[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5927575A - Manufacture of self-alignment thin film transistor - Google Patents

Manufacture of self-alignment thin film transistor

Info

Publication number
JPS5927575A
JPS5927575A JP13563482A JP13563482A JPS5927575A JP S5927575 A JPS5927575 A JP S5927575A JP 13563482 A JP13563482 A JP 13563482A JP 13563482 A JP13563482 A JP 13563482A JP S5927575 A JPS5927575 A JP S5927575A
Authority
JP
Japan
Prior art keywords
thin film
electrode
amorphous silicon
source
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13563482A
Other languages
Japanese (ja)
Inventor
Toshiro Kodama
敏郎 児玉
Nobuyoshi Takagi
高城 信義
Satoru Kawai
悟 川井
Yasuhiro Nasu
安宏 那須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13563482A priority Critical patent/JPS5927575A/en
Publication of JPS5927575A publication Critical patent/JPS5927575A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To improve high frequency characteristics of a transistor by forming by self-aligning method source and drain electrodes, treating and cleaning by hydrogen plasma the all boundary in which the source and drain electrodes are contacted with amorphous silicon. CONSTITUTION:After a gate electrode 16 is formed on a glass substrate 15, a gate insulating film 17 of SiO2 is formed by a plasma CVD method in a thin film forming apparatus, and an amorphous silicon film 18 is continuously formed in Si4 gas atmosphere without breaking vacuum state. A positive resist 19 is then coated on the film 18, with the electrode 16 as a mask it is exposed from the substrate side to develop it, thereby allowing only the resist 19 to remain on the gate electrode. Then, it is treated with hydrogen plasma at 23, thereby cleaning the surface of the film 18. After aluminum is deposited, a source electrode 20 and a drain electrode 21 are formed by lifting-off. The source and drain electrodes 20, 21 and the chanel region of the film 18 are cleaned, and an amorphous silicon film 22 is formed.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明はアモルファス半導体を用いた薄膜トランジスタ
の製造方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to an improvement in a method for manufacturing a thin film transistor using an amorphous semiconductor.

(2)技術の背−景 電界効果型薄膜トランジスタはガラス板等の適宜の基板
にゲート電極、ゲート絶縁膜、半導体であるアモルファ
スシリコン層、ソース及びドレイン電極を被着してなり
、例えばマトリクス状に区分された大型の液晶ディスプ
レイの駆動素子として注目されてし)る。
(2) Background of the technology - A field-effect thin film transistor is made by depositing a gate electrode, a gate insulating film, an amorphous silicon layer that is a semiconductor, and source and drain electrodes on a suitable substrate such as a glass plate, for example in a matrix. It is attracting attention as a driving element for large, segmented liquid crystal displays.

第11ヌ1はその一例を示したものであり、1−はソー
ス電極、2はゲート電極である。これらはマトリクスの
縦線、横Mを構成する。3はドレイン電極で大きな面積
を持つ矩形でb図の断面図に示すように対向電極4と共
に液晶パネルの一対の′4↑、極を構成し、これらの電
極の間に液晶5が封入される。電極間間隔りは10μm
程度である。ソース甫。
The eleventh number 1 shows an example of this, where 1- is a source electrode and 2 is a gate electrode. These constitute the vertical lines and horizontal lines M of the matrix. Reference numeral 3 denotes a drain electrode, which is rectangular and has a large area, and as shown in the cross-sectional view of figure b, forms a pair of poles of a liquid crystal panel together with a counter electrode 4, and a liquid crystal 5 is sealed between these electrodes. . The spacing between electrodes is 10μm
That's about it. Source Fu.

極l及びゲート[!L電極を選択しm、 tr:、を印
加すると、そItらの選択ソース、ゲー、ト電極と共に
TPT(薄膜トランジスタ)を構成するドレイン電極3
にソース成上が加わり、当該ドレインを極と対向電極4
との間の液晶の配列が変り、そのTi1ζ分が透過性f
なって白く見える。繊細な画像を表現するには多数の微
小画素が必要であり、また画面にはある程度の大きさが
必要であるから、そitを例えばA4版としても数朋角
のチップを用いるICなどから見れば極めて大きなもの
となり、かかる用途VCは薄膜トランジスタが適してい
る。
Poles and gates [! When the L electrode is selected and m, tr: is applied, the drain electrode 3, which forms a TPT (thin film transistor) along with the selected source, gate, and to electrodes, is selected.
A source is added to the source, and the drain is connected to the pole and the counter electrode 4.
The alignment of the liquid crystal between the
It looks white. To express a delicate image, a large number of micropixels are required, and the screen must be of a certain size, so it can be viewed from an IC using a chip several square meters, even if it is an A4 size. Therefore, thin film transistors are suitable for VCs for such applications.

(3)従来技術と問題点 従来、アモルファスシリコンを用いた薄膜トランジスタ
の製造方法には第2図及び第3図に示した2つの方法が
ある。
(3) Prior Art and Problems Conventionally, there are two methods of manufacturing thin film transistors using amorphous silicon, as shown in FIGS. 2 and 3.

第2図に示す方法は、先ずa図の如くガラス基板6にゲ
ート電極材料を蒸着し、バターニングしてケート電極7
を作り、その上にプラズマCVD法によりStO!を成
長させ、それをゲート絶縁膜8とし〜ま・たその上にプ
ラズマCVD法によりアモルファスシリコン層を成長さ
せ、バターニングして半導体層9を作る。次いでb図の
如く半導体層9の上にポジ型ホトレジスト1of、塗布
し、これをホトマスク11を用いて露光、現像し、次い
で0図の如く電極材料を蒸着したのち、リフトオフして
ソース電極12とドレイン°電極13とを作り最後にd
図の如くパッシベーション膜14t[成する。
In the method shown in FIG. 2, first, a gate electrode material is deposited on a glass substrate 6 as shown in FIG.
was made, and StO! was applied thereon by plasma CVD method. This is used as the gate insulating film 8. An amorphous silicon layer is grown thereon by plasma CVD and patterned to form the semiconductor layer 9. Next, as shown in Figure 0, a positive type photoresist 1of is coated on the semiconductor layer 9, exposed and developed using a photomask 11, and then an electrode material is deposited as shown in Figure 0, and then lifted off to form a source electrode 12. Make the drain ° electrode 13 and finally d
As shown in the figure, a passivation film 14t is formed.

次に第3図に示す方法は、先ずa図の如くガラス基板6
にゲート電極材料を蒸着し、バターニングしてゲート電
極7を形成し、その上にプラズマCVD法により810
.を成長さぜ、それをゲート絶縁膜8とし、その上にb
図の如くポジ型ホトレジスト10を塗布l1、これをホ
トマスク11を用いて露光、現像する。次いで0図の如
く′rル極極材料金蒸着したのち、リフトオフしてソー
ス電極12とドレイン′電極13とを作る。次にd図の
如くCVD法によりアモルファスシリコン層9とパッシ
ベーション膜14を形成する。
Next, in the method shown in FIG. 3, first, as shown in FIG.
A gate electrode material is vapor-deposited and patterned to form a gate electrode 7, and a gate electrode 7 is formed thereon using a plasma CVD method.
.. is grown, used as a gate insulating film 8, and a layer of b is formed on it.
As shown in the figure, a positive photoresist 10 is applied l1, exposed using a photomask 11, and developed. Next, as shown in FIG. 0, after depositing gold as a material for the electrode, lift-off is performed to form a source electrode 12 and a drain electrode 13. Next, as shown in Figure d, an amorphous silicon layer 9 and a passivation film 14 are formed by CVD.

このような製造方法による薄膜トランジスタにおいて、
第2図の場合はグー) fJi極7とソース、ドレイン
電極12,13の重なりが大きく高周波特性が悪いとい
う欠点があり、さ−らにアモルファスシリコン層9の膜
厚方向のシリーズ抵抗のために1C式和電流が低く抑え
られているという欠点があっlト、。また第3図の場合
はチャンネルとソース、ドレイン電極12.13が同一
面上にあることがらシリーズ抵抗は無視され、飽和電流
が大きくなる構造ではあるがゲート絶縁膜8の形成後、
空気にさらすことからガス吸着、汚染等にょクチヤンネ
ル部の界面準位が多く特性が悪くなるという欠点があつ
た。
In a thin film transistor manufactured by such a manufacturing method,
In the case of Fig. 2, there is a disadvantage that there is a large overlap between the fJi electrode 7 and the source and drain electrodes 12 and 13, resulting in poor high frequency characteristics, and furthermore, due to the series resistance in the thickness direction of the amorphous silicon layer 9. The disadvantage is that the 1C type sum current is kept low. In addition, in the case of FIG. 3, since the channel, source, and drain electrodes 12 and 13 are on the same plane, the series resistance is ignored and the saturation current increases, but after the gate insulating film 8 is formed,
Due to exposure to air, gas adsorption, contamination, etc. occur, resulting in a large number of interface states in the channel, resulting in poor characteristics.

(4)発明の目的 本発明は上記従来の欠点に鑑み、高性能な薄膜トランジ
スタを得ることができる製造方法を提供することを目的
とするものである。
(4) Object of the Invention In view of the above-mentioned conventional drawbacks, the object of the present invention is to provide a manufacturing method capable of obtaining a high-performance thin film transistor.

(5)発明の構成 そしてこの目的は本発明によれば、半導体層にアモルフ
ァスシリコン薄膜を用いた薄膜トラン“ジスタの製造方
法において、セルフアライメント′方式を用いてソース
、ドレイン電極形成後、水素プラズマ処理を施し、連続
してアモルファスシリコン薄膜を形成することを特徴と
するセルフアライメント形薄膜トランジスタの製造方法
を提供することによって達成される。
(5) Structure and object of the invention According to the present invention, in a method for manufacturing a thin film transistor using an amorphous silicon thin film as a semiconductor layer, after forming source and drain electrodes using a self-alignment method, hydrogen plasma is applied. This is achieved by providing a method for manufacturing a self-aligned thin film transistor, which is characterized by sequentially forming an amorphous silicon thin film through processing.

(6)発明の実施例 以下本発明実施例を図面によって詳述する。(6) Examples of the invention Embodiments of the present invention will be described in detail below with reference to the drawings.

第4図は本発明によるセルフアライメント形薄膜トラン
ジスタの製造方法を説明するための図である。同図にお
いて、15はカラス基板、16は不透光性のゲート電極
、17ば810.のゲート絶縁膜、18&:l°rモル
ファスシリコン膜、19ijポジ型ポトレジスト、20
はンース゛tn極、21はドL/(ン14t、極、22
はアモルファスシリコンINK t ソれぞれ示す。
FIG. 4 is a diagram for explaining a method of manufacturing a self-aligned thin film transistor according to the present invention. In the figure, 15 is a glass substrate, 16 is a non-transparent gate electrode, 17 is 810. gate insulating film, 18&:l°r amorphous silicon film, 19ij positive photoresist, 20
Hance tn pole, 21 is do L/(n 14t, pole, 22
are amorphous silicon INK t so.

第4図を用いて本発明の詳細な説明すると、先ずa図の
+2LI <ガラス基板15σ)上シてゲート電極(N
kCr ) 16會約1000又形成後薄膜形成装置内
に亜酸化窒累ガス(N、0)とシランガス(8111,
)雰囲気中でプラズマCvL)法によりS Iu 2の
ゲート絶縁膜17を厚さ3000X  に形成し、引続
き臭突状帽を破壊することなく、連続で5it(4カス
雰囲シ(中で回じ〈プラズマCVD法によりアモルファ
スシリコン膜18を厚さ120Xvc形成する。
To explain the present invention in detail using FIG. 4, first, the gate electrode (N
kCr ) 16 days After the formation, nitrous oxide accumulation gas (N, 0) and silane gas (8111,
) The gate insulating film 17 of S Iu 2 was formed to a thickness of 3000× by the plasma CvL) method in an atmosphere of <An amorphous silicon film 18 is formed to a thickness of 120×vc by plasma CVD method.

次ニ1)図の911〈アモルファスシリコン膜18上に
ボジレジス1−19を塗布し、ゲート’iff、Ii 
i 6をマスクとしてカラス基板側よV露光し現像する
ことにより、0図の如くゲートTff、極の上にのみレ
ジメ)Is)’を残す。次いでこのレジスト19′をマ
スクとり、て第5図の装置により水素プラズマ処理23
し、てアモルファスシリコン膜18の表面を清浄化する
。引続きd図の如くアルミニウムを100OX蒸着した
のち装置外に取り出111、リフトオフしてソース電極
20及びドレイン電Mi21を形成する。
Next 1) 911 in the figure <Coat the body resist 1-19 on the amorphous silicon film 18, and apply the gate 'iff, Ii
Using i6 as a mask, the glass substrate side is exposed to V light and developed, leaving the regimen)Is)' only on the gate Tff and pole as shown in Figure 0. Next, this resist 19' is removed as a mask and subjected to hydrogen plasma treatment 23 using the apparatus shown in FIG.
Then, the surface of the amorphous silicon film 18 is cleaned. Subsequently, as shown in Fig. d, 100 OX of aluminum is vapor-deposited, taken out of the apparatus 111, and lifted off to form a source electrode 20 and a drain electrode Mi21.

その後再び第5図の装置内にセットし、水素ガスを導入
し、ガス圧0.5 Torr 、基板温度120 ”C
1反応時間5分、高周波人力40Wの条件で0図の如く
水素プラズマ24中にさらし、ソース、ドレイン’tY
Lftfi、20 、21及びアモルファスシリコン膜
18のチャ、ンネル領域を清浄化する。次いで装置内の
水素を排気したのち、SIH,ガス雰囲気中で再びプラ
ズマCVD法によりf図の如くアモルファスシリコン膜
22を5000に成膜する。
Thereafter, the substrate was placed in the apparatus shown in Fig. 5 again, hydrogen gas was introduced, the gas pressure was 0.5 Torr, and the substrate temperature was 120''C.
The source and drain were exposed to hydrogen plasma 24 as shown in Figure 0 under the conditions of 1 reaction time of 5 minutes and high frequency manual power of 40W.
The channels and channel regions of Lftfi, 20, 21 and the amorphous silicon film 18 are cleaned. Next, after evacuating the hydrogen in the apparatus, an amorphous silicon film 22 having a thickness of 5000 nm is formed again by plasma CVD in an SIH gas atmosphere as shown in figure f.

このようにしてソース、ドレイン電極上あるいはチャン
ネル領域の汚染がない薄膜トランジスタが得られる。
In this way, a thin film transistor without contamination on the source and drain electrodes or in the channel region can be obtained.

第5図は本発明の薄膜トランジスタの製造方法に用いる
装置を示した図であり、25に真空槽、26はガス導入
管、27tま蒸着用シャッタ兼平板形放電電極、2″B
は基板、29は蒸着用アルミニウム、30 id:’i
ll子銃、31&よ高周波人11電源、32け排((管
をそitぞ〕1.示ず。号おシYンク27に把手331
.?−J: リ絶縁碍子:34を介[7て水−’l’ 
IC移動片しめることができるようKなってかり、水素
プラズマ処理及び゛rルミニウムの蒸着が真空を破らす
IfC,’It続して行なうことができる」、うになっ
でいる9、 (7)発明の効果 以上、詳#l11に説明したように本発明のセルフアラ
イメント形薄膜トランジスタの製造方法t:Yそのソー
ス、ドレイン電極ヲセルフ”rライメント手法分用いて
形成することによυ高周波性1生を良好となし、1つソ
ース、ドレイン電極とアモルファスシリコンの接するす
べての界面に水素プラズマ処理を施し清浄化することに
よV特性の良好な薄膜トランジスタがイIられふといっ
た効果大なるものである、
FIG. 5 is a diagram showing the apparatus used in the method of manufacturing a thin film transistor of the present invention, in which 25 is a vacuum chamber, 26 is a gas introduction tube, 27t is a vapor deposition shutter and flat discharge electrode, and 2''B
is a substrate, 29 is aluminum for vapor deposition, 30 id:'i
ll child gun, 31 & y high frequency person 11 power supply, 32 discharge ((put the tube away) 1. not shown. handle 331 on sink 27)
.. ? -J: Re-insulator: 34 through [7 water-'l'
9. (7) Invention 9, (7) Invention 9, 'It can be carried out in sequence to break the vacuum by hydrogen plasma treatment and aluminum evaporation to break the vacuum. As explained in detail in #11, the method for manufacturing the self-aligned thin film transistor of the present invention: By forming the source and drain electrodes using the self-alignment method, high frequency properties can be improved. However, by applying hydrogen plasma treatment to all interfaces where the source and drain electrodes contact amorphous silicon to clean them, thin film transistors with good V characteristics can be produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図シ・ま従来の液晶ディスプレイの駆動孝子を説明
するための図、第2図及び第3図は従来の簿膜トランジ
スタの製造方法を説明するための図、第4図は本発明に
よるセルフアライメント形薄膜トラyジスタの製造方法
を説明するための図、第5図は水素プラズマ処理及び蒸
着を行なうことができる装置を示す図である。 図面において、15はガラス基板、16はゲート電極、
17はゲート絶縁膜、18はアモルファスシリコン膜、
19はホトレジスト、20はソース電極、21はドレイ
ン電極、22はアモルファスシリコ/膜をそノ1.ぞれ
示す。 特許出顯人 富士通株式会社 特許出願代理人 ・弁理士 青 木   朗 弁理士西舘和之 弁理士 内 1)幸 男 弁理士 山 口 昭 之 第1図 (G) (b) 第2図    第3図 第4図 第5図
Fig. 1 is a diagram for explaining the driving mechanism of a conventional liquid crystal display, Figs. 2 and 3 are diagrams for explaining a conventional method of manufacturing a film transistor, and Fig. 4 is a diagram for explaining the method of manufacturing a conventional film transistor. FIG. 5, which is a diagram for explaining a method of manufacturing a self-alignment type thin film transistor, is a diagram showing an apparatus capable of performing hydrogen plasma treatment and vapor deposition. In the drawing, 15 is a glass substrate, 16 is a gate electrode,
17 is a gate insulating film, 18 is an amorphous silicon film,
19 is a photoresist, 20 is a source electrode, 21 is a drain electrode, and 22 is an amorphous silicon/film. Shown below. Patent issuer Fujitsu Limited Patent application agent/patent attorney Akira Aoki Patent attorney Kazuyuki Nishidate Patent attorney 1) Yukio Patent attorney Akira Yamaguchi Figure 1 (G) (b) Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1、半導体層にアモルファスシリコン薄膜を用いた薄膜
トランジスタの製造方法において、セルフアライメント
方式を用いてソース、ドレイン電極形成後、水素プラズ
マ処理を施し、連続し−Cアモルフーアスシリコン薄膜
を形成することを特徴とするセルフアライメント形薄膜
トランジスタの製造方法。
1. In a method for manufacturing a thin film transistor using an amorphous silicon thin film as a semiconductor layer, after forming source and drain electrodes using a self-alignment method, hydrogen plasma treatment is performed to continuously form a -C amorphous silicon thin film. A manufacturing method for self-aligned thin film transistors.
JP13563482A 1982-08-05 1982-08-05 Manufacture of self-alignment thin film transistor Pending JPS5927575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13563482A JPS5927575A (en) 1982-08-05 1982-08-05 Manufacture of self-alignment thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13563482A JPS5927575A (en) 1982-08-05 1982-08-05 Manufacture of self-alignment thin film transistor

Publications (1)

Publication Number Publication Date
JPS5927575A true JPS5927575A (en) 1984-02-14

Family

ID=15156389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13563482A Pending JPS5927575A (en) 1982-08-05 1982-08-05 Manufacture of self-alignment thin film transistor

Country Status (1)

Country Link
JP (1) JPS5927575A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60195977A (en) * 1984-03-16 1985-10-04 Fujitsu Ltd Manufacture of thin film transistor
JPS639156A (en) * 1986-06-30 1988-01-14 Canon Inc Manufacture of thin film transistor
US4859617A (en) * 1987-06-09 1989-08-22 Oki Electric Industry Co., Ltd. Thin-film transistor fabrication process
US4883766A (en) * 1987-11-14 1989-11-28 Ricoh Company, Ltd. Method of producing thin film transistor
US5879973A (en) * 1992-08-07 1999-03-09 Fujitsu Limited Method for fabricating thin-film transistor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60195977A (en) * 1984-03-16 1985-10-04 Fujitsu Ltd Manufacture of thin film transistor
JPS639156A (en) * 1986-06-30 1988-01-14 Canon Inc Manufacture of thin film transistor
US4859617A (en) * 1987-06-09 1989-08-22 Oki Electric Industry Co., Ltd. Thin-film transistor fabrication process
US4883766A (en) * 1987-11-14 1989-11-28 Ricoh Company, Ltd. Method of producing thin film transistor
US5879973A (en) * 1992-08-07 1999-03-09 Fujitsu Limited Method for fabricating thin-film transistor
US6338990B1 (en) 1992-08-07 2002-01-15 Fujitsu Limited Method for fabricating thin-film transistor

Similar Documents

Publication Publication Date Title
US4715930A (en) Process for producing by sloping etching a thin film transistor with a self-aligned gate with respect to the drain and source thereof
JPH0132672B2 (en)
WO2016201609A1 (en) Metal oxide thin-film transistor and display panel, and preparation methods for both
CN105655359A (en) Method for manufacturing TFT (thin-film transistor) substrates
CN108646487A (en) The production method and FFS type array substrates of FFS type array substrates
JPS6359266B2 (en)
JPS5927575A (en) Manufacture of self-alignment thin film transistor
TWI342071B (en)
JPH05304171A (en) Thin-film transistor
JPS58112365A (en) Manufacture of thin film transistor
JPH05160152A (en) Manufacture of film transistor
JPH02310932A (en) Manufacture of inverted stagger-type thin-film transistor
CN107316897A (en) The preparation method of display base plate, display device and display base plate
CN107910378A (en) LTPS thin film transistor (TFT)s, array base palte and preparation method thereof, display device
JPH0282578A (en) Manufacture of thin film transistor
JPH02192766A (en) Thin film semiconductor element
JPS60170261A (en) Constituting method of thin-film transistor
JPH11258630A (en) Manufacture of color liquid crystal display device
JPH09270404A (en) Treatment of substrate
JPS62200768A (en) Manufacture of thin film transistor
JPS5927576A (en) Manufacture of self-alignment thin film transistor
JPS59163868A (en) Manufacture of self-alignment type thin-film transistor
JPS5961964A (en) Manufacture of thin film transistor
JPH05291220A (en) Manufacture of semiconductor device
JPH05283693A (en) Manufacture of thin film transistor