[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5923797B2 - Separation and recovery method for nucleic acid-related substances and vitamins - Google Patents

Separation and recovery method for nucleic acid-related substances and vitamins

Info

Publication number
JPS5923797B2
JPS5923797B2 JP1345377A JP1345377A JPS5923797B2 JP S5923797 B2 JPS5923797 B2 JP S5923797B2 JP 1345377 A JP1345377 A JP 1345377A JP 1345377 A JP1345377 A JP 1345377A JP S5923797 B2 JPS5923797 B2 JP S5923797B2
Authority
JP
Japan
Prior art keywords
nucleic acid
solution
acid
aqueous solution
vitamin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1345377A
Other languages
Japanese (ja)
Other versions
JPS5399396A (en
Inventor
「こう」二 戸井
敏男 高橋
洋子 竹下
貢 山田
里次 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP1345377A priority Critical patent/JPS5923797B2/en
Publication of JPS5399396A publication Critical patent/JPS5399396A/en
Publication of JPS5923797B2 publication Critical patent/JPS5923797B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Description

【発明の詳細な説明】 核酸関連物質およびビタミンは発酵法、酵素分解法、抽
出法、合成法等様々の方法で生産されているか、その共
通の特徴は、発酵液、酵素分解液等の原料液の目的物質
純度か低いということである。
[Detailed Description of the Invention] Nucleic acid-related substances and vitamins are produced by various methods such as fermentation, enzymatic degradation, extraction, and synthesis. This means that the purity of the target substance in the liquid is low.

その結果、分離、精製工程か煩雑になり、かつ分離、精
製収率か低いという問題点かあった。
As a result, there were problems in that the separation and purification steps became complicated and the separation and purification yields were low.

本発明の方法は、このような原料液から、あるいは原料
液から目的物質を分離した廃液から、核酸関連物質およ
びビタミンを効率よく分離回収することか出来るもので
ある。
The method of the present invention makes it possible to efficiently separate and recover nucleic acid-related substances and vitamins from such raw material liquids or from waste liquids from which target substances have been separated from raw material liquids.

本発明の原理は、アミノ酸の分離に関して、J、 Am
er、 Chem、 Soc、 、 Vol 95 、
p6108−6110(1973)に開示されたも
のを応用したものである。
The principles of the invention are based on the separation of amino acids, J. Am.
er, Chem, Soc, , Vol 95,
This is an application of what was disclosed in p.6108-6110 (1973).

1本発明者らは、その原理を核酸関連物質、ビタミンを
含有する水溶液から核酸関連物質、ビタミンを分離・精
製することに適用することについて研究を重ねた結果、
核酸関連物質およびビタミンが容易に分離回収され、し
かも精製効果か大きいことを見出したものである。
1. As a result of repeated research on applying this principle to the separation and purification of nucleic acid-related substances and vitamins from an aqueous solution containing them, the present inventors found that
It was discovered that nucleic acid-related substances and vitamins can be easily separated and recovered, and that the purification effect is large.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

核酸関連物質とは、ヒポキサンチン、グアニア、アデニ
ン、シトシン、ウラシル等のプリン、ピリミジン類、イ
ノシン、グアノシン、シチジン、ウリジン等のヌクレオ
シド類、51−イノシン酸、51−グアニル酸、51−
シチジル酸等のヌクレオタイド類、5−アミノ−4−イ
ミダゾールカルボキサミドの如きプリン生合成前、駆物
質、NAD。
Nucleic acid-related substances include purines such as hypoxanthine, guania, adenine, cytosine, and uracil, pyrimidines, nucleosides such as inosine, guanosine, cytidine, and uridine, 51-inosinic acid, 51-guanylic acid, 51-
Nucleotides such as cytidylic acid, precursor substances for purine biosynthesis such as 5-amino-4-imidazole carboxamide, and NAD.

NADP、FMN、CoA、、TPP、CDP−コリン
等の補酵素類をいい、ビタミンとはVA、 VBl、v
B2、VB6、ニコチン酸、葉酸等をいう。
It refers to coenzymes such as NADP, FMN, CoA, TPP, and CDP-choline, and vitamins include VA, VBl, and v
B2, VB6, nicotinic acid, folic acid, etc.

核酸関連物質又はビタミンを含有する水溶液とは、例え
ば、これらの核酸関連物質、ビタミンの製造を目的とし
て得られた発酵液、酵素分解液、抽出液、反応液等の原
料液およびそこから目的物質を取得する各種中間工程液
、廃液の如きものである。
Aqueous solutions containing nucleic acid-related substances or vitamins include, for example, raw material liquids such as fermentation liquids, enzymatic decomposition liquids, extract liquids, and reaction liquids obtained for the purpose of producing these nucleic acid-related substances and vitamins, and target substances derived therefrom. These include various intermediate process liquids and waste liquids used to obtain

このような核酸関連物質又はビタミンを含有すろ水溶液
に、運搬体の種類に応じて酸またはアルカリを加えて適
当な酸性またはアルカリ性にする。
Depending on the type of carrier, an acid or alkali is added to the filtered aqueous solution containing the nucleic acid-related substance or vitamin to make it appropriately acidic or alkaline.

酸は塩酸など、そしてアルカリは苛性ソーダ、苛性カリ
など普通のものを用いればよい。
The acid may be hydrochloric acid, and the alkali may be a common one such as caustic soda or caustic potash.

濃度は0.05〜2規定ぐらいでよい場合が多い。In many cases, the concentration may be about 0.05 to 2N.

運搬体は複数の長鎖アルキル基を有する4級アンモニウ
ム塩または芳香族スルホン酸及びその塩であって、ミセ
ル形成能の小さいものである。
The carrier is a quaternary ammonium salt having a plurality of long-chain alkyl groups or an aromatic sulfonic acid and its salt, and has a low ability to form micelles.

R:C,〜C18のアルキル基 R1:メチルまたはベンジル X−:ハロゲン、硫酸、硝酸、アニオン R:C,〜C]8のアルキル基 B+:アルカリ金属カチオン、アンモニウムカチオン水
不溶性有機溶媒とは、ベンゼン、トルエン、キシレン等
の芳香族炭化水素、エチレンジクロリド、クロロホルム
等の塩素系炭化水素、ヘキサン等の脂肪族炭化水素、ト
リブチルホスフェート等の燐酸エステル等である。
R: Alkyl group of C, ~C18 R1: Methyl or benzyl These include aromatic hydrocarbons such as benzene, toluene, and xylene, chlorinated hydrocarbons such as ethylene dichloride and chloroform, aliphatic hydrocarbons such as hexane, and phosphoric acid esters such as tributyl phosphate.

運搬体の濃度は0.05〜1.0M程度でよい。The concentration of the carrier may be about 0.05 to 1.0M.

受容体水溶液には酸またはアルカリを用いる。An acid or alkali is used for the receptor aqueous solution.

酸は0.05〜2規定程度の塩酸、硫酸等を、アルカリ
は0.05〜2規定程度の苛性ソーダ、苛性カリを用い
ればよい。
As the acid, hydrochloric acid, sulfuric acid, etc. of about 0.05 to 2N may be used, and as the alkali, caustic soda or caustic potash of about 0.05 to 2N may be used.

核酸関連物質又はビタミンの分離操作は次のように行う
Separation of nucleic acid-related substances or vitamins is performed as follows.

まず装置は核酸関連物質又はビタミンを含有する水溶液
および運搬体を入れた槽1と受容体水溶液および運搬体
を入れた槽2を有し、かつ両槽の運搬体溶液かたかいに
連絡されうるようになっているものを用いる。
First, the device has a tank 1 containing an aqueous solution containing a nucleic acid-related substance or vitamin and a carrier, and a tank 2 containing an aqueous receptor solution and a carrier, and is designed to be able to communicate with the carrier solution in both tanks. Use the one that is .

装置の数例の概略図を第1図〜第4図に示す。Schematic diagrams of several examples of devices are shown in FIGS. 1-4.

図中、Aは核酸関連物質又はビタミンを含有する水溶液
、Bは運搬体溶液、そしてCは受容体水溶液をそれぞれ
示す。
In the figure, A represents an aqueous solution containing a nucleic acid-related substance or vitamin, B represents a carrier solution, and C represents an aqueous receptor solution.

分離速度を高めるために各液を循環させることが好まし
い。
It is preferable to circulate each liquid in order to increase the separation rate.

分離時間は接触面積、温度、液の循環速度等によって異
なるか、通常数時間ないし数十時間で大部分の核酸関連
物質およびビタミンか分離出来る。
The separation time varies depending on the contact area, temperature, liquid circulation rate, etc., but most nucleic acid-related substances and vitamins can usually be separated in several hours to several tens of hours.

核酸関連物質ビタミンを受容体水溶液に移動させて得ら
れた核酸関連物質、ビタミンの分離液(以下、分離液と
いう)から目的物質を取得するには、分離液をpH調整
、濃縮、冷却、脱色等公知の手段を適宜組合せて行えば
よい。
In order to obtain the target substance from the nucleic acid-related substance/vitamin separation liquid (hereinafter referred to as separated liquid) obtained by transferring the nucleic acid-related substance/vitamin to the receptor aqueous solution, the separated liquid must be pH adjusted, concentrated, cooled, and decolorized. This may be done by appropriately combining known means such as the following.

廃液から回収する場合には、通常廃液には多種の核酸関
連物質、ビタミンが含まれているが、移動速度の差を利
用して個々のものを分別回収することが出来る場合があ
る。
When recovering from waste liquid, the waste liquid usually contains a wide variety of nucleic acid-related substances and vitamins, but it is sometimes possible to separate and recover individual substances by taking advantage of differences in movement speed.

また分離液に公知の分別手段を適用してもよい。Further, known separation means may be applied to the separated liquid.

酵素反応、合成反応等により目的物質を生成させる場合
には、未反応物、中間反応物は、それぞれの工程に循環
できることはいうまでもない。
It goes without saying that when a target substance is produced by an enzymatic reaction, a synthetic reaction, etc., unreacted substances and intermediate reactants can be recycled to each process.

本発明の方法においては、核酸関連物質の種類により移
動速度がかなり異なる。
In the method of the present invention, the migration speed varies considerably depending on the type of nucleic acid-related substance.

一般にプリン、ピリミジンの移動速度がきわめて速く、
ヌクレオシド類がこれに続き、ヌクレオタイド類の移動
速度か比較的遅い。
In general, the movement speed of purines and pyrimidines is extremely fast;
This is followed by nucleotides, whose migration speed is relatively slow.

従って、これらの相互分離か可能である。Therefore, their mutual separation is possible.

各成分とも約3mmol/dlとなるように1規定Na
OHに溶解して得られた三つの混合溶液、すなわちグア
ニン、グアノシンおよび51−グアニル酸の混合溶液、
ヒポキサンチン、イノシンおよび51−イノシン酸の混
合溶液、ならびにシトシン、シチジンおよび51−シチ
ジル酸の混合溶液について移動速度を測定した結果を第
5図〜第7図に示す。
1N Na so that each component is about 3 mmol/dl
Three mixed solutions obtained by dissolving in OH, namely a mixed solution of guanine, guanosine and 51-guanylic acid,
The results of measuring the migration speed of a mixed solution of hypoxanthine, inosine, and 51-inosinic acid, and a mixed solution of cytosine, cytidine, and 51-cytidylic acid are shown in FIGS. 5 to 7.

用いた混合溶液はいずれも750m1で、受容体水溶液
には1規定塩酸750 ru4そして運搬体溶液には0
.1 M トリノルマルオクチルメチルアンモニウムク
ロライド トルエン溶液211を用いた。
The volume of the mixed solution used was 750 ml, 750 ru4 of 1N hydrochloric acid for the receptor aqueous solution and 0.0 ml of 1N hydrochloric acid for the carrier solution.
.. 1 M trinormal octylmethylammonium chloride toluene solution 211 was used.

装置は第2図に示すもので、カラムの大きさは5X10
0crnである。
The apparatus is shown in Figure 2, and the column size is 5 x 10.
It is 0crn.

第5図はグアニン等の混合溶液、第6図はヒポキサンチ
ン等の混合溶液、そして第7図はシトシン等の混合溶液
を用いたものである。
FIG. 5 shows a mixed solution of guanine, etc., FIG. 6 shows a mixed solution of hypoxanthine, etc., and FIG. 7 uses a mixed solution of cytosine, etc.

各図とも縦軸は混合溶液および受容体水溶液中の各成分
の濃度を示し、横軸は循環時間を示している。
In each figure, the vertical axis shows the concentration of each component in the mixed solution and receptor aqueous solution, and the horizontal axis shows the circulation time.

次に、混合溶液の溶媒に1規定塩酸を用い、受容体水溶
液に1規定NaOHを用いた結果を、第8図および第9
図に示す。
Next, the results of using 1N hydrochloric acid as the solvent of the mixed solution and 1N NaOH as the receptor aqueous solution are shown in Figures 8 and 9.
As shown in the figure.

第8図の混合溶液はグアニン、グアノシン、51〜グア
ニル酸を各成分共約2mmol/dl含有するものであ
り、第9図の混合溶液はセポキサンチン、イノシン、5
1−イノシン酸を各成分共3mmol/cU含有するも
のである。
The mixed solution shown in FIG. 8 contains guanine, guanosine, and 51-guanylic acid, each containing about 2 mmol/dl, and the mixed solution shown in FIG.
Each component contains 3 mmol/cU of 1-inosinic acid.

運搬体溶液はいずれも0.1 Mジノニルナフタレンス
ルホン酸ソーダ トルエン溶液であり、その他について
は第5図〜第7図の場合と同じである。
The carrier solution was a 0.1 M sodium dinonylnaphthalene sulfonate toluene solution, and the other details were the same as those shown in FIGS. 5 to 7.

この移動速度のちがいによる核酸関連物質の相互分離は
、特にグアノシンの燐酸化によって、51−イノシン酸
を製造する工程の中で、未反応グアノシンを分離回収す
る手段として、又、イノシンの燐酸化に、よって51−
イノシン酸を製造する工程の中で、未反応のイノシンを
分離回収する手段として有効である。
The mutual separation of nucleic acid-related substances due to the difference in migration speed is particularly useful as a means of separating and recovering unreacted guanosine during the process of producing 51-inosinic acid by phosphorylating guanosine. , therefore 51-
It is effective as a means for separating and recovering unreacted inosine during the process of producing inosinic acid.

実施例 1 イノシン生産能を有するバチルス ズブチリスを培養し
て得たイノシン発酵液から遠心分離により菌体を除いた
液11(イノシン30g/l含有)に、40gの水酸化
ナトリウムを加えてイノシン原液とした。
Example 1 40 g of sodium hydroxide was added to liquid 11 (containing 30 g/l inosine) obtained by removing bacterial cells by centrifugation from the inosine fermentation liquid obtained by culturing Bacillus subtilis having the ability to produce inosine, and making it into an inosine stock solution. did.

運搬体溶液としてトリノルマルオクチルメチルアンモニ
ウムクロリドの0.1 M )ルエン溶液21そして受
容体水溶液としてIN塩酸水溶液11を調製し、第2図
に示す装置に充填した。
A 0.1 M) toluene solution 21 of trin-octylmethylammonium chloride as a carrier solution and an IN hydrochloric acid aqueous solution 11 as an aqueous receptor solution were prepared and filled into the apparatus shown in FIG. 2.

即ちAにイノシン原液、CにIN塩酸、Bに0.1Mト
リノルマルオクチルメチルアンモニウム トルエン溶液
を用いた。
That is, inosine stock solution was used as A, IN hydrochloric acid was used as C, and 0.1M tri-normal octylmethylammonium toluene solution was used as B.

その後ポンプによりトルエン層をイノシン原液、IN塩
酸の順に接触循環させた。
Thereafter, the toluene layer was contacted with and circulated in the order of inosine stock solution and IN hydrochloric acid using a pump.

ポンプの流量は100 ml!/ minであった。1
5時間後Cのイノシン濃度は27.Of!/lであった
The flow rate of the pump is 100ml! / min. 1
After 5 hours, the inosine concentration at C was 27. Of! /l.

、これによりイノシン原液から90係の収率でイノシン
が分離された。
As a result, inosine was separated from the inosine stock solution at a yield of 90%.

得られた分離液を濃縮後中和冷却し、更にメタノールを
加えてイノシン結晶(純度99.5%)22gを得た。
The obtained separated liquid was concentrated, neutralized and cooled, and methanol was further added to obtain 22 g of inosine crystals (purity 99.5%).

実施例 2 イノシン生産能を有するバチルス ズブチリスを培養し
て得たイノシン発酵液を遠心分離により菌体を除いた液
11に濃塩酸85r/llを加えてイノシン原液とした
Example 2 An inosine fermentation solution obtained by culturing Bacillus subtilis having the ability to produce inosine was centrifuged to remove bacterial cells, and 85 r/l of concentrated hydrochloric acid was added to solution 11 to obtain an inosine stock solution.

ジノニルナフタレンスルホン酸ナトリウムの0.1 M
トルエン溶液21およびIN水酸化ナトリウム溶液1
1を調製した。
0.1 M of sodium dinonylnaphthalene sulfonate
Toluene solution 21 and IN sodium hydroxide solution 1
1 was prepared.

実施例1と同様に第2図に示す装置を用い、イノシン原
液をA、IN水酸化ナトIJウム溶液をC1そしてトル
エン溶液をBとして用いた。
As in Example 1, the apparatus shown in FIG. 2 was used, and the inosine stock solution was used as A, the IN sodium hydroxide solution as C1, and the toluene solution as B.

100 TLl/ minの速度にてポンプによりトル
エン溶液を循環させた。
The toluene solution was circulated by a pump at a rate of 100 TLl/min.

15時間後Cのイノシン濃度は21i/lとなった。After 15 hours, the inosine concentration in C was 21 i/l.

従ってイノシン原液から70係の収率にてイノシンを分
離できたことになる。
Therefore, inosine could be separated from the inosine stock solution at a yield of 70%.

実施例 3 オロチン酸生産能を有するコリネバクテリウムグルタミ
クムを培養して得られたオロチン酸発酵液を遠心分離に
より除菌し、除菌液(オロチン酸5g/it’)111
に40gの水酸化ナトリウムを加えてオロチン酸原液と
した。
Example 3 The orotic acid fermentation liquid obtained by culturing Corynebacterium glutamicum having the ability to produce orotic acid was sterilized by centrifugation, and the sterilizing liquid (orotic acid 5 g/it') 111
40 g of sodium hydroxide was added to prepare an orotic acid stock solution.

またトリノルマルオクチルメチルアンモニウムクロリド
の0.1 M l−ルエン溶液21、IN塩酸11を調
製した。
In addition, 0.1 M l-luene solution 21 of tri-n-octylmethylammonium chloride and IN hydrochloric acid 11 were prepared.

これらを第2図に示す装置に実施例1と同様に充填し、
ポンプによりトルエン溶液を循環させた。
These were filled into the apparatus shown in FIG. 2 in the same manner as in Example 1, and
A pump circulated the toluene solution.

12時間後、Cの全オロチン酸量は4.6gであった。After 12 hours, the total amount of orotic acid in C was 4.6 g.

オロチン酸原液中のオロチン酸は92チが分離されたこ
とになる。
This means that 92 orotic acids in the orotic acid stock solution were separated.

実施例 4 5−アミノ−4−イミダゾールカルボキサミドリボシド
(AICA r )生産能を有するバチルスメガテリ
ウムを培養してAICA−R発酵液(AI CA−r
2.2 g/rU )を得た。
Example 4 Bacillus megaterium having the ability to produce 5-amino-4-imidazolecarboxamide riboside (AICA r ) was cultivated to produce AICA-R fermentation broth (AICA-r
2.2 g/rU) was obtained.

次にAICA−rヌクレオシダーゼ生産能を有するバチ
ルス チアミノリチカスを培養してAICA rヌク
レオシダーゼ活性を有する発酵液を得た。
Next, Bacillus thiaminolyticus having the ability to produce AICA-r nucleosidase was cultured to obtain a fermentation liquid having AICA r nucleosidase activity.

AICA−R発酵液10部(容量)に対し、AICA−
RIJポジダーゼ発酵液1部を混合し、45℃にて48
時間反応させた。
For 10 parts (volume) of AICA-R fermentation liquid,
Mix 1 part of RIJ posidase fermentation liquid and incubate at 45℃ for 48 hours.
Allowed time to react.

本反応液を遠心分離により除菌した液11(5−アミノ
−4−イミダゾールカルボキサミド(AICA)10
g//l含有)に水酸化ナトリウム4.0gを加えAI
CA原液とした。
This reaction solution was sterilized by centrifugation. Solution 11 (5-amino-4-imidazolecarboxamide (AICA) 10
g//l) and add 4.0 g of sodium hydroxide to the AI
It was used as a CA stock solution.

0、1 M−)リノネマルオクチルメチルアンモニウム
クロリド トルエン溶液21および0.IN塩酸11を
第2図に示す装置に実施例1と同様に充填した。
0,1 M-) linonemaroctylmethylammonium chloride toluene solution 21 and 0. IN hydrochloric acid 11 was charged into the apparatus shown in FIG. 2 in the same manner as in Example 1.

ポンプにてトルエン溶液を循環させた。16時間後Cの
AICA濃度は9.0g/11であった。
The toluene solution was circulated using a pump. After 16 hours, the AICA concentration of C was 9.0 g/11.

分離収率は90%。The separation yield was 90%.

得られたAICA分離液を濃縮後中和冷却し、純度99
チのAICA結晶7.9gを得た。
The obtained AICA separated liquid was concentrated, neutralized, and cooled to a purity of 99.
7.9 g of AICA crystals were obtained.

AICA原液中AICA−rはAICAに対し12係存
在したか、得られたAICA分離液中のAICA−rは
AICAに対し0.5%と大巾に低下した。
AICA-r in the AICA stock solution was present at a ratio of 12% to AICA, or AICA-r in the obtained AICA separated solution was significantly reduced to 0.5% relative to AICA.

実施例 5 アンゲストマイシンAおよびC生産能を有するストレプ
トミセスヒグロスコピクスを培養し、アンゲストマイシ
ンA、Cを含有する発酵液を得た。
Example 5 Streptomyces hygroscopicus having the ability to produce angestomycin A and C was cultured to obtain a fermentation solution containing angestomycin A and C.

ろ過により除菌した液11(アングストマイシンA ;
112m9/l、同C;89mp/A含有)に水酸化
ナトリウム20gを加えてアンゲストマイシン原液とし
た。
Liquid sterilized by filtration 11 (Angstomycin A;
112 m9/l, same C; 89 mp/A) was added with 20 g of sodium hydroxide to prepare an angestomycin stock solution.

実施例1と内機にして第2図の装置に0.1MトIJノ
ルマルオクチルメチルアンモニウムクロリド トルエン
溶液2A!、IN塩酸11と共に充填しポンプにてトル
エン溶液を循環した。
Using Example 1 as the internal unit, and adding 2A of 0.1M toluene solution of normal octylmethylammonium chloride to the apparatus shown in Figure 2! , and IN hydrochloric acid 11, and the toluene solution was circulated using a pump.

16時間後Cのアンゲストマイシン濃度はアンゲストマ
イシンAA1101F?/l同C77m9/11であり
、各々分離収率は98係、85係であった。
After 16 hours, the concentration of angestomycin at C is angestomycin AA1101F? /l C77m9/11, and the separation yields were 98 and 85, respectively.

得られた分離液500dを濃縮乾固させたところ固型物
240mflか得られ、アンゲストマイシンAおよびC
を78係含有していた。
When 500 d of the obtained separated liquid was concentrated to dryness, 240 mfl of a solid product was obtained, which contained angestomycin A and C.
It contained 78% of

無機物は含まなかった。No inorganic substances were included.

実施例 6 トリメチルホスフェート中にてオキシ塩化燐を用いてイ
ノシンをリン酸化し、51−イノシン酸とした。
Example 6 Inosine was phosphorylated using phosphorous oxychloride in trimethyl phosphate to give 51-inosinic acid.

水を加えて過剰のオキシ塩化燐を加水分解後トリメチル
フォスフェートを除去し、51−イノシン酸水溶液を調
製した。
Water was added to hydrolyze excess phosphorus oxychloride, and trimethyl phosphate was removed to prepare a 51-inosinic acid aqueous solution.

この液の51−イノシン酸濃度は10.1/V塩酸濃度
INである。
The 51-inosinic acid concentration of this solution is 10.1/V hydrochloric acid concentration IN.

水溶液IA!、0.1Mジノニルナフクレンスルホン酸
ソーダ トルエン溶液21、IN水酸化ナトリウム溶液
11を用い、第2図に示す装置により実施例1と同様の
操作で51−イノシン酸ソーダを分離した。
Aqueous solution IA! Sodium 51-inosinate was separated in the same manner as in Example 1 using the apparatus shown in FIG. 2 using a 0.1 M sodium dinonylnafucrene sulfonate toluene solution 21 and an IN sodium hydroxide solution 11.

ポンプ始動後11時間にて水酸化ナトリウム溶液中に分
離された51−イノシン酸濃度は9.6g/lとなった
Eleven hours after starting the pump, the concentration of 51-inosinic acid separated in the sodium hydroxide solution was 9.6 g/l.

本分離液を濃縮後中和し8,3gの51−イノシン酸7
.5 H20結晶を得た。
After concentrating this separated liquid, it was neutralized and 8.3 g of 51-inosinic acid 7 was added.
.. 5H20 crystals were obtained.

純度は99係であった。The purity was 99.

実施例 7 グアノシンを用い実施例6と全く同様にリン酸化を行い
、51−グアニル酸水溶液を調製した。
Example 7 Phosphorylation was performed using guanosine in exactly the same manner as in Example 6 to prepare a 51-guanylic acid aqueous solution.

51−グアニル酸濃度は10.09/L塩酸濃度INで
あった。
The 51-guanylic acid concentration was 10.09/L hydrochloric acid concentration IN.

本溶液を実施例6と全く同様の操作でグアニル酸を分離
回収した。
Guanylic acid was separated and recovered from this solution in exactly the same manner as in Example 6.

分離収率は92.7係であった。The separation yield was 92.7%.

実施例 8 アデノシン23g、蔗糖59g、乾燥ビール酵母150
gを0.1Mリン酸緩衝液(pH7,0)に溶解し73
1とし、37℃にてアデノシンをリン酸化した。
Example 8 Adenosine 23g, sucrose 59g, dry brewer's yeast 150g
Dissolve g in 0.1M phosphate buffer (pH 7,0) and add 73
1 and phosphorylated adenosine at 37°C.

遠心分離にて反応液中の不溶物を除いた液(アデノシン
トリリン酸(ATP)11#含有)17を取り、水酸化
ナトリウムを加えてpH13とした原液、0.1MトI
Jノルマルオクチルメチルアンモニウムクロリド トル
エン溶液21H6よび0. I N塩酸11を用いて実
施例1と同様に分離操作を行った。
Insoluble matter in the reaction solution was removed by centrifugation, and a solution 17 (containing 11# of adenosine triphosphate (ATP)) was taken, and sodium hydroxide was added to adjust the pH to 13, a stock solution of 0.1M toI.
J normal octyl methyl ammonium chloride toluene solution 21H6 and 0. Separation operation was carried out in the same manner as in Example 1 using 11 N hydrochloric acid.

21時間後塩酸溶液中のATP濃度は9.2ji/lで
あった。
After 21 hours, the ATP concentration in the hydrochloric acid solution was 9.2 ji/l.

分離収率は92%であった。The separation yield was 92%.

この分離液を濃縮乾固して純度94係のATP粉末を得
た。
This separated liquid was concentrated to dryness to obtain ATP powder with a purity of about 94.

実施例 9 プレス酵母(アルコール酵母、水分66%)1kgを水
に懸濁して21とし、85℃にて10分間保った後遠心
分離にて不溶物を除去した。
Example 9 1 kg of pressed yeast (alcoholic yeast, moisture 66%) was suspended in water to give a suspension of 21, and after being kept at 85° C. for 10 minutes, insoluble materials were removed by centrifugation.

上清11 (NAD O,5g/71含有)を取り水酸
化ナトリウムを加え0. I Nとし、第2図に示す装
置に0.1MトリツノV?)叶りチルメチルアンモニウ
ムクロリドトルエン溶液21および0.IN塩酸11と
共に実施例1の如く充填した。
Take the supernatant 11 (containing NAD O, 5g/71) and add sodium hydroxide to give 0. 0.1M Torino V? in the apparatus shown in Fig. 2. ) Kanari methyl methyl ammonium chloride toluene solution 21 and 0. Charged as in Example 1 with 11 IN hydrochloric acid.

ポンプによりトルエン溶液を循環させ、24時間後、塩
酸溶液部を酵素法により分析したところNAD O,4
69/13であった。
The toluene solution was circulated using a pump, and after 24 hours, the hydrochloric acid solution was analyzed by an enzymatic method.
It was 69/13.

また固型分純硝ま72係であった(遠心分離上清の固型
分純度は0.2%)。
The solid content was 72% pure (the solid content purity of the centrifuged supernatant was 0.2%).

NAD濃度 ※固型分純度−、X100 全固型分濃度NAD concentration *Solid content purity -, X100 Total solids concentration

【図面の簡単な説明】[Brief explanation of drawings]

第1〜4図は本発明に用いる装置の例の概要を示す図で
ある。 第5〜9図は各種核酸関連物質について循環時間と濃度
変化との関係を示す図である。
1 to 4 are diagrams showing an outline of an example of an apparatus used in the present invention. Figures 5 to 9 are diagrams showing the relationship between circulation time and concentration changes for various nucleic acid-related substances.

Claims (1)

【特許請求の範囲】[Claims] 1 長鎖4級アンモニウム塩または長鎖アルキル芳香族
スルホン塩酸の水不溶性有機溶媒溶液を核酸関連物質又
はビタミンを含有する水溶液と受容体水溶液に接触させ
、長鎖4級アンモニウム塩を用いる場合には、該核酸関
連物質又はビタミンを含有する水溶液をアルカリ性にし
て受容体水溶液に酸を用い、長鎖アルキル芳香族スルホ
ン酸塩を用いる場合には、該核酸関連物質又はビタミン
を含有する水溶液を酸性にして受容体水溶液にアルカリ
を用い、接触により核酸関連物質又はビタミンを該核酸
関連物質又はビタミンを含有する水溶液から受容体水溶
液に移動させ、得られた核酸関連物質又はビタミンの分
離液から核酸関連物質又はビタミンを分離回収すること
を特徴とする核酸関連物質およびビタミンの分離回収方
法。
1. When using a long-chain quaternary ammonium salt, contact a water-insoluble organic solvent solution of a long-chain quaternary ammonium salt or a long-chain alkyl aromatic sulfone hydrochloric acid with an aqueous solution containing a nucleic acid-related substance or vitamin and an aqueous receptor solution. , the aqueous solution containing the nucleic acid-related substance or vitamin is made alkaline and an acid is used for the receptor aqueous solution, and when a long-chain alkyl aromatic sulfonate is used, the aqueous solution containing the nucleic acid-related substance or vitamin is made acidic. Using an alkali in the receptor aqueous solution, the nucleic acid-related substance or vitamin is transferred from the aqueous solution containing the nucleic acid-related substance or vitamin to the receptor aqueous solution by contact, and the nucleic acid-related substance or vitamin is removed from the obtained nucleic acid-related substance or vitamin separated liquid. Or a method for separating and recovering nucleic acid-related substances and vitamins, which comprises separating and recovering vitamins.
JP1345377A 1977-02-08 1977-02-08 Separation and recovery method for nucleic acid-related substances and vitamins Expired JPS5923797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1345377A JPS5923797B2 (en) 1977-02-08 1977-02-08 Separation and recovery method for nucleic acid-related substances and vitamins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1345377A JPS5923797B2 (en) 1977-02-08 1977-02-08 Separation and recovery method for nucleic acid-related substances and vitamins

Publications (2)

Publication Number Publication Date
JPS5399396A JPS5399396A (en) 1978-08-30
JPS5923797B2 true JPS5923797B2 (en) 1984-06-05

Family

ID=11833553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1345377A Expired JPS5923797B2 (en) 1977-02-08 1977-02-08 Separation and recovery method for nucleic acid-related substances and vitamins

Country Status (1)

Country Link
JP (1) JPS5923797B2 (en)

Also Published As

Publication number Publication date
JPS5399396A (en) 1978-08-30

Similar Documents

Publication Publication Date Title
Fox et al. Nucleosides. XXIX. 1-β-D-Arabinofuranosyl-5-fluorocytosine and Related Arabino Nucleosides1
Ralph et al. Studies on Polynucleotides. XVIII. 1 Experiments on the Polymerization of Mononucleotides. The Synthesis and Characterization of Deoxyguanosine Oligonucleotides 2
Barai et al. A universal biocatalyst for the preparation of base‐and sugar‐modified nucleosides via an enzymatic transglycosylation
Tarr Lingcod muscle purine nucleoside phosphorylase
Schlenk Chemistry and enzymology of nucleic acids
US3337530A (en) Dinucleoside 3', 5' -and 2', 5'-phosphates containing one 7-deazapurin riboside moiety
Rammler et al. Nucleoside phosphonic acids. II. The synthesis of 5'-deoxythymidine 5'-phosphonic acid and its pyrophosphate derivatives
EP0002192B1 (en) Enzymatic synthesis of purine arabinonucleosides
Kenner The Chemistry of Nucleotides.
JPS5923797B2 (en) Separation and recovery method for nucleic acid-related substances and vitamins
CN117285573B (en) Beta-nicotinamide mononucleotide metal complex and preparation method thereof
Henderson et al. Naturally occurring acid-soluble nucleotides
Voegel et al. The Donor‐Acceptor‐Acceptor Purine Analog: Transformation of 5‐aza‐7‐deaza‐1H‐isoguanine (= 4‐aminoimidazo‐[1, 2‐a]‐1, 3, 5‐triazin‐2 (1H)‐one) to 2′‐deoxy‐5‐aza‐7‐deaza‐isoguanosine using purine nucleoside phosphorylase
CN104592335A (en) Method for synthesizing nucleoside diphosphonic acid choline sodium salts
Ohtsuka et al. Transfer ribonucleic acids and related compounds. II. A method for synthesis of protected ribooligonucleotides using a ribonuclease
WO2007144168A1 (en) Enzymatic process for preparation of 5'-monophosphate-nucleotides
Tarr Formation of purine and pyrimidine nucleosides, deoxynucleosides, and the corresponding mononucleotides by salmon milt extract nucleoside phosphorylase and nucleoside kinase enzymes
US3941770A (en) Method for purifying 3',5'-cyclic-adenylic acid or 3',5'-cyclic-deoxyadenylic acid
GB1021962A (en) Process for preparing 5-nucleotides
US3382231A (en) Method of extracting nucleotides, nucleosides and their base components from aqueoussolutions
US4371613A (en) Method for producing purine arabinosides
JPH0422559B2 (en)
Ding Synthesis of nucleic acid derivatives by multi-enzymatic systems
SANEYOSHI et al. Synthetic nucleosides and nucleotides. XIV. Facile synthesis and antitumor activities of 6-mercaptopurine 2'-deoxyriboside and related compounds
US3138539A (en) Preparation of 5'-polyphosphate nucleotides