1, the thyristor base 10 has a PE layer 11.
NB層12、PB層13およびNE層14がこの順で積
層され、各層間にはPN接合J4、J2およびJ3が形
成されて(・る。サイリスタ基体の主表面には溝5が形
成され、J4およびJ2は溝5内に終端しており、溝5
はカラス6にて充填されている。2はカソード電極、3
はアノード電極、4はゲート電極であり、TはSiO2
膜である。The NB layer 12, the PB layer 13, and the NE layer 14 are laminated in this order, and PN junctions J4, J2, and J3 are formed between each layer. Grooves 5 are formed on the main surface of the thyristor base. J4 and J2 terminate in groove 5;
is filled with crow 6. 2 is a cathode electrode, 3
is an anode electrode, 4 is a gate electrode, and T is SiO2
It is a membrane.
このサイリスタの電極2、3間に電極2が負となる電圧
を印加し、電極4を開放としたときにはサイリスタは順
阻屯状態となる。このときのサイリスタ基体内部の空乏
層の様子につき、第2図を用いて説明する。なお第2図
ではNE層および電極は省かれている。第2図aはカラ
スが正の表面電荷を持つ場合を示す。When a voltage is applied between electrodes 2 and 3 of this thyristor so that electrode 2 becomes negative, and electrode 4 is opened, the thyristor enters a forward blocking state. The state of the depletion layer inside the thyristor base at this time will be explained using FIG. 2. Note that the NE layer and electrodes are omitted in FIG. Figure 2a shows the case where the crow has a positive surface charge.
このとき空乏層は斜線の如く形成され、電界強度は図中
×印の箇所21で最大となり、その値は非常に大きくな
つてサイリスタの順阻止耐圧が破られる恐れが強くなる
。他方、第2図bはガラスが負の表面電荷を持つ場合を
示す。At this time, a depletion layer is formed as shown by diagonal lines, and the electric field strength reaches its maximum at a point 21 marked with an x in the figure, and its value becomes so large that there is a strong possibility that the forward blocking breakdown voltage of the thyristor will be broken. On the other hand, FIG. 2b shows the case where the glass has a negative surface charge.
このとき空乏層は斜線の如く形成され、電界強度はやは
り図中×印の箇所21で最大となるが、その値は比較的
小さく、サイリスタの順阻止耐圧に左程悪影響を与えな
い。しかしながらこの場合は空乏層が凡層と隣接するP
E層まで達することがあり、高温(100〜120℃)
での順阻止耐圧の経時劣化が大きいという欠点を生ずる
。このように、ガラスの表面電荷は一般に正負とも半導
体装置の特性を悪化させる要因となりやすいので、従来
はこの表面電荷を可及的に零に近づける努力がなされて
きた。At this time, the depletion layer is formed as shown by diagonal lines, and the electric field strength is also maximum at the point 21 marked with an x in the figure, but its value is relatively small and does not have as much of an adverse effect on the forward blocking voltage of the thyristor as on the left. However, in this case, the depletion layer is adjacent to the ordinary layer P
It may reach the E layer, and the temperature is high (100-120℃)
This results in a disadvantage that the forward blocking voltage deteriorates significantly over time. As described above, since the surface charge of glass, both positive and negative, tends to be a factor that deteriorates the characteristics of a semiconductor device, conventional efforts have been made to reduce this surface charge to as close to zero as possible.
しかしながら、カラスの表面電荷はガラス中に含まれる
Na+等のアルカリ金属イオン量、半導体とガラスの界
面ストレスによる界面準位等によつて影響され、一定値
に制御することは困難であつた。本発明の目的は上記従
来の欠点を克服し、耐圧特性および信頼性の優れた半導
体装置を提供することにある。However, the surface charge of the glass is affected by the amount of alkali metal ions such as Na+ contained in the glass, the interface state due to the stress at the interface between the semiconductor and the glass, and it has been difficult to control it to a constant value. An object of the present invention is to overcome the above-mentioned conventional drawbacks and to provide a semiconductor device with excellent breakdown voltage characteristics and reliability.
かかる目的を達成するために本発明の特徴とするところ
は、主表面に溝を有し、この溝に耐圧を主として負担す
る接合が終端する構造を有し、この接合が負にバイアス
されたときに空乏層が主として形成される半導体層が溝
底部と隣接する幅をこの半導体層の厚さと略等しいかそ
れ以上とし、かつ、上記溝に上記空乏層がバルクにおけ
るよりも伸長されるような極性の表面電荷を有するガラ
スを充填させた点にある。In order to achieve such an object, the present invention is characterized by having a structure in which a groove is provided on the main surface, a bond that mainly bears the withstand voltage terminates in the groove, and when this bond is negatively biased, The semiconductor layer in which the depletion layer is mainly formed has a width adjacent to the trench bottom that is approximately equal to or greater than the thickness of this semiconductor layer, and the polarity is such that the depletion layer is extended in the trench more than in the bulk. The point is that it is filled with glass that has a surface charge of .
本発明においては耐圧を主として負担する半導体層と溝
底部とが隣接する幅をこの半導体層の厚さ以上とするこ
とにより、溝に露出するPN接合端部での最大電界強度
を低下するものである。In the present invention, the maximum electric field strength at the PN junction end exposed in the groove is reduced by making the width of the adjacent semiconductor layer, which mainly bears the burden of breakdown voltage, and the groove bottom equal to or greater than the thickness of this semiconductor layer. be.
また、カラスの表面電荷の極性を上述の如く積極的に偏
よらせることにより、ガラスの表面電荷を左右する上述
の不安定要素より受ける影響を低減するものである。以
下本発明の実施例を図面を用いて説明する。In addition, by actively biasing the polarity of the surface charge of the glass as described above, the influence of the above-mentioned unstable factors that affect the surface charge of the glass is reduced. Embodiments of the present invention will be described below with reference to the drawings.
第3図に示す本発明の一実施例サイリスタにおいて、半
導体基体10の接合構造は第1図に示す従来例と類似で
あるので詳しい説明は省略し、第1図と同じ部分は第1
図と同様の符号で示す。なお15はN+型テヤンネルス
トツパ一であり、20μmの幅を有する。第3図におい
てPE層11の能力部分の厚さは約45μM.NB層1
2の厚さは約120μM,.N層12の抵抗率は50Ω
−αである。これら各半導体層は、N型単結晶Si基板
を出発材料として公知の熱拡散法により形成された。本
実施例サイリスタにおいて、耐圧を主として負担する半
導体層とはNB層12である。In the thyristor according to one embodiment of the present invention shown in FIG. 3, the junction structure of the semiconductor substrate 10 is similar to that of the conventional example shown in FIG. 1, so a detailed explanation will be omitted.
Indicated by the same reference numerals as in the figure. Note that 15 is an N+ type tunnel stopper and has a width of 20 μm. In FIG. 3, the thickness of the capacity portion of the PE layer 11 is approximately 45 μM. NB layer 1
2 has a thickness of approximately 120 μM, . The resistivity of the N layer 12 is 50Ω
−α. Each of these semiconductor layers was formed by a known thermal diffusion method using an N-type single crystal Si substrate as a starting material. In the thyristor of this embodiment, the semiconductor layer that mainly bears the burden of breakdown voltage is the NB layer 12.
溝5の深さは約30μmであり、溝5内部はZnO−B
2O3−SiO2系のガラス粉を電気泳動法により付着
させ、これを575℃で15分間予備加熱後680℃で
40分間焼成し、徐冷して得られたガラス6により充填
されている。The depth of the groove 5 is approximately 30 μm, and the inside of the groove 5 is made of ZnO-B.
2O3-SiO2 based glass powder was deposited by electrophoresis, preheated at 575°C for 15 minutes, fired at 680°C for 40 minutes, and then slowly cooled, and the resulting glass 6 was filled.
このガラス6の表面電荷の極性は負でありその密度は約
7×1011cm−2であつた。また溝5底部の、接合
J2が露出する部分から外側部分の幅(図中W,)は約
120μmであり、チヤンネルストツパ一15の外周か
らPE層11までの間隔(図中W2)は40μmとした
。The polarity of the surface charge of this glass 6 was negative, and its density was about 7 x 1011 cm-2. The width of the bottom of the groove 5 outside the exposed part of the joint J2 (W in the figure) is about 120 μm, and the distance from the outer periphery of the channel stopper 15 to the PE layer 11 (W2 in the figure) is 40 μm. And so.
なお、7は公知のスチーム酸化法にて形成したSiO2
膜であり、正の表面電荷を有する。本実施例においては
順阻止耐圧を主として負担するN層12に隣接して負の
表面電荷極性を持つガラスが存在する。Note that 7 is SiO2 formed by a known steam oxidation method.
It is a membrane and has a positive surface charge. In this embodiment, glass having a negative surface charge polarity is present adjacent to the N layer 12 which mainly bears the burden of forward blocking voltage.
従つてN3層12に順阻止状態で形成される空乏層は、
ガラスの隣接部においてガラス中の負電荷の影響を受け
てバルクにおけるよりも伸長される。この結果、第2図
aにて述べたような表面における電界集中が発生せず、
この部分での耐圧が向上する。第4図に本発明における
効果を示す。Therefore, the depletion layer formed in the N3 layer 12 in a forward blocking state is
The adjacent parts of the glass are more elongated than in the bulk under the influence of negative charges in the glass. As a result, electric field concentration on the surface as described in Fig. 2a does not occur,
The withstand voltage in this part is improved. FIG. 4 shows the effects of the present invention.
図において横軸はW,であり縦軸はチヤンネルストツパ
一15における最大電界強度値である。このグラフは第
3図に示す実施例素子の電極3に電極2に対して700
Vを印加したときのものである。この場合、接合J2の
バルクにおける電界強度は約170KV/CTnとなる
。図によTl.&?M1をN3層12の厚さ(約120
μm)以上とすることにより、チヤンネルストツパ一1
5における最大電界強度をバルクにおけるよりも小さく
することができる。すなわち、本発明によれば従来例の
ように表面での電界集中による耐圧低下がなくなる。な
お、第3図の実施例素子の電極2.3間に印加された電
圧極性を反転した場合(逆阻止状態)、耐圧を主として
負担する接合はJ1となる。この場合電界強度の最大値
を与える部位はバルクであり、W2としてはN3層12
の厚さの約1/3以上であれば表面での耐圧低下は防げ
ることが実験的に確かめられている。本実施例の場合は
、N8層厚約120μmに対し、W2を約40μmとし
た結果、表面での耐圧低下は認められなかつた。上述の
実施例においては逆阻止3端子サイリスタについて説明
したが、不発明は他の構造のサイリスタ、あるいはトラ
ンジスタ、ダイオードにも適用できるものである。また
、各半導体層の導電型をP,n交替したものであつても
本発明の効果が期待できる。この場合、ガラスの表面電
荷極性も正負反転させることが必要である。以上述べた
ように、本発明によれば高耐圧半導体装置を得るのに効
果がある。In the figure, the horizontal axis is W, and the vertical axis is the maximum electric field strength value at the channel stopper 15. This graph shows that the electrode 3 of the example element shown in FIG.
This is when V is applied. In this case, the electric field strength in the bulk of junction J2 is approximately 170 KV/CTn. As shown in the figure, Tl. &? M1 is the thickness of N3 layer 12 (approximately 120
μm) or more, the channel stopper 1
5 can be made smaller than in the bulk. That is, according to the present invention, there is no reduction in breakdown voltage due to concentration of electric field on the surface, which occurs in the conventional example. Note that when the polarity of the voltage applied between the electrodes 2 and 3 of the example element shown in FIG. 3 is reversed (reverse blocking state), the junction that mainly bears the withstand voltage becomes J1. In this case, the part that gives the maximum electric field strength is the bulk, and W2 is the N3 layer 12
It has been experimentally confirmed that a decrease in pressure resistance at the surface can be prevented if the thickness is approximately 1/3 or more of the thickness of the surface. In the case of this example, when the N8 layer thickness was about 120 μm and the W2 was about 40 μm, no decrease in breakdown voltage at the surface was observed. In the above embodiments, a reverse blocking three-terminal thyristor has been described, but the invention can also be applied to thyristors of other structures, transistors, and diodes. Furthermore, the effects of the present invention can be expected even if the conductivity types of each semiconductor layer are alternated between P and N. In this case, it is necessary to also reverse the polarity of the surface charge on the glass. As described above, the present invention is effective in obtaining a high voltage semiconductor device.
筆1図は従来例を示す図、第2図は従来例におけるカラ
スの表面電荷の極性と空乏層の形状との関係を示す図、
第3図は本発明の一実施例サイリスタを示す図、第4図
は実施例サイリスタにおけるW1と表面電界強度の最大
値との関係を示す図である。
10・・・半導体基体、11・・・PE層、12・・・
NB層、13・・・PB層、14・・・\層、15・・
・チャンネルストツパ一、2.3,4・・・電極、5・
・・溝、6・・・ガラス、7・・・SiO2膜。Figure 1 is a diagram showing the conventional example, Figure 2 is a diagram showing the relationship between the polarity of the surface charge of the crow and the shape of the depletion layer in the conventional example,
FIG. 3 is a diagram showing a thyristor according to an embodiment of the present invention, and FIG. 4 is a diagram showing the relationship between W1 and the maximum value of the surface electric field strength in the thyristor according to the embodiment. 10... Semiconductor base, 11... PE layer, 12...
NB layer, 13...PB layer, 14...\ layer, 15...
・Channel stopper 1, 2. 3, 4...electrode, 5.
...Groove, 6...Glass, 7...SiO2 film.
Claims (1)
隣接して第1の半導体層との間にPN接合を形成しPN
接合に沿う方向の断面積が第1の半導体層よりも大きい
地方導電型の第2の半導体層とを包含し、上記PN接合
が一方の主表面に形成された溝に露出し、この溝の底部
と隣接する上記第2の半導体層の幅が上記第2の半導体
層の厚さと略等しいかそれ以上である半導体基体と、上
記半導体基体の上記溝内に充填され上記第2のPN接合
が負にバイアスされたときに第2の半導体層に延びる空
乏層を溝に沿つて伸長するような極性の表面電荷を有す
るガラスと包含することを特徴とする半導体装置。 2 特許請求の範囲第1項において、上記ガラスの表面
電荷密度は0〜15×10^1^1cm^−^2の範囲
にあることを特徴とする半導体装置。 3 特許請求の範囲第1項又は第2項において、上記第
2の半導体層は上記溝の外側において半導体基体の一方
の主表面に延長されていることを特徴とする半導体装置
。 4 特許請求の範囲第1項ないし第3項において、上記
第2の半導体層は上記溝の外周に接する部分で他の部分
よりも不純物濃度が高くなつていることを特徴とする半
導体装置。[Claims] 1 A PN junction is formed between a first semiconductor layer of one conductivity type and a first semiconductor layer adjacent to the first semiconductor layer.
a second semiconductor layer of a local conductivity type having a larger cross-sectional area in the direction along the junction than the first semiconductor layer; the PN junction is exposed in a groove formed on one main surface; a semiconductor substrate in which the width of the second semiconductor layer adjacent to the bottom is substantially equal to or greater than the thickness of the second semiconductor layer; and the second PN junction filled in the groove of the semiconductor substrate. 1. A semiconductor device comprising glass having a polar surface charge such that a depletion layer extends along a groove when negatively biased into a second semiconductor layer. 2. The semiconductor device according to claim 1, wherein the surface charge density of the glass is in the range of 0 to 15 x 10^1^1 cm^-^2. 3. The semiconductor device according to claim 1 or 2, wherein the second semiconductor layer extends to one main surface of the semiconductor substrate outside the groove. 4. The semiconductor device according to any one of claims 1 to 3, wherein the second semiconductor layer has a higher impurity concentration in a portion contacting the outer periphery of the trench than in other portions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14913378A JPS5936833B2 (en) | 1978-12-04 | 1978-12-04 | semiconductor equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14913378A JPS5936833B2 (en) | 1978-12-04 | 1978-12-04 | semiconductor equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5575263A JPS5575263A (en) | 1980-06-06 |
JPS5936833B2 true JPS5936833B2 (en) | 1984-09-06 |
Family
ID=15468451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14913378A Expired JPS5936833B2 (en) | 1978-12-04 | 1978-12-04 | semiconductor equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5936833B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0420655B2 (en) * | 1987-06-17 | 1992-04-06 | Hosokawa Maikuron Intern Inc |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5726444A (en) * | 1980-07-24 | 1982-02-12 | Internatl Rectifier Corp Japan Ltd | Manufacture of semiconductor element |
JPS57196570A (en) * | 1981-05-28 | 1982-12-02 | Toshiba Corp | Thyristor |
JPS63205955A (en) * | 1987-02-21 | 1988-08-25 | Nec Corp | Planar type high breakdown-voltage thyristor |
-
1978
- 1978-12-04 JP JP14913378A patent/JPS5936833B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0420655B2 (en) * | 1987-06-17 | 1992-04-06 | Hosokawa Maikuron Intern Inc |
Also Published As
Publication number | Publication date |
---|---|
JPS5575263A (en) | 1980-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4172260A (en) | Insulated gate field effect transistor with source field shield extending over multiple region channel | |
JPH01138759A (en) | High-breakdown strength planar element | |
US3602782A (en) | Conductor-insulator-semiconductor fieldeffect transistor with semiconductor layer embedded in dielectric underneath interconnection layer | |
JPS5976466A (en) | Planar type semiconductor device | |
GB1470191A (en) | Charge coupled devices | |
US4484214A (en) | pn Junction device with glass moats and a channel stopper region of greater depth than the base pn junction depth | |
JPH0194664A (en) | Field-effect transistor | |
US3432731A (en) | Planar high voltage four layer structures | |
JPS5936833B2 (en) | semiconductor equipment | |
US4430663A (en) | Prevention of surface channels in silicon semiconductor devices | |
US3381189A (en) | Mesa multi-channel field-effect triode | |
JPH0376592B2 (en) | ||
JPH06342902A (en) | High breakdown strength semiconductor device | |
JPH0740607B2 (en) | Method of manufacturing thin film transistor | |
JP3005349B2 (en) | Junction type field effect transistor | |
JP3665202B2 (en) | Semiconductor device | |
JPH0227773A (en) | Manufacture of nonvolatile semiconductor memory | |
KR100298573B1 (en) | Triac device of planar type | |
US3432733A (en) | Controllable semi-conductor element | |
JPH03196570A (en) | Insulated gate type thyristor | |
JPS639670B2 (en) | ||
JPS61158187A (en) | Superconductive three terminal element and manufacture thereof | |
JPS63209161A (en) | High breakdown voltage planar element | |
JPS621262B2 (en) | ||
JPS58111322A (en) | Semiconductor device |