[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5923819A - Cooling method of pipe material - Google Patents

Cooling method of pipe material

Info

Publication number
JPS5923819A
JPS5923819A JP13207582A JP13207582A JPS5923819A JP S5923819 A JPS5923819 A JP S5923819A JP 13207582 A JP13207582 A JP 13207582A JP 13207582 A JP13207582 A JP 13207582A JP S5923819 A JPS5923819 A JP S5923819A
Authority
JP
Japan
Prior art keywords
cooling
pipe material
tube
pipe
rolls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13207582A
Other languages
Japanese (ja)
Inventor
Sadao Hasuno
貞夫 蓮野
Kunihiko Kobayashi
邦彦 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP13207582A priority Critical patent/JPS5923819A/en
Publication of JPS5923819A publication Critical patent/JPS5923819A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To cool homogeneously and efficiently a pipe material without bending the same by holding the pipe material in a heted state with press rolls on driving rolls, and injecting cooling fluid from a nozzle group disposed in parallel with the pipe material while rotating the material at a prescribed speed or above. CONSTITUTION:A pipe material 11 which is kept heated to a high temp. is carried onto driving rolls 16 of a cooler 15 and is held while it is held pressed onto the rolls 16 by press rolls 17. The material 11 which is held as mentioned above is rotated by the rolls 16 at >=60 revolutions/min. rotating speed and is cooled from the outside by the cooling fluid injected from the cooling nozzles 19 of cooling headers 18. The uniform cooling in the axial and circumfeential directions of the material 11 is thus made possible. The required number of the headers 18 to be installed around the pipe 11 is decreased if the material 11 is revolved at a high speed.

Description

【発明の詳細な説明】 本発明は管材の冷却方法に係り、特に高温状態にある管
材を自然放冷と水焼入れとの中間の冷却速度で制御冷却
するに好適な管材の冷却方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of cooling a tube material, and more particularly to a method of cooling a tube material that is suitable for controlling and cooling a tube material in a high temperature state at a cooling rate intermediate between natural cooling and water quenching.

近時、石油、ガス声において使用される油井用鋼管を始
めとする各種管材においては、その高張力化により、そ
の造管後に焼入れ焼戻し、あるいは焼きならし等の熱処
理を必要とする比率が増加している。
Recently, due to the increase in the tensile strength of various types of pipe materials, including oil well steel pipes used in oil and gas production, the proportion of pipe materials that require heat treatment such as quenching and tempering or normalizing after pipe production has increased. are doing.

上配管劇の熱処理は古くから実用化されており、焼入れ
焼戻しに関しては近年特にその実施方法、装置について
多くの提案がなされ焼入れ焼戻し技術の向上が図られて
いる。
Heat treatment for upper pipes has been in practical use for a long time, and in recent years many proposals have been made regarding quenching and tempering methods and equipment, and efforts have been made to improve the quenching and tempering technology.

しかしながら、゛管湘の焼ならしに゛りいては、大気中
における自然放冷に頼るのみであり、旧態依然の状態で
ある。このように管材の焼ならしが多用されていない原
因は、管材を均一に制御冷却することが困110であり
、その結果材質不均一、不均一冷却に基づく曲がりの発
生等を引起こすことにある。
However, when it comes to normalizing in a tube, it only relies on natural cooling in the atmosphere, which remains the same as before. The reason why pipe material normalization is not used frequently is that it is difficult to uniformly control and cool the pipe material, which results in uneven material quality and the occurrence of bends due to uneven cooling. be.

特に、第1図に示すように加熱装置1において加熱され
た管月2を搬送ローラ3によって軸方向に搬送しつつ、
第2図に示すように、管材2の周凹を取巻く複数の冷却
ノズル4から冷却流体を噴射させる冷却装置5によって
、管月2を外面から冷却する方法においては、管材2の
軸方向への搬送と冷却ノズル4の位置関係とにより、管
材2の両端部のいずれかより管材2の内部に冷却流体の
侵入を生じ、管材2の端部における冷却速度がその中間
部における冷却速度に比して大となり、管材2の軸方向
において材質の不均一を生ずるとともにその端部に曲が
りを生じている。
In particular, as shown in FIG.
As shown in FIG. 2, in the method of cooling the tube 2 from the outside using a cooling device 5 that injects cooling fluid from a plurality of cooling nozzles 4 surrounding the circumferential concavity of the tube 2, the tube 2 is cooled in the axial direction. Due to the transport and the positional relationship of the cooling nozzle 4, the cooling fluid enters the inside of the tube material 2 from either of the ends of the tube material 2, and the cooling rate at the end of the tube material 2 is compared to the cooling rate at the intermediate portion. This results in non-uniformity of the material in the axial direction of the tube material 2 and bends in the ends thereof.

また、上記冷却装置5による場合には、管材20表面に
沿って流れる冷却流体が搬送ローラ3に衝突し、搬送ロ
ーラ3の後方においては、管材20周方向における冷却
がきわめて不均一となり、管材2の周方向において材質
の不均一を生ずる。
In addition, in the case of using the cooling device 5, the cooling fluid flowing along the surface of the tube material 20 collides with the conveyance roller 3, and behind the conveyance roller 3, cooling in the circumferential direction of the tube material 20 becomes extremely non-uniform. This causes non-uniformity of the material in the circumferential direction.

そこで上記冷却装置5において、管材2の周方向におけ
る材質の不均一を解消すべく、管材2をスキューローラ
で回転しつつその軸方向に搬送する方法が採用されてい
るが、その場合には、搬送速度の低下につれて回転速度
も低下し、20回転/分以上の回転速度を得ることが一
部の小径鋼管を除いて困難であり、周方向における十分
な均一冷却を達成することができない。また、冷却ノズ
ルの噴射方向を管軸に直交する面に対して平行とするこ
とにより、管材表面における冷却流体の流れを解消する
ことも可能であるが、その場合には、所要設備が大規模
となり、その実用化が困難である。
Therefore, in the cooling device 5, in order to eliminate the non-uniformity of the material in the circumferential direction of the tube material 2, a method is adopted in which the tube material 2 is conveyed in the axial direction while being rotated by a skew roller. As the conveyance speed decreases, the rotation speed also decreases, and it is difficult to obtain a rotation speed of 20 revolutions per minute or more except for some small diameter steel pipes, and it is impossible to achieve sufficient uniform cooling in the circumferential direction. It is also possible to eliminate the flow of cooling fluid on the surface of the pipe material by making the injection direction of the cooling nozzle parallel to the plane perpendicular to the pipe axis, but in that case, the required equipment would be large-scale. Therefore, it is difficult to put it into practical use.

なお、」;配冷却装置5は主として管材2の焼入れに利
用されており、」二記冷却装置5を制御冷却に適用する
場合には、限られた冷却帯の中で室温あるいは変態終了
温度等の所定温度に丑で比較的遅い冷却速度で上材2を
冷却する必要があるため、熱処理される管材2の搬送速
度を著しく低下させ、生産性を大きく阻害させてしまう
という問題点もある。
Note that the cooling distribution device 5 is mainly used for quenching the pipe material 2, and when the cooling device 5 described in “2” is applied to controlled cooling, the temperature at room temperature or the transformation end temperature, etc. is determined within a limited cooling zone. Since it is necessary to cool the upper material 2 to a predetermined temperature at a relatively slow cooling rate, there is also the problem that the transport speed of the tube material 2 to be heat treated is significantly reduced, which greatly impedes productivity.

本発明は、宵月を均質に、曲がりを生じさせることなく
、能率的に制御冷却可能とする管材の冷却方法を提供す
ることを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for cooling a pipe material that enables efficient and controlled cooling of a pipe material uniformly and without bending.

上記目的を達成するために、本発明は、加熱状態にある
管材を冷却流体の噴射下で冷却する宵月の冷却方法にお
いて、管材を押えロールによって駆動ロール上に保持す
るとともに駆動ロールの駆動によって60回回転外以上
の回転速j1(で回転させつつ、管材に平行配置した冷
却ノズル群から噴射する冷却流体によって冷却するよう
にしたものである。
In order to achieve the above object, the present invention provides a cooling method in which a heated pipe material is cooled by jetting a cooling fluid, in which the pipe material is held on a drive roll by a presser roll and is driven by the drive roll. The tube is rotated at a rotational speed j1 of 60 rotations or more and cooled by cooling fluid injected from a group of cooling nozzles arranged parallel to the tube.

以下、本発明の実施例を図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.

第3図は本発明の実施に用いられる装置の一例を示す正
面図である。加熱装置において高温度に再加熱され、ま
たは熱間圧延による高温加熱状態にある管材11は、搬
送ローラ12によって所定位置にまで搬送された後、送
り込みキツカー13の作動によって、搬送テーブル14
を経て、冷却装置15側に搬送されるようになっている
FIG. 3 is a front view showing an example of an apparatus used for carrying out the present invention. The pipe material 11 that has been reheated to a high temperature in the heating device or heated to a high temperature by hot rolling is transported to a predetermined position by the transport rollers 12, and then transferred to the transport table 14 by the operation of the feeder 13.
After that, it is transported to the cooling device 15 side.

冷却装置15は、管材11を支持可能とする−7;1の
駆動ロール16と、管材11を駆動ロール16上延保持
可能とする押えロール17とを備えている。すなわち、
押えロール17は、駆動ロール16上にある管材11に
対して昇降し、管材11に100ゆ以上1000kl?
以下の負荷を加える状態で、管材11を駆動ロール16
上に保持可能としている。また、駆動ロール16は、上
記押えロール17によって保持されている管材11を、
60回回転外以上の回転速度で回転可能としている。
The cooling device 15 includes a -7;1 drive roll 16 that can support the tube material 11, and a presser roll 17 that can hold the tube material 11 in an upwardly extending position on the drive roll 16. That is,
The presser roll 17 moves up and down with respect to the pipe material 11 on the drive roll 16, and applies a pressure of 100 to 1000 kl to the pipe material 11.
The pipe material 11 is moved to the driving roll 16 under the following load.
It can be held on top. Further, the drive roll 16 holds the pipe material 11 held by the presser roll 17.
It is possible to rotate at a rotation speed of 60 rotations or more.

また、駆動ロール16上にある管材11の周囲複数位置
(3位置)には、冷却ヘッダ18が管材11の長手方向
に平行配置されている。各冷却ヘッダ18には、冷却流
体を管材11の外面に向けて噴射可能とする多数の冷却
ノズル19を備えている。なお、第3図において、20
は冷却後の管材11を駆動ロール16上から蹴出し可能
とする蹴出し装置を示し、21は蹴出し装置20によっ
て蹴出された管材11を冷却装@15の外部に送り出し
可能とするチェーンコンベアを示している。
Furthermore, cooling headers 18 are arranged in parallel in the longitudinal direction of the tube 11 at a plurality of positions (three positions) around the tube 11 on the drive roll 16 . Each cooling header 18 is equipped with a number of cooling nozzles 19 that can inject cooling fluid toward the outer surface of the tube 11 . In addition, in Figure 3, 20
21 shows a kicking device that allows the tube material 11 after cooling to be kicked out from the drive roll 16, and 21 indicates a chain conveyor that allows the tube material 11 kicked out by the kicking device 20 to be sent out to the outside of the cooling device @15. It shows.

次K、上HIE実施例の作用について説明する。高温加
熱状態にある管材11は、冷却装置15の駆動ロール1
6上に搬入された後、押えロール11によって駆動ロー
ル16上に押えつけられる状態下で保持される。更に、
管材11は、−1−記保持状態下で駆動ロール16の駆
動によって60回回転外以上の回転速度で回転されると
ともに、冷却ヘッダ18の冷却ノズル19から噴射する
冷却流体に」二つてその外面から冷却される。
Next, the operation of the above HIE embodiment will be explained. The pipe material 11 in a high temperature heated state is heated by the driving roll 1 of the cooling device 15.
After being carried onto the drive roll 16, the drive roll 16 is held under pressure by the presser roll 11. Furthermore,
The tube material 11 is rotated at a rotational speed of 60 rotations or more by the driving of the drive roll 16 under the holding state described in -1-, and its outer surface is rotated by the cooling fluid injected from the cooling nozzle 19 of the cooling header 18 cooled from

なお、管材は一般にその表面におけるスケールの発生状
況や周方向の各位置における肉厚変動等により、冷却中
に曲がりな生ずるものであることから、上記実施例にお
けるような押えロール11を用いず、駆動ロール16に
よって回転を与える場合には、宵月11に継続した高速
回転を付与することが不可能である。すなわち、上記実
施例におけるように、駆動ロール16−ヒにある管材1
1に対する長手方向の複数位置に押えロール17を配t
Rし、その押えロール17による保持状態下で駆動ロー
ル16によって管材11に回転を与えることにより、冷
却中における管材110曲がり発生の有無によらず、管
材11を高速回転することが可能となる。ここで、押え
ロール17が管材11に与える押圧力が1. OOkg
未満である場合にしま管材110曲がり発生を防ぐこと
ができず、その押圧力が1.000 kgを超える場合
には管材に変形や疵を生ずることから、上記押圧力は1
00に、9以上1000kl?以下の範囲に設定するの
が良い。
In addition, since pipe materials generally bend during cooling due to the occurrence of scale on their surface and variations in wall thickness at various positions in the circumferential direction, the presser roll 11 as in the above embodiment is not used. When rotation is provided by the drive roll 16, it is impossible to provide continuous high-speed rotation to the evening moon 11. That is, as in the above embodiment, the tube 1 on the drive roll 16-H
1, presser rolls 17 are arranged at multiple positions in the longitudinal direction.
By applying rotation to the tube material 11 by the drive roll 16 while the tube material 11 is held by the presser roll 17, the tube material 11 can be rotated at high speed regardless of whether or not the tube material 110 bends during cooling. Here, the pressing force applied by the presser roll 17 to the tube material 11 is 1. OOkg
If the pressing force is less than 1.000 kg, bending of the striped pipe material 110 cannot be prevented, and if the pressing force exceeds 1.000 kg, deformation or flaws will occur in the pipe material.
00, 9 or more 1000kl? It is recommended to set it within the following range.

上記実施例によれば、管材11を軸方向に移動すること
なく高速回転し、管材11に平行配置υした多数の冷却
ノズル19から噴射する冷却流体によって宵月11を外
面から冷却するようにしたので、管材11を軸方向およ
び周方向において均一冷却することが可能となる。1だ
、宵月11を高速回転することにより、管材11の周囲
に設置する冷却ヘッダ18の必要設置本数な減少するこ
とが可能となる。なお、冷却ヘッダ18の設置本数、冷
却ノズル19からの噴射圧力を、管材11に与えるべき
冷却速IW、宵月11の外径、肉厚等の寸法、管制御の
拐質に応じて定められる冷却速度の時間的変化すなわち
冷却パターン等に応じて適宜選定することにより、幅広
い冷却速度で宵月11を制御冷却することが可能となる
According to the embodiment described above, the tube material 11 is rotated at high speed without moving in the axial direction, and the eugetsu 11 is cooled from the outer surface by cooling fluid injected from a large number of cooling nozzles 19 arranged parallel to the tube material 11. Therefore, it becomes possible to uniformly cool the tube material 11 in the axial direction and the circumferential direction. 1. By rotating the Yoigetsu 11 at high speed, it is possible to reduce the number of cooling headers 18 required to be installed around the pipe material 11. Note that the number of installed cooling headers 18 and the injection pressure from the cooling nozzles 19 are determined depending on the cooling speed IW to be applied to the pipe material 11, dimensions such as the outer diameter and wall thickness of the eugetsu 11, and the quality of pipe control. By appropriately selecting the cooling rate according to the temporal change in the cooling rate, that is, the cooling pattern, etc., it becomes possible to controllably cool the Yoizuki 11 at a wide range of cooling rates.

また、本発明に係る冷却方法がノ1:1用される管材1
1は、熱間圧延成形完了後の管制ばかりでなく熱間圧延
成形途上にある宵月に対しても適用可能である。捷だ、
本発明の実施に用いられる上記冷却装置15は、管材1
1に与える回転速度を高速化することによって、冷却ヘ
ッダ18の必要設置本数を減少することが可能となるこ
とから、装置内に焼入れにおけるような大きな冷却速度
を管材11に与えるための冷却流体供給ヘッダを上記冷
却ヘッダ18とともに並設することが0]能となる。
Moreover, the pipe material 1 to which the cooling method according to the present invention is applied 1:1
1 can be applied not only to control after hot rolling is completed, but also to Yozuki in the middle of hot rolling. It's Kade.
The cooling device 15 used in the implementation of the present invention includes a pipe material 1
1, it is possible to reduce the number of cooling headers 18 required to be installed. Therefore, it is possible to supply cooling fluid to provide a large cooling speed to the pipe material 11, such as in quenching, within the device. It becomes possible to arrange the header in parallel with the cooling header 18.

すなわち、上記実施例における冷却装置15内を予め冷
却流体で充満し、必要に応じて管制11の内面に冷却流
体を噴射可能とする内面冷却ヘッダを備え付けることに
より、上記冷却装置15を管材11の焼入れにも使用す
ることが可能となる。
That is, by filling the inside of the cooling device 15 in the above embodiment with cooling fluid in advance and installing an inner surface cooling header that can inject the cooling fluid onto the inner surface of the pipe material 11 as necessary, the cooling device 15 can be used to cool the pipe material 11. It can also be used for hardening.

以下、本発明の具体的実施結果について説明する。この
具体的実施結果における第1例ないし第7例は、C0,
15%、 Si 0.20% 、 Mn 1.30チを
有し、外径139.7n+n+、肉厚10.54mmの
炭素鋼管を、920℃に再加熱した後、それぞれ冷却し
たものである。ここで、第1例ないし第4例は、第3図
の装置を用いて管材に300 Kfの押圧力を付与し、
管材を高速回転した本発明方法に係るものであり、第5
例および第6例は、第3図の装@、を用いて管材を低速
回転した比較法に係るものであり、第7例は第1図およ
び第2図に示した装置を用いた従来法に係るものである
Hereinafter, specific implementation results of the present invention will be explained. The first to seventh examples in this specific implementation result are C0,
15%, Si 0.20%, Mn 1.30%, an outer diameter of 139.7n+n+, and a wall thickness of 10.54mm, which were reheated to 920°C and then cooled. Here, in the first to fourth examples, a pressing force of 300 Kf was applied to the pipe material using the apparatus shown in FIG.
This relates to the method of the present invention in which the pipe material is rotated at high speed, and the fifth
Examples and 6th example relate to a comparative method in which the tube material was rotated at low speed using the apparatus shown in Fig. 3, and Example 7 relates to a conventional method using the apparatus shown in Fig. This is related to.

105 −に記第1例ないし第7例における各冷却条件、冷却さ
れた管材の周方向8ケ所において測定された内表面1絹
位置でのビッカースかたさ、および冷却による曲がり量
を示せば表1の通りとなる。
Table 1 shows the respective cooling conditions in Examples 1 to 7 described in 105-, the Vickers hardness at the inner surface 1 silk position measured at 8 points in the circumferential direction of the cooled pipe material, and the amount of bending due to cooling. It becomes a street.

この表1が示すように、本発明法によれば、かたさの標
準偏差が小さい、すなわち周方向に均一な材質を得るこ
とができ、その曲がしは1?71につき1」以下なる極
めて良好な状態となる。他方、第3図に示した装置を用
いても管材に与える回転速度が60回回転外以下である
比較法による場合には、周方向での材質不均一をもたら
し、曲がりの発生も大となる。また、従来法による場合
には管Hの周方向に多数のノズルが配置され、ノズルか
らの冷却流体が直接噴射される管材表面の冷却は均一に
なることが考えられるにもかかわらず、搬送ローラと冷
却流体との干渉並びに回転速度が小さいことによる材質
の不均一が非常に大きく、曲がりの発生も大となること
が認められる。
As shown in Table 1, according to the method of the present invention, a material with a small standard deviation of hardness, that is, uniform in the circumferential direction, can be obtained, and the bending is less than 1" per 1-71, which is extremely good. It becomes a state. On the other hand, even if the device shown in Fig. 3 is used, if the comparative method is used in which the rotational speed applied to the pipe material is less than 60 rotations, the material will be non-uniform in the circumferential direction and bending will occur more frequently. . In addition, in the case of the conventional method, a large number of nozzles are arranged in the circumferential direction of the pipe H, and although it is thought that cooling of the pipe material surface to which the cooling fluid from the nozzles is directly injected is uniform, the conveyance roller It is recognized that the non-uniformity of the material due to the interference with the cooling fluid and the low rotational speed is very large, and the occurrence of bending is also large.

また、具体的実施結果における第8例ないし第12例は
、外径60.3F1ms肉厚4.83mmに熱間圧延成
形された宵月を、その圧延陵に自然放冷することなく、
それぞれ冷却したものである。ここで、第8例ないし第
10例は、第3ド1の装置rtを用いて宵月に200k
gの押圧力を付与し、管材な、−ζ1速回転した本発明
法に係るものであり、i4s 11例は、第:3図の装
置を用いて管材に低速回転を7jえた比較法に係るもの
であり、第12例はl’j”r 1し1および第2図に
示した装置を用いた従来法に係るものである。
In addition, in the 8th to 12th examples in the concrete implementation results, the Yogetsu hot-rolled to have an outer diameter of 60.3 F1 ms and a wall thickness of 4.83 mm was not allowed to cool naturally on its rolled surface.
Each was cooled. Here, in the 8th to 10th examples, 200 k
The 11th example relates to the method of the present invention in which a pressing force of g is applied and the tube material is rotated at -ζ 1 speed, and the 11th example relates to a comparative method in which the tube material is rotated at a low speed of 7j using the apparatus shown in Figure 3. The twelfth example relates to a conventional method using l'j''r 1 and the apparatus shown in FIG.

上記第8例ないし第12例における各冷却条件、冷却さ
れた管材の周方向8ケ所において測定された内表面I 
111位置でのピンカースがださ、および冷却による曲
がり険を示せば表2の通りとなる。
Each cooling condition in the above-mentioned 8th to 12th examples, the inner surface I measured at 8 points in the circumferential direction of the cooled pipe material
Table 2 shows the pincushion at the 111 position and the steepness of the curve due to cooling.

この表2が示すように、管材の熱間圧延後に直ちに冷却
を行なう場合においても、前記再加熱後の冷却における
と同様に、管材に60回回転外以上の回転速度を与えつ
つ冷却する本発明法による場合にのみ、管材周方向位置
での均一な材質、良好な真直度を得ることが可能となる
。なお、本発明法の実施に当り、管材表面のスケールを
除去すれば、管材を更に均一に冷却することが可能とな
る。
As shown in Table 2, even when the tube material is cooled immediately after hot rolling, the present invention cools the tube material while giving it a rotational speed of 60 rotations or more, as in the case of cooling after reheating. Only by using this method, it is possible to obtain uniform material quality and good straightness in the circumferential position of the pipe material. In carrying out the method of the present invention, if scale on the surface of the tube is removed, it becomes possible to cool the tube more uniformly.

以上のように、本発明に係る管材の冷却方法は、管材を
押えロールによって駆動ロール上に保持するとともに、
駆動ロールの駆動によって60回回転外以上の回転速度
で回転させつつ、管材に平行配置した冷却ノズル群から
噴射する冷却流体によって冷却するようにしたので、管
材を均質に、曲がシを生じさせることなく、能率的に制
御冷却することが可能となる。
As described above, the method for cooling a pipe material according to the present invention includes holding the pipe material on the drive roll with the presser roll, and
The tube is rotated at a rotation speed of 60 rotations or more by driving the drive roll, and cooled by cooling fluid jetted from a group of cooling nozzles arranged parallel to the tube, so that the tube is uniform and does not bend. This makes it possible to efficiently control cooling without any problems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例に係る管材の冷却方法に用いられる装置
を示す側面図、第2図は第1図の■−■線に沿う断面図
、第3図は本発明に係る管材の冷却方法の実施に用いら
れる装置の一例を示す断面図である。 11・・・管材、15・・・冷却装置、16・・・駆動
o −ル、17・・・押工ロール、18・・・冷却ヘッ
ダ、19・・・冷却ノズル。 代理人 弁理士 塩 川 修 治
FIG. 1 is a side view showing a device used in a conventional method for cooling pipe materials, FIG. 2 is a sectional view taken along the line ■-■ in FIG. 1, and FIG. 3 is a method for cooling pipe materials according to the present invention. 1 is a cross-sectional view showing an example of an apparatus used for carrying out. DESCRIPTION OF SYMBOLS 11... Tube material, 15... Cooling device, 16... Drive roller, 17... Embossing roll, 18... Cooling header, 19... Cooling nozzle. Agent Patent Attorney Osamu Shiokawa

Claims (1)

【特許請求の範囲】[Claims] (1)加熱状態にある管材を冷却流体の噴射下で冷却す
る管材の冷却方法において、管材を押えロールによって
駆動ロール上に保持するとともに、駆動ロールの駆動に
よって60回転/分以上の回とを特徴とする管材の冷却
方法。
(1) In a tube cooling method in which a heated tube is cooled by jetting a cooling fluid, the tube is held on a drive roll by a presser roll, and the drive roll is driven to rotate the tube at 60 revolutions per minute or more. Characteristic cooling method for pipe materials.
JP13207582A 1982-07-30 1982-07-30 Cooling method of pipe material Pending JPS5923819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13207582A JPS5923819A (en) 1982-07-30 1982-07-30 Cooling method of pipe material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13207582A JPS5923819A (en) 1982-07-30 1982-07-30 Cooling method of pipe material

Publications (1)

Publication Number Publication Date
JPS5923819A true JPS5923819A (en) 1984-02-07

Family

ID=15072923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13207582A Pending JPS5923819A (en) 1982-07-30 1982-07-30 Cooling method of pipe material

Country Status (1)

Country Link
JP (1) JPS5923819A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985003726A1 (en) * 1984-02-17 1985-08-29 Kawasaki Steel Corporation Apparatus for dip-hardening metal pipe
JPS63146672U (en) * 1987-03-17 1988-09-27
WO2019123945A1 (en) * 2017-12-19 2019-06-27 Jfeスチール株式会社 Method for cooling steel pipe, device for cooling steel pipe, and method for producing steel pipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985003726A1 (en) * 1984-02-17 1985-08-29 Kawasaki Steel Corporation Apparatus for dip-hardening metal pipe
JPS63146672U (en) * 1987-03-17 1988-09-27
WO2019123945A1 (en) * 2017-12-19 2019-06-27 Jfeスチール株式会社 Method for cooling steel pipe, device for cooling steel pipe, and method for producing steel pipe
US11441203B2 (en) 2017-12-19 2022-09-13 Jfe Steel Corporation Method for quenching steel pipe, equipment for quenching steel pipe, and method for manufacturing steel pipe

Similar Documents

Publication Publication Date Title
US4168993A (en) Process and apparatus for sequentially forming and treating steel rod
US20100218580A1 (en) Method for three-dimensionally bending workpiece and bent product
US4527408A (en) Method and Apparatus for cooling and handling hot rolled steel rod in direct sequence with a high speed rolling operation
US4448401A (en) Apparatus for combined hot rolling and treating steel rod
JPS5923819A (en) Cooling method of pipe material
US4504042A (en) Apparatus for heat treating steel
US4461462A (en) Apparatus for cooling steel pipe
EP3255160B1 (en) Steel pipe quenching method, steel pipe quenching apparatus, steel pipe production method, and steel pipe production equipment
TW201718879A (en) Method of heat treatment for metal
JPS6164817A (en) Manufacture of hollow stabilizer using electric welded pipe
EP0086408B1 (en) Method and apparatus for heat treating steel
US4546957A (en) Apparatus for combined hot rolling and treating steel rod
JPS60245719A (en) Method and device for cooling long-sized steel material having circular section
JP2541213B2 (en) Shaped steel manufacturing equipment
JPH07224326A (en) Water cooling method and device after heat treatment of stainless channel steel
JPS5976615A (en) Method and device for descaling steel material in low pressure
CN220837300U (en) Online heat treatment straightener of square rectangular pipe
CN107214202B (en) Control cooling device and process for rolled angle steel
JPH0247289B2 (en) KINZOKUKANNOMAGEKAKOKENNETSUSHORIHOHOOYOBISOCHI
JPS5923820A (en) Heat treatment of steel pipe
JP3368856B2 (en) Angle iron cooling equipment
JPS62161918A (en) Heat treatment line for steel pipe
JPS6013411B2 (en) Steel manufacturing equipment row and how to operate the equipment row
JPS5819154Y2 (en) Heat treatment equipment for metal straight pipes
CN117399464A (en) Square and rectangular pipe online heat treatment straightening device and method thereof