JPS59223293A - Molecular beam epitaxial growth device - Google Patents
Molecular beam epitaxial growth deviceInfo
- Publication number
- JPS59223293A JPS59223293A JP9617983A JP9617983A JPS59223293A JP S59223293 A JPS59223293 A JP S59223293A JP 9617983 A JP9617983 A JP 9617983A JP 9617983 A JP9617983 A JP 9617983A JP S59223293 A JPS59223293 A JP S59223293A
- Authority
- JP
- Japan
- Prior art keywords
- molecular beam
- intensity
- heating
- sample
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed materials
- C30B23/02—Epitaxial-layer growth
- C30B23/06—Heating of the deposition chamber, the substrate or the materials to be evaporated
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、超篩真空下で加熱された基板上に、単数或は
複数の分子線を適当な強度又は強度比で発射しこれを堆
積させ結晶成長させる分子線エピタキシャル成長装置に
おいて、これら分子線強度又は分子線強度比を所望値に
制御する装置に関し、すぐれたエピタキシャル成長膜の
獲得を可能にする装置の提供を目的とする。Detailed Description of the Invention The present invention relates to molecular beam epitaxial growth, in which a single or multiple molecular beams are emitted at an appropriate intensity or intensity ratio onto a substrate heated under a supersieve vacuum, and the beams are deposited to grow crystals. The present invention relates to an apparatus for controlling the molecular beam intensity or molecular beam intensity ratio to a desired value, and the object of the present invention is to provide an apparatus that makes it possible to obtain an excellent epitaxially grown film.
従来の分子線制御を行なう装置は第1図の如く。A conventional device for controlling molecular beams is shown in FIG.
分子1I111にしたい試料10を収納したルツボ 1
と、このルツボ1 を加熱するためのヒーター 2゜ル
ツボ温度を測定するための熱電対3及び熱の逃げを防ぐ
ための熱遮蔽板4から成る分子線セル5と、ヒーター2
を加熱するための加熱電源6及び熱電対3で得た温度信
号を受けて加熱電源6の出力ヒーター電力を制御する温
度制御装置7で構成され、これらによってルツボ温度を
一定に保ち。Crucible containing sample 10 to be made into molecule 1I111 1
, a heater 2 for heating this crucible 1 , a molecular beam cell 5 consisting of a thermocouple 3 for measuring the crucible temperature, and a heat shield plate 4 for preventing heat escape, and a heater 2
It consists of a heating power source 6 for heating the crucible, and a temperature control device 7 for controlling the output heater power of the heating power source 6 in response to the temperature signal obtained from the thermocouple 3, thereby keeping the crucible temperature constant.
それによって前記強度乃至強度比を一定に制御すること
を行っている。前記のルツボ 1 内の試料10が分子
線11になる割合は、その試料10の固有の蒸気圧Pに
密接に関係し、蒸気圧Pと温度T’にとの間には次式の
様な関係がある。Thereby, the intensity or intensity ratio is controlled to be constant. The rate at which the sample 10 in the crucible 1 becomes the molecular beam 11 is closely related to the specific vapor pressure P of the sample 10, and the relationship between the vapor pressure P and the temperature T' is expressed by the following equation. There is a relationship.
ノog P = −−)−Blog T−)−C・・・
・・・・・・ (1)ここでA、H,Cは試料固有の値
である。Noog P=--)-Blog T-)-C...
(1) Here, A, H, and C are values unique to the sample.
分子線強度を一定に保つことを考える場合、一般に温度
の変化に対し圧力Pが大きく変化するのに注目する必要
がある。例えば砒素(As)を試料10とした場合、5
03°に付近で±0.5℃温度変化した場合、蒸気圧P
には10チ程度の変動が生ずる。When considering keeping the molecular beam intensity constant, it is necessary to pay attention to the fact that the pressure P generally changes greatly with changes in temperature. For example, if arsenic (As) is used as sample 10, 5
If the temperature changes by ±0.5°C near 03°, the vapor pressure P
A fluctuation of about 10 inches occurs.
しかもこの温度を±0.5℃以内に長時間維持するこ・
とは極めてむずかしく、現在はpH)制御という非常に
複雑な制御を行なってかろうじて目的を達成している。Moreover, it is necessary to maintain this temperature within ±0.5℃ for a long time.
It is extremely difficult to achieve this goal, and currently the goal is barely achieved through extremely complex control (pH) control.
上述のように従来の方法はルツボの1部である。As mentioned above, conventional methods are part of the crucible.
熱電対挿入ケ所の温度を一定に保つ構成をとるため。To maintain a constant temperature at the thermocouple insertion point.
分子線強度を決定する肝心の試料表面部の温度を一足に
制御することには必ずしも成功していない。その理由に
は、試料10とルツボ1 の材料の間に存在する熱伝導
係数の違いや、試料表面形状の経時変化による熱容量の
変化にこの温度測定部がうまく対処し追随することが出
来ないこと等が挙げられる。It has not always been possible to completely control the temperature of the sample surface, which is the key factor that determines the molecular beam intensity. The reason for this is that the temperature measurement unit is not able to properly cope with and follow the difference in thermal conductivity between the materials of sample 10 and crucible 1, and changes in heat capacity due to changes in the sample surface shape over time. etc.
このことは砒素(As)等のように試料10が昇華性の
物質である場合に殊に顕著である。史にまた分子線セル
を昇温しで所定の分子線強度を得んとする際の温度上昇
始動時においては、温度の検出とそれに基く制御を如何
に精妙にしても2時間軸を横軸にとった分子線強度は第
2図の曲線Aのように大きくオーバーシュートする現象
が見られる。この現象は試料10の蒸気圧が高いものほ
ど激しく、又昇温時間を短くせんとすればする程激しい
。ここで第2図中の曲線Aは短時間に昇温した時の分子
線の強度変化。This is particularly noticeable when the sample 10 is a sublimable substance such as arsenic (As). In history, when the molecular beam cell is heated to obtain a predetermined molecular beam intensity, when the temperature starts to rise, no matter how sophisticated the temperature detection and control based on it, the 2-time axis is the horizontal axis. A phenomenon in which the molecular beam intensity taken in this direction greatly overshoots as shown by curve A in FIG. 2 is observed. This phenomenon is more severe as the vapor pressure of the sample 10 is higher, and the shorter the heating time is, the more severe this phenomenon is. Here, curve A in Figure 2 shows the change in the intensity of the molecular beam when the temperature is increased in a short period of time.
曲線Bはその時のルツボの温度変化を示す。又曲線Cは
長時間をかけて昇温した時の分子線の強度変化。Curve B shows the temperature change of the crucible at that time. Curve C shows the change in molecular beam intensity when the temperature is increased over a long period of time.
9曲線はその時のルツボの温度変化を示す。Curve 9 shows the temperature change of the crucible at that time.
さて実際にエピタキシャル成長を行なわせるのは分子線
強度が一定になってからである。そのためこれら昇温時
に消費する試料はすべてむだになるもので2例えばJr
tL素を20分程度で昇温し温度を安定させる場合には
、このオーバーシュートによって、安定後の消費量に換
算してその約26時間分にも相当するhtL素の量が成
長に寄与することなく消費され、る。Now, epitaxial growth is actually performed only after the molecular beam intensity becomes constant. Therefore, all the samples consumed during heating are wasted.2For example, Jr.
When the tL element is heated in about 20 minutes and the temperature is stabilized, due to this overshoot, the amount of HTL element equivalent to about 26 hours of consumption after stabilization contributes to growth. It is consumed without being consumed.
Ga As成長膜を1μm作成する時間は1時間程度が
通常であるので、むだな消費量は実にその26倍にも達
する。Since it normally takes about 1 hour to form a 1 μm thick GaAs film, the amount of wasted consumption is actually 26 times that amount.
本発明は前述の様な従来の熱電対による温度制御の欠点
である。安定な分子線強度を長時間に亘って維持するこ
との困難さや9分子線強度が安定する迄の試料の消費量
がやたらと多い欠点を大巾に改善することを目的さして
生まれたものである。以下図を用いて本発明の説明をす
る。The present invention overcomes the drawbacks of conventional thermocouple temperature control as described above. It was created with the aim of significantly improving the drawbacks of the difficulty of maintaining stable molecular beam intensity over a long period of time and the excessive amount of sample consumed until the nine-molecular beam intensity stabilizes. . The present invention will be explained below using the figures.
第3図は本発明の1実施例の構成図である。本発明の装
置の構成は、前述の第1図の分子線セル5から熱電対3
と温度制御装置7をとり除き、それらに代って1分子線
強度を圧力として検出するた、めの圧力センサー13.
圧力計測装置14及び加熱制御装置15が設備されてこ
れで加熱電諒6の制御を行なうようになっている。FIG. 3 is a block diagram of one embodiment of the present invention. The configuration of the apparatus of the present invention is as follows: from the molecular beam cell 5 to the thermocouple 3 shown in FIG.
and temperature control device 7, and in their place a pressure sensor 13 for detecting single molecule beam intensity as pressure.
A pressure measuring device 14 and a heating control device 15 are installed to control the heating power supply 6.
この圧力センサー13には真空中で蒸気圧力の測定を行
ないつるもの2例えば真空ゲージとも呼ばれているもの
が使用できる。分子線強度の制御の方法として、ヒータ
ーを加熱して試料を高温にすることにより発生した分子
線の強度を上記のように圧力センサー及び圧力計測装置
で検出及び計測し、この圧力計測装置の出力信号を加熱
制御装置に入力して、この加熱制御装置でその信号とあ
らかじめ設定した所望の圧力値に対応する信号とを比較
し2両者の差が適当な誤差範囲内に収まる様加熱電源の
電力を制御するのである。上記の様な本発明の制御法に
よれば分子線強度はその値が遅れなしで直接的に検知さ
れ。As this pressure sensor 13, a device 2 which measures steam pressure in a vacuum, such as a device also called a vacuum gauge, can be used. As a method of controlling the molecular beam intensity, the intensity of the molecular beam generated by heating a heater to raise the temperature of the sample is detected and measured using a pressure sensor and a pressure measuring device as described above, and the output of this pressure measuring device is The signal is input to the heating control device, and the heating control device compares the signal with a signal corresponding to a preset desired pressure value, and adjusts the power of the heating power source so that the difference between the two falls within an appropriate error range. control. According to the control method of the present invention as described above, the value of the molecular beam intensity can be directly detected without delay.
この検出値を一定にする適切な加熱制御が行なわれる。Appropriate heating control is performed to keep this detected value constant.
そのためこの場合は試料表面の温度を直接制御するのと
変らないことになるので、ルツボ ■ と試料10との
温匿差を念頭に置く必要がなくなるほか。Therefore, in this case, it is no different from directly controlling the temperature of the sample surface, so there is no need to keep in mind the temperature difference between the crucible ■ and the sample 10.
温度変動に対し時間的なずれが生することも従来と較べ
て極めて小さくなり、従来の欠点は大巾に改善される。The time lag caused by temperature fluctuations is also extremely small compared to the conventional method, and the drawbacks of the conventional method are greatly improved.
特にノー素(As)や燐(P)の様な蒸気圧の高いもの
に対し本発明は殊に有効である。In particular, the present invention is particularly effective for substances with high vapor pressure such as nitrogen (As) and phosphorus (P).
第4図は本発明の装置を用いた場合の分子晦強度の立ち
上がりの状況を示す。FIG. 4 shows how the molecular heat intensity rises when the apparatus of the present invention is used.
これを同じスケールの従来の方法による経時変化の第2
図と比較すると1分子線強度が安定するまでの時間が極
めて短くなることが分る。This is compared to the second time course of change using the conventional method on the same scale.
Comparing with the figure, it can be seen that the time it takes for the single molecule beam intensity to stabilize is extremely short.
従来のむだに消費される試料の楡か、前述の如く成゛長
時間に換算して26時間もになったのに対し2本発明の
方式ではそれを0.59時間程度に抑えることができる
ことが実験で芙証された。もしむだな消費量を従来と同
程度まで許すならば2分子線強度を安定にするまでの時
間は従来の1/10〜1/100 の極めて短時間とな
る。2. The method of the present invention can reduce the amount of time required for growth to about 0.59 hours, whereas the conventional method wastes time for the sample to reach 26 hours, as mentioned above. was proven by experiment. If wasteful consumption is allowed to the same level as in the past, the time it takes to stabilize the bimolecular beam intensity will be extremely short, 1/10 to 1/100 of the conventional time.
以上の様に2本発明によれば2分子線強度の初期調整を
含めて結晶成長に要する時間は格段に短縮され、試料の
消費量についても大巾な低減がはかられることになる。As described above, according to the present invention, the time required for crystal growth, including the initial adjustment of the bimolecular beam intensity, can be significantly shortened, and the amount of sample consumed can also be significantly reduced.
尚前記の説明は、蒸発源である分子線セルが1個の場合
についてであったが2本発明は蒸発源が単一である場合
に限定されない。第5図には複数の蒸発源の場合の本発
明の装置による分子線強度制御法を示す。個々の制御部
の構成は第3図と同一とする。Although the above description has been made regarding the case where there is one molecular beam cell as the evaporation source, the present invention is not limited to the case where there is a single evaporation source. FIG. 5 shows a molecular beam intensity control method using the apparatus of the present invention in the case of a plurality of evaporation sources. The configuration of each control section is the same as that in FIG. 3.
ここでは例えば分子線隔離板20を第5図の如く挿入す
ることにより、圧力センサー31又は32では分子線セ
ル2工又は22から発射された分子線のみが検知される
ことになるので、複数個の分子線41゜42のそれぞれ
の強度の制御を各独立して行なう事が出来る。又前記の
説明では圧力センサー13としては一般の真空ゲージが
使用できると述べたが2分子線が通過する空間に配置で
き、かつ真空ゲージと同様jこ分子線をイオン化してそ
のイオン電流を開側できる形式のものであれば、すべて
この圧力センサームを利用する加熱等にも有効に利用で
きることは明らかである。Here, for example, by inserting the molecular beam separator 20 as shown in FIG. 5, the pressure sensor 31 or 32 will detect only the molecular beam emitted from the molecular beam cell 2 or 22. The intensity of each of the molecular beams 41 and 42 can be controlled independently. Also, in the above explanation, it was stated that a general vacuum gauge can be used as the pressure sensor 13, but it can be placed in a space through which a bimolecular beam passes, and, like a vacuum gauge, it can ionize the molecular beam and open its ion current. It is clear that any type that can be used side by side can be effectively used for heating, etc. using this pressure sensor.
更にまた複数の蒸発源において2本発明の制御法と従来
性なわれている温度制御法を併動して使用することも可
能であり、併動使用の場合においても今迄述べてきた本
発明の装置の有効性は何らそこなイつれない。即ち本発
明の実施は、上述の実施例に限定されるものではない。Furthermore, it is also possible to use the control method of the present invention and the conventional temperature control method in conjunction with a plurality of evaporation sources. There is nothing wrong with the effectiveness of this device. That is, the implementation of the present invention is not limited to the above-described embodiments.
なお次のことを付記しておく。圧力センサーにて分子線
強度を検知するというアイデアは過去にもあった。しか
し複数の分子線により結晶成長を行なう場合2分子線が
互いに影響し合う懸念のあること等々の問題があり、こ
のため分子純エピタキシャル成長の制御にこれが利用さ
れることはなかったものである。本発明の様に分子線セ
ルの温度の制御を圧力計測信号によって行なうという試
みもまた全くなされていなかったものである。単純な+
14成)こよって経済的にすぐれた品質のエピタキシャ
ル成長膜をうることを可能にする本発明の工栗上の価値
は高く、有用な発明ということができる。。Please note the following: The idea of detecting molecular beam intensity using a pressure sensor has existed in the past. However, when crystal growth is performed using a plurality of molecular beams, there are problems such as the concern that the two molecular beams may influence each other, and for this reason, this has not been used to control pure molecular epitaxial growth. There has also been no attempt to control the temperature of a molecular beam cell using pressure measurement signals as in the present invention. simple +
14) Therefore, the present invention, which makes it possible to economically obtain an epitaxially grown film of excellent quality, has high technical value and can be said to be a useful invention. .
第1図は従来の温度制御を行なうための装置を示す。第
2図は従来の装置によって得られた加熱始動時の分子線
強度及びルツボ温度の時間変化を示す。
第3図は本発明の分子線強度制御を行なう装置を示す。
第4図は本発明の装置による分子線強度の時間変化を示
す。第5図は本発明の装置を複数の分子線に適用する場
合の装置の模式図である。
図中 1 はルツボ、2はヒーター、3は熱電対。
4は熱遮蔽板、5は分子線セル、6は加熱電源、7は温
度制御装置、10は試料、11は分子線、12は基板、
13は圧力センサー、14は圧力計測装置、15は加熱
制御装置、20は分子線画GIL板、 2122は複数
の場合の分子線セル、 3132は複数の場合の圧力セ
ンサーを示す。
FIG、3FIG. 1 shows a conventional device for temperature control. FIG. 2 shows the temporal changes in molecular beam intensity and crucible temperature at the start of heating obtained by the conventional apparatus. FIG. 3 shows an apparatus for controlling the molecular beam intensity of the present invention. FIG. 4 shows the temporal change in molecular beam intensity using the apparatus of the present invention. FIG. 5 is a schematic diagram of an apparatus in which the apparatus of the present invention is applied to a plurality of molecular beams. In the figure, 1 is a crucible, 2 is a heater, and 3 is a thermocouple. 4 is a heat shield plate, 5 is a molecular beam cell, 6 is a heating power source, 7 is a temperature control device, 10 is a sample, 11 is a molecular beam, 12 is a substrate,
13 is a pressure sensor, 14 is a pressure measuring device, 15 is a heating control device, 20 is a molecular beam GIL plate, 2122 is a molecular beam cell in the case of plurality, and 3132 is a pressure sensor in the case of plurality. FIG.3
Claims (1)
、該検出器で測定される該分子線強度を所定値に維持す
るよう分子線源の加熱電力を制御する加熱制御装置とを
備えたことを特徴とする分子線エピタキシャル成長装置
。A detector that measures the molecular beam intensity emitted from the molecular beam source, and a heating control device that controls the heating power of the molecular beam source so as to maintain the molecular beam intensity measured by the detector at a predetermined value. A molecular beam epitaxial growth apparatus characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9617983A JPS59223293A (en) | 1983-05-31 | 1983-05-31 | Molecular beam epitaxial growth device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9617983A JPS59223293A (en) | 1983-05-31 | 1983-05-31 | Molecular beam epitaxial growth device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59223293A true JPS59223293A (en) | 1984-12-15 |
Family
ID=14158091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9617983A Pending JPS59223293A (en) | 1983-05-31 | 1983-05-31 | Molecular beam epitaxial growth device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59223293A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60137897A (en) * | 1983-12-26 | 1985-07-22 | Agency Of Ind Science & Technol | Molecular beam crystal growth apparatus |
JPS62123709A (en) * | 1985-11-25 | 1987-06-05 | Mitsubishi Electric Corp | Thin film forming device |
JPS62204517A (en) * | 1986-03-04 | 1987-09-09 | Nec Corp | Molecular beam epitaxially growing apparatus |
WO2012026483A1 (en) * | 2010-08-25 | 2012-03-01 | 東京エレクトロン株式会社 | Vapor deposition processing device and vapor deposition processing method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55160423A (en) * | 1979-05-31 | 1980-12-13 | Matsushita Electric Ind Co Ltd | Method and device for thin film growth |
-
1983
- 1983-05-31 JP JP9617983A patent/JPS59223293A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55160423A (en) * | 1979-05-31 | 1980-12-13 | Matsushita Electric Ind Co Ltd | Method and device for thin film growth |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60137897A (en) * | 1983-12-26 | 1985-07-22 | Agency Of Ind Science & Technol | Molecular beam crystal growth apparatus |
JPS62123709A (en) * | 1985-11-25 | 1987-06-05 | Mitsubishi Electric Corp | Thin film forming device |
JPS62204517A (en) * | 1986-03-04 | 1987-09-09 | Nec Corp | Molecular beam epitaxially growing apparatus |
WO2012026483A1 (en) * | 2010-08-25 | 2012-03-01 | 東京エレクトロン株式会社 | Vapor deposition processing device and vapor deposition processing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05139882A (en) | Molecular beam source | |
JPS59223293A (en) | Molecular beam epitaxial growth device | |
Mochizuki | Effect of the Deviation from Stoichiometry of a Source Specimen on the Vapor Transport of CdTe | |
JPS5992998A (en) | Method for growing crystal using molecular beam | |
JPS58197270A (en) | Crucible for evaporating source | |
JPS60112690A (en) | Evaporation source cell for molecular beam crystal growth device | |
Jiménez et al. | Specific heat measurement of LATGS crystals under nonequilibrium conditions | |
JPS6040600Y2 (en) | sauce supply device | |
JPS62128997A (en) | Molecular beam source device | |
JPS61220414A (en) | Apparatus for generating molecular beam | |
SU709988A1 (en) | Method of continuous monitoring of dew point | |
JPH06236201A (en) | Control method for process | |
JP2688365B2 (en) | Board holder | |
JPH11251249A (en) | Method of forming semiconductor film | |
JPH0774433B2 (en) | Vapor deposition equipment for thin film growth | |
JP3741842B2 (en) | Vacuum deposition apparatus and thin film forming method | |
JPH07109031B2 (en) | Substrate heating device | |
JPH0681129A (en) | Evaporation source for organic compound and accurate temp. control method therefor | |
JPH0280567A (en) | Substrate heater | |
JPH0615436B2 (en) | Liquid phase epitaxial growth system | |
SU993968A1 (en) | Method of automatic control of evaporation process | |
JPS59152296A (en) | Intensity controller for molecular rays in epitaxial growth with molecular rays | |
SU744507A1 (en) | Method of regulating temperature in thermostats | |
JPS5886720A (en) | Device for vapor-phase growing of thin film | |
JPS6252198A (en) | Method of growing molecular beam epitaxial growth |