JPS5933616A - Thin film magnetic head - Google Patents
Thin film magnetic headInfo
- Publication number
- JPS5933616A JPS5933616A JP14251982A JP14251982A JPS5933616A JP S5933616 A JPS5933616 A JP S5933616A JP 14251982 A JP14251982 A JP 14251982A JP 14251982 A JP14251982 A JP 14251982A JP S5933616 A JPS5933616 A JP S5933616A
- Authority
- JP
- Japan
- Prior art keywords
- terminal
- terminals
- resistance
- output
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
- G11B5/3906—Details related to the use of magnetic thin film layers or to their effects
- G11B5/3945—Heads comprising more than one sensitive element
- G11B5/3948—Heads comprising more than one sensitive element the sensitive elements being active read-out elements
- G11B5/3958—Heads comprising more than one sensitive element the sensitive elements being active read-out elements the active elements being arranged in a single plane, e.g. "matrix" disposition
- G11B5/3961—Heads comprising more than one sensitive element the sensitive elements being active read-out elements the active elements being arranged in a single plane, e.g. "matrix" disposition disposed at an angle to the direction of the track or relative movement
- G11B5/3964—Heads comprising more than one sensitive element the sensitive elements being active read-out elements the active elements being arranged in a single plane, e.g. "matrix" disposition disposed at an angle to the direction of the track or relative movement for transducing on a single track
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
- G11B5/399—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures with intrinsic biasing, e.g. provided by equipotential strips
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Magnetic Heads (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明はディジタル信号の記録再生等に用いられる薄膜
磁気ヘッドに関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a thin film magnetic head used for recording and reproducing digital signals.
従来例の構成とその問題点
従来のディジタル信号等の再生に用いられる磁気抵抗効
果型ヘッドは第1図に示すように、記録媒体1と垂直(
Y方向)に強磁性薄板を短冊状に形成した磁気抵抗効果
素子(以下MR素子という)を当接まだは近接させ、M
R素子2の長手方向(Z方向)の両端に電極3.4を配
置し、この電極3,4間に定電流iを流し、そして記録
媒体1のY方向の信号磁界によりX方向の抵抗値変化を
電極3,4間の電圧変化により検出するようにしたもの
であった。Conventional structure and its problems The conventional magnetoresistive head used for reproducing digital signals, etc., is perpendicular to the recording medium 1 (
A magnetoresistive element (hereinafter referred to as an MR element), which is a strip-shaped ferromagnetic thin plate, is brought into contact with or close to the M
Electrodes 3.4 are arranged at both ends of the R element 2 in the longitudinal direction (Z direction), a constant current i is passed between the electrodes 3 and 4, and the resistance value in the X direction is determined by the signal magnetic field of the recording medium 1 in the Y direction. Changes were detected by voltage changes between electrodes 3 and 4.
一般に再生用の磁気抵抗効果型ヘッドは、記録用の誘導
型薄膜磁気ヘッドと同一デツキに組み込むか、同一基板
上に蒸着形成されるがして、接近した状態で使用される
。この時、記録電流は再生出力にもれ込むため(フィー
ドスルー)、記録している信号を同時に再生するような
同時モニターではデータ信号の再生が不可能となる。ま
たフィードスルーを減じるためや、短波長再生を行なう
だめに、MR素子の両側面に磁気空隙を置くシールド型
のヘッドでは外部磁石によってバイアスを加える場合、
シールドされているだめ、MR素子に十分な磁界をlj
えるには大きな外部磁場が必要となり、その結果媒体に
記録された信号が消磁されまたシールド効果もフィール
トスルーに対しては、十分でなく記録時の同時モニター
が困難で実用にならない。このようなフィールドスル一
対策として、同一データを複数個のトラックに分配して
記録再生するだめに以下に示すような信号処理録し、再
生時に前記偶数番目のトラックからの出力の和信号と奇
数番目のトラックからの出力の和信号との引算出力を得
ることにより、ヘッド配線に重畳される同相のフィー
トスルーあるいはノイズの影響を相殺する方法である。Generally, a magnetoresistive head for reproduction is built into the same deck as an inductive thin film magnetic head for recording, or is deposited on the same substrate, and is used in close proximity to the inductive thin film magnetic head for recording. At this time, since the recording current leaks into the reproduction output (feedthrough), it becomes impossible to reproduce the data signal with simultaneous monitoring that reproduces the recorded signals at the same time. In addition, in order to reduce feedthrough or to perform short wavelength reproduction, when applying bias using an external magnet in a shield type head that has a magnetic gap on both sides of the MR element,
If it is shielded, apply a sufficient magnetic field to the MR element.
A large external magnetic field is required to achieve this, and as a result, the signals recorded on the medium are demagnetized, and the shielding effect is not sufficient to prevent field-through, making simultaneous monitoring during recording difficult and impractical. As a countermeasure against such field through, in order to record and reproduce the same data by distributing it to multiple tracks, the following signal processing is performed, and during playback, the sum signal of the output from the even-numbered track and the odd-numbered track are combined. By obtaining the subtraction output from the sum signal of the output from the track, the in-phase feed is superimposed on the head wiring.
This is a method of canceling out the effects of toss-through or noise.
この方法では同一信号を複数個のトラックで記録再生す
るだめに、信号数の複数倍(少なくとも2倍)以上の記
録ヘッドと再生ヘッドを必要とし、このためヘッド製造
」二の歩留りが悪く、またへノド配線数の増大等が生ず
るという問題がある。In this method, in order to record and reproduce the same signal on multiple tracks, it is necessary to have recording heads and reproduction heads that are multiple times (at least twice) the number of signals, resulting in a poor head manufacturing yield. There is a problem in that the number of henode wires increases.
このような問題を克服するだめに、前記のように一つの
データを記録するだめのトラックを複数個とはせずに再
生ヘッドの構造をシャントバイアス法により実現する方
法がある。電流バイアス法の一構造であるシャントバイ
アス法は旬波長再生用として応用するシールド型であり
、これを第2図(a) 、 (b)に示す。共通アース
端子21を含む3端子21,22.23を持ち、MR素
子24はr。In order to overcome this problem, there is a method in which the structure of the reproducing head is realized by the shunt bias method, instead of using a plurality of tracks for recording one data as described above. The shunt bias method, which is one structure of the current bias method, is a shield type applied for reproducing short wavelengths, and this is shown in FIGS. 2(a) and (b). It has three terminals 21, 22, and 23 including a common ground terminal 21, and the MR element 24 has r.
等の抵抗素子25によって短絡されており、この抵抗素
子25に流す電流によってMR素子24にバイアス磁界
を加える。このMR素子24には共通アース端子21に
流れ込むように他の2端子に定電流源回路26.27か
ら定電流iが加えられており、そしてMR素子24には
逆方向のバイアス磁界HBが外部から加えられる。Mは
MR素子24の磁化方向である。このような状態に保た
れたMR素子24に信号磁界が入力されると、その−ロ
・ 信号磁界は共通ブース端子
21を間にはさんだMR素子24の二つの部分は電流方
向が逆であるため逆相として感磁される。二つの電極に
出力される電圧の差信号を取ると、シャントバイアス法
では一般に出力はアンダーバイアスであるが一方の出力
がアンダー・くイアスで再生出力に歪があっても、他の
出力と相互に歪成分を打ち消し補うので再生出力は良好
となり、かつ外来ノイズも打ち消すが素子の均−性一や
、記録信号の均一性および機器間での互換性で問題とな
るアジマスの一致が他の構造のヘッドと比較するときび
しく要求され、実用的でない。捷だ、MR素子と抵抗素
子双方に電流を流すことか7−−、、、J−−一 動車
!旨1しし品ムら、MR素子特有のサーマルノイズの発
生も多くなるという欠点がある。A bias magnetic field is applied to the MR element 24 by a current flowing through this resistance element 25. A constant current i is applied to the other two terminals of the MR element 24 from a constant current source circuit 26 and 27 so as to flow into the common ground terminal 21, and a bias magnetic field HB in the opposite direction is applied to the MR element 24 from the outside. Added from. M is the magnetization direction of the MR element 24. When a signal magnetic field is input to the MR element 24 maintained in such a state, the signal magnetic field is generated in such a way that the two parts of the MR element 24 with the common booth terminal 21 in between have opposite current directions. Therefore, it is magnetized as a reverse phase. When taking the difference signal between the voltages output to the two electrodes, in the shunt bias method the output is generally under biased, but even if one output is under biased and the reproduced output is distorted, it will not interact with the other output. Since the distortion component is canceled out and compensated for, the playback output is good, and external noise is also canceled out. demanding and impractical when compared to other heads. The trick is to pass current through both the MR element and the resistance element. First, it has the disadvantage that it generates more thermal noise, which is unique to MR elements.
発明の目的
本発明は上記のような従来の欠点を解消したものであり
、アジマス調整が容易であり、寸だサーマルノイズの発
生もない薄膜磁気ヘッドを提供するものである。OBJECTS OF THE INVENTION The present invention eliminates the above-mentioned conventional drawbacks, and provides a thin film magnetic head that allows easy azimuth adjustment and does not generate any appreciable thermal noise.
発明の構成
本発明は、MR素子に3つの端子を設け、内一つを比較
電接として共通端子とし、この共通端子を交流的に接地
し、他の2つの端子の一方を抵抗を介して接地し、他方
の端子より一定電流を供給して逆相の再生出力を得、こ
れを差動増幅することによりヘッドおよびヘッドからの
配線等に飛び込む外来ノイズの影響を除去するようにし
、またバイアス方法を誘導磁気異方性によるものとする
ことにより、媒体と薄膜ヘッドとの相々」2渉、すなわ
ち媒体の消磁や、MRヘッド特有のサーマルノイズ等を
除去し、信号対雑音比の劣化のない良好なヘッドを提供
するものである。Structure of the Invention The present invention provides an MR element with three terminals, one of which is used as a common terminal as a comparison electrical connection, this common terminal is grounded in an alternating current manner, and one of the other two terminals is connected via a resistor. By grounding the terminal and supplying a constant current from the other terminal to obtain a reverse-phase reproduction output, this is differentially amplified to eliminate the influence of external noise that enters the head and the wiring from the head. By using induced magnetic anisotropy as a method, it is possible to remove mutual interference between the medium and thin film head, that is, demagnetization of the medium, and thermal noise peculiar to MR heads, thereby reducing the deterioration of the signal-to-noise ratio. Not a good head.
実施例の説明
以下本発明の一実施例について第3図を用いて説明する
。本発明のMR−\ノドの構造としてυ↓、第1図に示
しだMR素子に三端子を設けたものである。MR素子6
にM R電流供給及び再生出ノ月1ソリ出しのだめの3
つの端子7,8.9を設け、この内の端子9をコンデン
サ16を介して接地する、すなわち、交流接地を行う。DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. The structure of the MR-\node of the present invention is υ↓, as shown in FIG. 1, in which an MR element is provided with three terminals. MR element 6
MR current supply and regeneration 1 sled 3
Two terminals 7, 8.9 are provided, and terminal 9 of these terminals is grounded via a capacitor 16, that is, AC grounding is performed.
MR素子6が多数ある場合にはこの端一7−9は共通に
して共通端子として取り出し交流接地すれば配線のだめ
の端子数が少なくできる。端子8は抵抗13を介して接
地する。この抵抗13の抵抗値は端子7に接続される定
電流源回路12の等価出力インピーダンスと同じ飴にす
る。定電流源回路12からは端子7から端子8.抵抗1
3を通り接地側へ流れるMR電流10.11を供給する
。端r9は交流接地されているだけであるのでMR電?
4U10.11 tri、全く同一となる。ぞして前記
MR素r−6に外部から同一方向のバイアス磁界を加え
る。磁気記録媒体からの信号磁界により1viR素子6
の磁化方向Mが変化してその抵抗値が変化すると、MR
主電流一定電流であるので、MR素r−6の抵抗値が小
さくなれば、端子7,9間の電位はドるが端子8(/i
一定電位である。端子7の電位の変動喰は端子9のそれ
の2倍である。If there are a large number of MR elements 6, the number of terminals for wiring can be reduced by making these ends 7-9 common and taking them out as a common terminal and connecting them to AC grounding. Terminal 8 is grounded via resistor 13. The resistance value of this resistor 13 is set to be the same as the equivalent output impedance of the constant current source circuit 12 connected to the terminal 7. From the constant current source circuit 12, terminals 7 to 8. resistance 1
The MR current 10.11 flowing through 3 to the ground side is supplied. The end r9 is only connected to AC ground, so is it an MR power line?
4U10.11 tri, exactly the same. Then, a bias magnetic field in the same direction is applied to the MR element r-6 from the outside. 1viR element 6 due to the signal magnetic field from the magnetic recording medium.
When the magnetization direction M of MR changes and its resistance value changes, MR
Since the main current is a constant current, if the resistance value of MR element r-6 becomes small, the potential between terminals 7 and 9 will drop, but terminal 8 (/i
It is a constant potential. The variation in potential at terminal 7 is twice that at terminal 9.
これにより、端子7の端子9に対する変動電圧、すなわ
ち端−f−7に現われる再生出力と端子8の端子9に対
する変動電圧、すなわち端子9に現われる再生出力とは
qいに逆相となる。端子7,8にの正側と負仕入勾にそ
れぞれ供給し、差動増幅すればMR素子6よりの再生出
力が得られる。なお、MR主電流向きが前記と逆であっ
ても同様である。As a result, the fluctuating voltage from terminal 7 to terminal 9, that is, the reproduced output appearing at terminal -f-7, and the fluctuating voltage from terminal 8 to terminal 9, that is, the reproduced output appearing at terminal 9, have exactly q opposite phases. A reproduced output from the MR element 6 can be obtained by supplying the positive and negative input voltages to the terminals 7 and 8, respectively, and performing differential amplification. Note that the same applies even if the direction of the MR main current is opposite to that described above.
ところで、記録電流のフィードスルー等の外来ノイズは
交流であるので、ヘッド及びヘッドからの配線には交流
接地側(インピーダンスの低い側)へ流れるように混入
する。すなわち外来ノイズは、端子7側のMR素子、配
線への混入と、端子8佃のMR素子、配線への混入とは
同相となる。By the way, since external noise such as recording current feed-through is alternating current, it is mixed into the head and the wiring from the head so that it flows toward the alternating current grounding side (lower impedance side). That is, the external noise mixed into the MR element and wiring on the terminal 7 side is in phase with the external noise mixed into the MR element and wiring on the terminal 8 side.
第3図に示しだ構成における微小信4等価回路d、前記
に述べたことにより第4図に示すようになる1、MR素
子6の端子7側において伯ν16が、(りり、信号es
を発生している。外来ノイズ18Q、1.enとして表
わされる。定電流源は内部インピーダンスが抵抗13と
同じ値を有する抵抗2oて[^”き換えて表わされる。The minute signal 4 equivalent circuit d in the configuration shown in FIG. 3 is as shown in FIG.
is occurring. External noise 18Q, 1. Represented as en. The constant current source is expressed as a resistor 2o whose internal impedance is the same as that of the resistor 13.
一方、MR素了−6の端子8側では信号源17があり、
端子T側の信号esと逆相の信号−e8を発生腰外来ノ
イズ1’j &、J:☆ii4 f−8側と同相のen
として表わされる。l端r−71111系と端子8側系
のインピーダンスは同一であるので、外来7′イズは前
記のように端子7側、端子8側ともに同じenとなる。On the other hand, there is a signal source 17 on the terminal 8 side of MR Soryo-6.
Generates a signal -e8 that is in opposite phase to the signal es on the terminal T side External noise 1'j &, J:☆ii4 en that is in phase with the f-8 side
It is expressed as Since the impedances of the l-end r-71111 system and the terminal 8 side system are the same, the external 7' noise becomes the same en on both the terminal 7 side and the terminal 8 side as described above.
以」二の結果、2つの端子からの信号を差動増幅器14
に入力することにより、その出力にはノイズ成分は打ち
消され、信号成分が206として得られることになり、
外来ノイズの影響を全く受けない再生出力を得ることが
できる。そして、MR素子θの抵抗変化が共通の端子9
に対して左右の素子の位相が同相であるために、第2図
のシャントバイアス法によるヘッド−C現われだアジマ
スに対する出力波形の変動は本発明においては問題でな
い。更にバイアス手段のために電流を素子先端部に余分
に加えないので、ジュール熱によるサーマルノイズは軽
減される。まだ本発明においては、定電流源は一つでよ
いので回路構成が簡単となる利点がある。As a result of the above, the signals from the two terminals are transferred to the differential amplifier 14.
By inputting to , the noise component will be canceled in the output and the signal component will be obtained as 206,
It is possible to obtain a reproduction output that is completely unaffected by external noise. Then, the resistance change of the MR element θ is common to the terminal 9.
Since the left and right elements are in phase with each other, variations in the output waveform with respect to the azimuth of the head C caused by the shunt bias method shown in FIG. 2 are not a problem in the present invention. Furthermore, since no extra current is applied to the tip of the element for the bias means, thermal noise due to Joule heat is reduced. Still, the present invention has the advantage that the circuit configuration is simple because only one constant current source is required.
本発明をより効果的に実施するために、媒体の消磁やノ
イズの発生がない、すなわち信号SとノイズN比を劣化
させない他の実施例を第6図に示す。この第5図はMR
素子6の側面図で第3図の実施例との相異点はMR素子
6のバイアス磁界が第3図の場合には外部磁石や電流等
による外来的な手段で印加しているのに対し、第5図の
ものでは、磁化が誘導磁気異方性によって最適バイアス
方向に向けられている点である。この誘導磁気異方性ケ
」:次のようにして得る。すなわち、MR素子6が蒸着
される基板の表面をラッピングテープ等により一方向に
研摩すると基板表面の荒さはラップ条痕にならって一定
方向だけ異方的に荒れる。In order to carry out the present invention more effectively, FIG. 6 shows another embodiment in which there is no demagnetization of the medium or generation of noise, that is, no deterioration of the signal S to noise N ratio. This figure 5 is MR
The difference between the side view of the element 6 and the embodiment shown in FIG. 3 is that the bias magnetic field of the MR element 6 is applied by external means such as an external magnet or electric current in the case shown in FIG. , in FIG. 5, the magnetization is oriented in the optimum bias direction by induced magnetic anisotropy. This induced magnetic anisotropy can be obtained as follows. That is, when the surface of the substrate on which the MR element 6 is deposited is polished in one direction with a lapping tape or the like, the roughness of the substrate surface follows the lapping streaks and becomes rough anisotropically in a certain direction.
ラップ条痕間の間隔はランダムであるが、このラップ条
痕に沿って磁区が発生し、との磁区は細分化されるとと
もに配向性が良好となり、大きな誘導磁気異方+1−が
得られる。Although the intervals between the lap marks are random, magnetic domains are generated along the wrap marks, and the magnetic domains are subdivided and have good orientation, resulting in a large induced magnetic anisotropy of +1-.
以上のように付鳥された誘導磁気異方性によって、MR
素子6には外的な手段でもってバイアス磁界を印加する
必要性がなくなり、媒体の消磁がなく、またバイアス電
流による発熱等でMR素子6にサーマルノイズのないヘ
ッドを提供することができる。Due to the induced magnetic anisotropy as described above, MR
There is no need to apply a bias magnetic field to the element 6 by external means, there is no demagnetization of the medium, and it is possible to provide the MR element 6 with a head free of thermal noise due to heat generated by the bias current.
発明の効果
以」二のように本発明は簡単な構成でアジマス調整が容
易であるとともに、サーマルノイズの発生もない薄膜磁
気ヘッドを提供することができだものであり、その効果
は大である。Effects of the Invention As described in Section 2, the present invention has a simple configuration, allows easy azimuth adjustment, and provides a thin film magnetic head that does not generate thermal noise, and its effects are significant. .
第1図、第2図(a)、(b)は従来例を示す図、第3
図は本発明の一実施例を回路とともに示す図、第4図は
同等価回路図、第5図は他実施例の磁気抵抗効果素子の
側面図である。
6・・・・・・磁気抵抗効果素子、7,8.9・・・・
・端子、10.11・・・・・・電流、12・・・・・
・定電流源回路、13・・・・・・抵抗、14・・・・
・差動増幅器、16・・・・・・コンデンサ。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
第2図
αυ
第5図Figure 1, Figure 2 (a), and (b) are diagrams showing the conventional example, Figure 3.
The figure shows an embodiment of the present invention together with a circuit, FIG. 4 is an equivalent circuit diagram, and FIG. 5 is a side view of a magnetoresistive element of another embodiment. 6... Magnetoresistive element, 7,8.9...
・Terminal, 10.11...Current, 12...
・Constant current source circuit, 13... Resistor, 14...
・Differential amplifier, 16... Capacitor. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 αυ Figure 5
Claims (1)
素子を持つ薄膜磁気ヘッドであって、前記磁気抵抗効果
素子の磁化を一定方向にバイアスするとともにこの素子
に信号磁界を印加し、この磁気抵抗効果素子の中点の共
通端子を交流的に接地し、かつ他の2端子のうち一方の
端子を抵抗を介して接地し、他方の端子より一定電流を
供給することにより前記共通端子と他の2端子との間の
抵抗値の変化をそれぞれ再生電圧として差動的に取り出
すように構成したことを特徴とする薄膜磁気ヘッド。A thin film magnetic head having a magnetoresistive element made of a ferromagnetic material deposited on a substrate, in which the magnetization of the magnetoresistive element is biased in a certain direction and a signal magnetic field is applied to the element. The common terminal at the center of the magnetoresistive element is grounded in an alternating current manner, one of the other two terminals is grounded via a resistor, and a constant current is supplied from the other terminal to connect the common terminal. A thin film magnetic head characterized in that it is configured to differentially extract changes in resistance between two other terminals as reproduction voltages.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14251982A JPS5933616A (en) | 1982-08-17 | 1982-08-17 | Thin film magnetic head |
EP82111355A EP0081240B1 (en) | 1981-12-09 | 1982-12-08 | Thin film magnetic head |
DE8282111355T DE3279790D1 (en) | 1981-12-09 | 1982-12-08 | Thin film magnetic head |
US06/448,058 US4660113A (en) | 1981-12-09 | 1982-12-09 | Magnetoresistive thin film head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14251982A JPS5933616A (en) | 1982-08-17 | 1982-08-17 | Thin film magnetic head |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5933616A true JPS5933616A (en) | 1984-02-23 |
JPH0341890B2 JPH0341890B2 (en) | 1991-06-25 |
Family
ID=15317239
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14251982A Granted JPS5933616A (en) | 1981-12-09 | 1982-08-17 | Thin film magnetic head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5933616A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS644914A (en) * | 1987-06-29 | 1989-01-10 | Matsushita Electric Ind Co Ltd | Thin film magnetic head |
US5452148A (en) * | 1993-02-22 | 1995-09-19 | Fujitsu Limited | Preamplifing circuit for a magnetoresistance device |
WO2005020214A1 (en) * | 2003-08-26 | 2005-03-03 | Fujitsu Limited | Reproduction head and magnetic disc device |
KR100822611B1 (en) * | 2006-01-10 | 2008-04-16 | 후지쯔 가부시끼가이샤 | Reproduction head and magnetic disc device |
-
1982
- 1982-08-17 JP JP14251982A patent/JPS5933616A/en active Granted
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS644914A (en) * | 1987-06-29 | 1989-01-10 | Matsushita Electric Ind Co Ltd | Thin film magnetic head |
US5452148A (en) * | 1993-02-22 | 1995-09-19 | Fujitsu Limited | Preamplifing circuit for a magnetoresistance device |
WO2005020214A1 (en) * | 2003-08-26 | 2005-03-03 | Fujitsu Limited | Reproduction head and magnetic disc device |
US7408730B2 (en) | 2003-08-26 | 2008-08-05 | Fujitsu Limited | Reproducing head and magnetic disk drive |
KR100822611B1 (en) * | 2006-01-10 | 2008-04-16 | 후지쯔 가부시끼가이샤 | Reproduction head and magnetic disc device |
Also Published As
Publication number | Publication date |
---|---|
JPH0341890B2 (en) | 1991-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4660113A (en) | Magnetoresistive thin film head | |
US3969769A (en) | Magneto-resistive head | |
JPH05225507A (en) | Replay apparatus of digital signal | |
JPH06139525A (en) | Reproducing device for magneto-resistance effect type head | |
JPS5933616A (en) | Thin film magnetic head | |
JPS5898826A (en) | Thin film magnetic head | |
JPS6212913A (en) | Multitrack magnetoresistance effect type magnetic head | |
JPS626403A (en) | Head amplifier device | |
JPH0440775B2 (en) | ||
JP3166739B2 (en) | Reproduction circuit of composite head | |
JPS5933618A (en) | Detecting system of track position shift | |
JPS61230614A (en) | Magneto-resistance effect thin film head | |
JP3685953B2 (en) | Magnetic disk writing / reading circuit | |
JP2855723B2 (en) | Magnetic tape playback device | |
JPH06124420A (en) | Magnetoresistance effect type head and signal reproducing apparatus for magnetoresistance effect type head | |
JPS62212902A (en) | Magnetic reproducing device | |
JPH0721530A (en) | Magneto-resistance effect type head | |
JPS6049968B2 (en) | Playback device using magnetoresistive head | |
JP2770291B2 (en) | Circuit for detecting change in resistance of magnetoresistive element | |
JP2761680B2 (en) | Multi-track thin film magnetic head | |
JP2002175610A (en) | Thin film magnetic head | |
JPS6295711A (en) | Composite thin film magnetic head and its reproducing drive method | |
JPH05166139A (en) | Magnetic reproducing device | |
JPH06103505A (en) | Magnetic recording and reproducing device | |
JPH0562131A (en) | Composite magnetic head |