JPS59222292A - Treatment of waste liquid of chemical cleaning containing ethylenediamine tetraacetate - Google Patents
Treatment of waste liquid of chemical cleaning containing ethylenediamine tetraacetateInfo
- Publication number
- JPS59222292A JPS59222292A JP7307583A JP7307583A JPS59222292A JP S59222292 A JPS59222292 A JP S59222292A JP 7307583 A JP7307583 A JP 7307583A JP 7307583 A JP7307583 A JP 7307583A JP S59222292 A JPS59222292 A JP S59222292A
- Authority
- JP
- Japan
- Prior art keywords
- waste liquid
- edta
- ions
- tank
- heavy metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 55
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 title claims abstract description 52
- 239000002699 waste material Substances 0.000 title claims abstract description 27
- 239000000126 substance Substances 0.000 title claims description 10
- 238000004140 cleaning Methods 0.000 title claims description 9
- 229940071106 ethylenediaminetetraacetate Drugs 0.000 title 1
- 239000013078 crystal Substances 0.000 claims abstract description 30
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 22
- 150000002500 ions Chemical class 0.000 claims abstract description 21
- 229910001385 heavy metal Inorganic materials 0.000 claims abstract description 17
- 238000001914 filtration Methods 0.000 claims abstract description 10
- 239000002253 acid Substances 0.000 claims abstract description 8
- 239000010419 fine particle Substances 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 21
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 17
- 239000003513 alkali Substances 0.000 claims description 12
- 229910052742 iron Inorganic materials 0.000 claims description 9
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 claims description 8
- 229910001431 copper ion Inorganic materials 0.000 claims description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 6
- 239000000706 filtrate Substances 0.000 claims description 6
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 4
- 239000003112 inhibitor Substances 0.000 claims description 3
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 claims description 2
- 229910001424 calcium ion Inorganic materials 0.000 claims description 2
- -1 iron ions Chemical class 0.000 claims 2
- 238000000926 separation method Methods 0.000 abstract description 21
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 abstract description 15
- 238000006243 chemical reaction Methods 0.000 abstract description 13
- 238000012546 transfer Methods 0.000 abstract description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 7
- 239000003795 chemical substances by application Substances 0.000 abstract description 6
- 238000002425 crystallisation Methods 0.000 abstract description 6
- 230000008025 crystallization Effects 0.000 abstract description 6
- 238000003756 stirring Methods 0.000 abstract description 6
- 238000001556 precipitation Methods 0.000 abstract description 3
- 230000001376 precipitating effect Effects 0.000 abstract description 2
- 229910052799 carbon Inorganic materials 0.000 abstract 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 239000011859 microparticle Substances 0.000 description 6
- 239000002244 precipitate Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 235000011121 sodium hydroxide Nutrition 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229910052979 sodium sulfide Inorganic materials 0.000 description 3
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 2
- 238000005273 aeration Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910001453 nickel ion Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 208000005156 Dehydration Diseases 0.000 description 1
- 230000000274 adsorptive effect Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- UYJXRRSPUVSSMN-UHFFFAOYSA-P ammonium sulfide Chemical compound [NH4+].[NH4+].[S-2] UYJXRRSPUVSSMN-UHFFFAOYSA-P 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 235000011116 calcium hydroxide Nutrition 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N iron (II) ion Substances [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 235000014413 iron hydroxide Nutrition 0.000 description 1
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 235000011118 potassium hydroxide Nutrition 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000009287 sand filtration Methods 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/36—Regeneration of waste pickling liquors
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Removal Of Specific Substances (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は化学洗浄廃液の処理方法、特にエチレンジアミ
ン四酢酸(以下、rEDTAJと略す)と結合した重金
属イオンを含む化学洗浄廃液の処理方法に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating chemical cleaning waste liquid, particularly a method for treating chemical cleaning waste liquid containing heavy metal ions combined with ethylenediaminetetraacetic acid (hereinafter abbreviated as rEDTAJ).
従来EDTAはキレート洗浄剤としてボイラ、熱交換器
、配管等のスケール除去に広く用いられている。この洗
浄廃液中には洗浄過程でEDTAと結合した多量の重金
属イオンと高濃度のCODを含み、従来から効率的な廃
液処理方法の開発が求められていた。Conventionally, EDTA has been widely used as a chelate cleaning agent to remove scale from boilers, heat exchangers, piping, etc. This washing waste liquid contains a large amount of heavy metal ions combined with EDTA during the washing process and a high concentration of COD, and there has been a demand for the development of an efficient waste liquid treatment method.
本発明は、鋭意研究の結果、廃液中からEDTAを回収
して再利用を図ることを可能にしたものである。As a result of extensive research, the present invention has made it possible to recover and reuse EDTA from waste liquid.
即ち、本発明はEDTAと結合した重金属イオンを含む
化学洗浄廃液の処理方法において、該廃液にアルカリを
添加してpH10以上で重金属イオンを沈殿分離させる
第1工程、前記第1工程の分離液を活性炭ろ過層を通す
ことにより該分離液中の微粒子やインヒビターを除去す
る第2工程、および前記第2工程のろ過液に酸を添加し
て、pH1,3〜1.8の範囲にてEDTAの結晶を生
成させ、該結晶を分離回収する第3工程とからなること
を特徴とするEDTAを含む化学洗浄廃液の処理方法で
ある。That is, the present invention provides a method for treating chemical cleaning waste liquid containing heavy metal ions combined with EDTA, a first step of adding an alkali to the waste liquid and precipitating and separating the heavy metal ions at a pH of 10 or higher, and a step of separating the separated liquid of the first step. A second step in which fine particles and inhibitors are removed from the separated liquid by passing it through an activated carbon filtration layer, and an acid is added to the filtrate from the second step to remove EDTA at a pH in the range of 1.3 to 1.8. This method of treating chemical cleaning waste liquid containing EDTA is characterized by comprising a third step of generating crystals and separating and recovering the crystals.
以下に本発明の処理方法について詳述する。The processing method of the present invention will be explained in detail below.
本発明の処理方法は、−まず、廃液にアルカリを添加し
てEDTAとキレートしている重金属イオンをEDTA
から分離させる。該分離工程においては、苛性ソーダな
どのアルカリ剤を注入して液のpHを10以上にする必
要があるが銅イオン、ニッケルイオンを含有する場合に
はpH12以上、望ましくはpH12,5にする。また
鉄(U)イオンを含有する場合は空気などで曝気するこ
とにより酸化し鉄(2)イオンにすることが望ましい。The treatment method of the present invention includes: - First, an alkali is added to the waste liquid to remove the heavy metal ions chelated with EDTA from the EDTA.
Separate from. In the separation step, it is necessary to inject an alkaline agent such as caustic soda to bring the pH of the solution to 10 or more, but if the solution contains copper ions or nickel ions, the pH should be 12 or more, preferably 12.5. Furthermore, if iron (U) ions are contained, it is desirable to oxidize them into iron (2) ions by aeration with air or the like.
これは鉄(IT)イオンであればpH12,5以−ヒに
することを要するが、鉄(ト)イオンにしておけばpH
12で良く、つまり加えるアルカリ剤の量が少なくて済
み経済的であるからである。If it is an iron (IT) ion, it is necessary to set the pH to 12.5 or higher, but if it is an iron (IT) ion, the pH will be
12 is sufficient, which means that the amount of alkali agent added is small and is economical.
なお、鉄(II)イオンを酸化する手段はどのような方
法でも適用可能(例えば酸化剤を用いる等)であるが、
空気を用いて曝気するのが簡便であり経済的である。Note that any method can be used to oxidize iron (II) ions (for example, using an oxidizing agent), but
Aeration using air is simple and economical.
廃液がアンモニアを含む場合には、銅イオンやニッケル
イオンはpH12,5でも解離できない。これ □
を解離させるにはpH14以上にしなければならない。When the waste liquid contains ammonia, copper ions and nickel ions cannot be dissociated even at pH 12.5. This □
In order to dissociate, the pH must be 14 or higher.
従って銅イオンについてはアルカリとして硫化ソーダ、
硫化アンモンなどの硫化アルカリを銅イオンの1.0〜
1.1当量加えることにより硫化銅として分離すること
ができる。この場合の液のpHはアルカリ性であればよ
いから使用するアルカリ剤の量が節約でき経済的である
。Therefore, for copper ions, sodium sulfide as an alkali,
Add an alkali sulfide such as ammonium sulfide to copper ion of 1.0~
By adding 1.1 equivalent, it can be separated as copper sulfide. In this case, the pH of the solution only needs to be alkaline, so the amount of alkaline agent used can be saved and it is economical.
なお、アルカリの種類として苛性ソーダ、硫化アルカリ
の他に消石灰、苛性カリなどでも使用可能である。In addition to caustic soda and alkali sulfide, slaked lime and caustic potash can also be used as the alkali.
また、重金属の分離において、そのまま静置することで
分離するが、高分子凝集剤を添加することにより分離の
速度を増し、かつ沈殿物の容積を縮小する効果が有り、
有効である。In addition, when separating heavy metals, they are separated by leaving them as they are, but adding a polymer flocculant has the effect of increasing the separation speed and reducing the volume of the precipitate.
It is valid.
次に、第1工程で重金属イオンを沈殿分離させた分離液
中の微小粒子を活性炭ろ過層を通すことによって除去す
る。該分離液中の微小粒子はコロイド状の水酸化鉄を主
体とするものであるが、静置だけでは充分に分離するこ
とができない粒子である。この微小粒子は、次の第3工
程で生成するEDTAの結晶に付着し著しく汚染をきた
すものである。また該沈殿物は脱水処理を行い、この脱
離液からもEDTAを分離するのであるが、この場合に
も該脱離液には微小粒子が分離−上澄液よりも多く含ま
れる。従って該微小粒子を取り除く必要がある。Next, fine particles in the separated liquid in which heavy metal ions were precipitated and separated in the first step are removed by passing it through an activated carbon filtration layer. The microparticles in the separation liquid are mainly composed of colloidal iron hydroxide, and cannot be sufficiently separated only by standing still. These fine particles adhere to the EDTA crystals produced in the next third step and cause significant contamination. Further, the precipitate is subjected to dehydration treatment, and EDTA is also separated from this desorbed liquid, but in this case as well, the desorbed liquid contains more microparticles than the separated supernatant liquid. Therefore, it is necessary to remove the microparticles.
そのための除去処理方法として活性炭を用いてろ過する
方法が最も効果が有り、微小粒子は完全に除去される。As a removal treatment method for this purpose, filtration using activated carbon is the most effective method, and microparticles are completely removed.
同じろ過法として砂ろ過法も有るが、該微小粒子を完全
に取り除くことは実用上かなり困難であり、フィルター
による方法でも1μm以下のものを用いることにより完
全に除去できるが、その捕捉量が少なく実用性に乏しい
。従って活性炭を用いてろ過するのが最も良い方法であ
る。There is also a sand filtration method as a similar filtration method, but it is practically difficult to completely remove these microparticles.Although it can be completely removed using a filter method using particles of 1 μm or less, the amount of captured particles is small. Poor practicality. Therefore, the best method is to filter using activated carbon.
さらに、活性炭は吸着性が大きく、そのため洗浄液に含
まれている高分子量のインヒビターなども取り除く作用
が有り、両方の効果を担うことになる。Furthermore, activated carbon has a high adsorptive property, and therefore has the effect of removing high molecular weight inhibitors contained in the cleaning liquid, so it has both effects.
次に、第2工程でろ過したろ過液に酸を添加してEDT
Aの結晶を生成させ該結晶を分離回収する。該EDTA
の結晶生成時の液のpH域はEDTAの濃度によって幅
が認められるが、pH4,0〜1.0である。Next, an acid is added to the filtrate filtered in the second step to make EDT.
Crystals of A are generated and the crystals are separated and collected. The EDTA
The pH range of the liquid during crystal formation varies depending on the concentration of EDTA, but is from pH 4.0 to 1.0.
ここでEDTAの結晶化とpHの関係を仔細に調べた結
果を第1図に示す。これはEDTAの4%水溶液をそれ
ぞれのpHにて結晶化させ、沈殿分離後のる液中に残留
するEDTAO量を経時的に各pHで調べたものである
。FIG. 1 shows the results of a detailed investigation of the relationship between EDTA crystallization and pH. This is a result of crystallizing a 4% aqueous solution of EDTA at each pH, and examining the amount of EDTAO remaining in the solution after precipitation and separation over time at each pH.
この図からpH1,3以下あるいはpH1,8以上では
結晶化の速度が次第に遅くなり、かつEDTAの溶解度
も犬きくなること、従ってpH域は1.3〜1.8の範
囲が最も良い条件であることが判る。This figure shows that at pH 1.3 or lower or pH 1.8 or higher, the rate of crystallization gradually slows down and the solubility of EDTA also decreases.Therefore, the best condition is a pH range of 1.3 to 1.8. It turns out that there is something.
また、該ろ過液からのEl:DTAの分離回収を連続で
行う場合に、結晶の生成反応槽を2槽以上連結して直列
で行う方法が、同じ滞留時間の単槽で行うよりも有利で
ある。これは単槽で連続して行うと、ある確率でショー
トパスが起こり未反応のEDTAが流出してしまうが、
これを2槽以上の直列にして行うとショートパスの確率
は非常に小さくなり、はぼEDTAの溶解度まで、つま
り完全に結晶化させることができるようになり、従って
回収率の向上につながるからである。In addition, when separating and recovering El:DTA from the filtrate continuously, it is more advantageous to connect two or more crystal formation reaction tanks in series than to perform the process using a single tank with the same residence time. be. If this is done continuously in a single tank, there is a certain probability that a short pass will occur and unreacted EDTA will flow out.
If this is done in two or more tanks in series, the probability of a short pass will be extremely small, and it will be possible to reach the solubility of EDTA, that is, to completely crystallize it, which will lead to an improvement in the recovery rate. be.
さらに、結晶化させる条件のうち液の攪拌についてはぐ
攪拌周速は1.2m/sae程度で充分であるが、この
速度が極端に速くなると結晶が細分化するか又は結晶核
の発生量が多くなる。そのため結晶の比容積が大きくな
シ、この結果結晶の分離回収が困難となる。なお、攪拌
周速が極端に遅くなると液の混合が均一に行われず、結
晶化が不充分になることは言うまでもない。Furthermore, among the conditions for crystallization, a peripheral stirring speed of about 1.2 m/sae is sufficient for stirring the liquid, but if this speed is extremely high, the crystals will become fragmented or a large number of crystal nuclei will be generated. Become. Therefore, the specific volume of the crystal is large, which makes it difficult to separate and recover the crystal. It goes without saying that if the stirring circumferential speed is extremely slow, the liquids will not be mixed uniformly and crystallization will be insufficient.
以下に本発明の一実施態様を第2図に従って説明する。An embodiment of the present invention will be described below with reference to FIG.
廃液7を重金属イオン分離処理槽1に受は入れたのち、
重金属分離薬品として苛性ソーダなどのアルカリ剤8を
注入し空気などによりよく攪拌してpH1011上、望
ましくはpH12以上にする。次に、銅イオンを含有し
ている廃液の場合には、硫化アルカリを銅の1.0〜1
.1倍当量を加え銅イオンを分離する。また鉄(U)イ
オン含有の廃液については空気などで攪拌、酸化し鉄[
相]イオンにする。ここで分離される重金属イオンは水
酸化物あるいは硫化物のような不溶性のものとなシ沈殿
するが、この場合、高分子凝集剤等の助剤を添加するこ
とは分離効果を助長する。After receiving the waste liquid 7 into the heavy metal ion separation treatment tank 1,
An alkaline agent 8 such as caustic soda is injected as a heavy metal separation chemical and stirred well with air to adjust the pH to 1011 or higher, preferably 12 or higher. Next, in the case of waste liquid containing copper ions, add alkali sulfide to 1.0 to 1
.. Add 1 equivalent to separate copper ions. In addition, waste liquid containing iron (U) ions is agitated with air, oxidized, and iron [
[phase] ionize. The heavy metal ions separated here precipitate into insoluble substances such as hydroxides or sulfides, but in this case, the addition of an auxiliary agent such as a polymer flocculant enhances the separation effect.
沈殿分離後、移送ポンプ9で移送管10を経由して活性
炭ろ過槽2へ、さらに移送管11を通じてEDTA結晶
反応槽3へ、移送管13を経てEDTA結晶反応槽4へ
、移送管14を経て分離装置5へ、移送管15を通じて
受は槽6へと連続的に移送17、分離処理槽1の分離液
を処理する。また、分離処理槽1で発生する沈殿物は脱
水機等によシ処理し、その脱離液も同じルートで結晶を
回収する。After precipitation and separation, the mixture is transferred to the activated carbon filtration tank 2 via the transfer pipe 10 using the transfer pump 9, further to the EDTA crystal reaction tank 3 via the transfer pipe 11, to the EDTA crystal reaction tank 4 via the transfer pipe 13, and then via the transfer pipe 14. The separated liquid in the separation treatment tank 1 is continuously transferred to the separation device 5 through the transfer pipe 15 to the tank 6 17, and the separated liquid in the separation treatment tank 1 is processed. Further, the precipitate generated in the separation treatment tank 1 is treated by a dehydrator or the like, and the separated liquid is also recovered into crystals using the same route.
結晶反応槽6から受は槽6までのフローは高低差を与え
ることによる自然流下法で行うことも可能で、ポンプ等
の動力を節約することができる。The flow from the crystal reaction tank 6 to the receiving tank 6 can also be carried out by a gravity flow method by providing a height difference, and the power of pumps and the like can be saved.
結晶反応槽6では攪拌を与えながら酸12を加えpH1
,3〜1.8の範囲になるようにする。ここに用いる酸
は硫酸、塩酸などの無機酸で、廃液7にカルシウムイオ
ンが1000 ppm以上含まれる場合には塩酸を用い
る。結晶反応槽3.4での反応時間はそれぞれ15分、
合計30分間程度で充分である。In the crystal reaction tank 6, acid 12 was added while stirring to bring the pH to 1.
, 3 to 1.8. The acid used here is an inorganic acid such as sulfuric acid or hydrochloric acid, and when the waste liquid 7 contains 1000 ppm or more of calcium ions, hydrochloric acid is used. The reaction time in crystal reaction vessels 3 and 4 was 15 minutes, respectively.
A total of about 30 minutes is sufficient.
分離装置5でEDTAの結晶を分離し、分離液は移送管
15を通して受は槽6へ移送するが、分離装置5で30
分以上の滞留を与えることで結晶はさらに成長し、溶解
しているEDTAの濃度を低下させることができる。The separation device 5 separates the EDTA crystals, and the separated liquid is transferred to the receiving tank 6 through the transfer pipe 15.
By providing a residence time of more than 1 minute, the crystals can further grow and the concentration of dissolved EDTA can be reduced.
分離装置5で分離されたEDTAの結晶は、水洗により
夾雑水を除くことによって簡単に純度の高い結晶として
回収することができる。llmDTAの回収率、純度に
ついては実施例及び比較例に示す如く充分再利用可能な
良好のものであった。The EDTA crystals separated by the separator 5 can be easily recovered as highly pure crystals by removing contaminated water by washing with water. As shown in Examples and Comparative Examples, the recovery rate and purity of llmDTA were good enough to allow sufficient reuse.
以上のように本発明は、EDTAと結合した重金属イオ
ンを含む廃液からEDTAを効率よく回収してその再利
用を図ることができ、本発明により化学洗浄廃液の合理
的な処理が可能となった。As described above, the present invention can efficiently recover and reuse EDTA from waste liquid containing heavy metal ions combined with EDTA, and the present invention has made it possible to rationally treat chemical cleaning waste liquid. .
次に、本発明の実施例について記す。Next, examples of the present invention will be described.
実施例
上記組成の液を空気で攪拌しながら苛性ソーダを230
Or投入し充分酸化したところpH12,6となった。Example: 230% caustic soda was added to the solution having the above composition while stirring with air.
When Or was added and sufficiently oxidized, the pH became 12.6.
これに硫化ナトリウム(Na2S・9H20)を銅イオ
ンの1.1当量に相当する2080 fを投入した。こ
のときのpHは12.7となった。To this, 2080 f of sodium sulfide (Na2S.9H20) corresponding to 1.1 equivalents of copper ions was added. The pH at this time was 12.7.
これに高分子凝集剤5 ppmを添加し沈殿物を分離し
たところ上澄液は無色であったが、懸濁微小粒子の存在
を認めた。その水質は次のとおりであった。When 5 ppm of a polymer flocculant was added to this and the precipitate was separated, the supernatant liquid was colorless, but the presence of suspended microparticles was observed. The water quality was as follows.
前記第1工程処理液20 tを用いて、活性炭ろ過槽を
通した後75チの硫酸を比例注入しながら反応槽3.4
で各15分間の滞留時間を与え、連続処理した。このと
きの液のpH1,70であり、白色のEDTAの結晶が
生じ、分離装置でこの結晶を分離した。分離装置内では
30分間の滞留時間を与えた。Using 20 tons of the first step treatment liquid, it was passed through an activated carbon filter tank and then poured into a reaction tank 3.4 while proportionally injecting 75 tons of sulfuric acid.
A residence time of 15 minutes was given for each treatment, and the treatment was continued. At this time, the pH of the liquid was 1.70, and white EDTA crystals were formed, which were separated using a separator. A residence time of 30 minutes was allowed in the separator.
反応槽3.4の出口の液を5へのろ紙を用いて結晶を完
全にろ過し、そのろ液のEDTAの濃度を測定したとこ
ろ、それぞれ0.14係、0.06%であった。また分
離装置5出口の液のEDTAの濃度は0.05%であっ
た。ζこで回収されたEDTAは白色の結晶状の粉末で
ありその量は7802であ一つだ。The liquid at the outlet of reaction tank 3.4 was completely filtered to remove crystals using filter paper No. 5, and the EDTA concentration of the filtrate was measured to be 0.14% and 0.06%, respectively. Further, the concentration of EDTA in the liquid at the outlet of the separation device 5 was 0.05%. The EDTA recovered in this process is a white crystalline powder, and the amount is 7802.
比較例−1
上記実施例の第1工程処理液について、この実施例と同
様の方法で実験を行なった。但し硫酸の比例注入量を増
してpH1,1で処理した。そのときのEDTAの結晶
はやはり白色で結晶状の粉末であった。Comparative Example-1 An experiment was conducted using the first step treatment liquid of the above example in the same manner as in this example. However, the proportional injection amount of sulfuric acid was increased and the treatment was carried out at pH 1.1. The EDTA crystals at that time were still white and crystalline powder.
反応槽6.4の出口の液を5Aのろ紙を用いて結晶を完
全にろ過し、溶解しているEDTAの濃度を測定したと
ころ、それぞれ0.36 % 、0.27 %であった
。また分離装置5出口の液のEDTAの濃度は0.25
%であった。ことで回収されたEDTA。The liquid at the outlet of reaction tank 6.4 was completely filtered to remove crystals using a 5A filter paper, and the concentrations of dissolved EDTA were measured to be 0.36% and 0.27%, respectively. In addition, the concentration of EDTA in the liquid at the outlet of the separation device 5 is 0.25.
%Met. EDTA was recovered as a result.
量は740?であった。The amount is 740? Met.
比較例−2
上記実施例の第1工程処理液について、この実施例と同
様の方法で実験を行なった。但し活性炭ろ過槽を通さず
に実施した。このときのEDTA反応槽のpHは1.7
5であった。反応槽内はSSに由来する黄土色の濁りが
認められ、分離装置5出口の液は透明であるが、やや黄
色を呈していることが認められた。Comparative Example 2 An experiment was conducted using the first step treatment liquid of the above example in the same manner as in this example. However, it was carried out without passing through an activated carbon filtration tank. At this time, the pH of the EDTA reaction tank was 1.7.
It was 5. Ocher-colored turbidity originating from SS was observed inside the reaction tank, and although the liquid at the outlet of the separation device 5 was clear, it was observed to have a slightly yellow color.
また、ここで回収されたEDTAけ著しい黄土色を呈し
ていた。回収されたEDTAは7752であった。Moreover, the EDTA recovered here had a remarkable ocher color. The amount of EDTA recovered was 7752.
前記実施例および比較例で分離回収されたEDTAは、
それぞれ3tの純水(1μs^以下)で水洗した。水洗
水の水質は次表に示す値であったの定したが、その値は
先に示したとおりである。これらの回収したEDTA中
の不純物とEDTAの純度を測定したところ次表のよう
であった。The EDTA separated and recovered in the above examples and comparative examples was
Each was washed with 3 tons of pure water (1 μs^ or less). The quality of the washing water was determined to be as shown in the table below, and the values are as shown above. The impurities in the recovered EDTA and the purity of the EDTA were measured and were as shown in the following table.
この値よりEDTAの回収率を次の計算式より求めた。From this value, the recovery rate of EDTA was calculated using the following formula.
100
上述の結果より、本発明の実施例にお込てはEDTA濃
度(純度)が優れ、かつEDTAの回収率も高く、良好
な処理結果を示していることがよくわかる。100 From the above results, it is clear that the Examples of the present invention had excellent EDTA concentration (purity) and high EDTA recovery rate, indicating good treatment results.
第1図はEDTAの溶解度曲線であり、第2図は、本発
明の一実施M4様を示すフローシートである。
1・・・分離処理槽、2・・・活性炭ろ過槽、6,4・
・・結晶反応槽、5・・・分離装置、6・・・受は槽、
7・・・廃液、8・・・アルカリ剤、9・・・移送ポン
プ、10,11゜13 、14 、15・・・移送管、
12・・・酸。
特許出願人 荏原インフィルコ株式会社代理人弁理士
千 1) 捻
回 丸 山 隆 夫
15−FIG. 1 is a solubility curve of EDTA, and FIG. 2 is a flow sheet showing M4 implementation of the present invention. 1... Separation treatment tank, 2... Activated carbon filtration tank, 6, 4.
...Crystal reaction tank, 5... Separation device, 6... Receiving tank,
7... Waste liquid, 8... Alkaline agent, 9... Transfer pump, 10, 11°13, 14, 15... Transfer pipe,
12...acid. Patent applicant Ebara Infilco Corporation Representative Patent Attorney 11) Twisting Takao Maruyama 15-
Claims (1)
を含む化学洗浄廃液の処理方法において、 a)該廃液にアルカリを添加してpH10以上で重金属
イオンを沈殿分離させる第1工程、b)前記第1工程の
分離液を活性炭ろ過層を通すことにより該分離液中の微
粒子やインヒビターを除去する第2工程、 C)前記第2工程のろ過液に酸を添加して、pH1,3
〜1.8の範囲にてエチレンジアミン四酢酸の結晶を生
成させ、該結晶を分離回収する第3工程、 とからなることを特徴とするエチレンジアミン四酢酸を
含む化学洗浄廃液の処理方法。 2、前記廃液が、エチレンジアミン四酢酸と結合した重
金属イオンとして鉄イオン、銅イオンのいずれか少なく
とも一方を含むものである特許請求の範囲第1項記載の
方法。 3、前記鉄イオンが鉄(mイオンである場合には、予め
酸化して鉄面イオンとした後、前記アルカリを添加する
特許請求の範囲第2項記載の方法。 4、前記第1工程で添加されるアルカリが、硫化アルカ
リである特許請求の範囲第1項記載の方法。 5、前記第2工程のろ過液がカルシウムイオンを含む場
合には、前記酸として塩酸を添加する特許請求の範囲第
1項記載の方法。[Claims] 1. A method for treating chemical cleaning waste liquid containing heavy metal ions combined with ethylenediaminetetraacetic acid, comprising: a) a first step of adding an alkali to the waste liquid to precipitate and separate heavy metal ions at a pH of 10 or higher; b) ) A second step of removing fine particles and inhibitors in the separated liquid by passing the separated liquid of the first step through an activated carbon filtration layer; C) Adding an acid to the filtrate of the second step to adjust the pH to 1.3.
A method for treating chemical cleaning waste liquid containing ethylenediaminetetraacetic acid, comprising: a third step of generating crystals of ethylenediaminetetraacetic acid in a range of 1.8 to 1.8, and separating and recovering the crystals. 2. The method according to claim 1, wherein the waste liquid contains at least one of iron ions and copper ions as heavy metal ions combined with ethylenediaminetetraacetic acid. 3. The method according to claim 2, wherein the iron ions are iron (m ions, in which case they are oxidized in advance to become iron-faced ions, and then the alkali is added. 4. In the first step) The method according to claim 1, wherein the alkali added is an alkali sulfide. 5. When the filtrate in the second step contains calcium ions, hydrochloric acid is added as the acid. The method described in paragraph 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7307583A JPS59222292A (en) | 1983-04-27 | 1983-04-27 | Treatment of waste liquid of chemical cleaning containing ethylenediamine tetraacetate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7307583A JPS59222292A (en) | 1983-04-27 | 1983-04-27 | Treatment of waste liquid of chemical cleaning containing ethylenediamine tetraacetate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59222292A true JPS59222292A (en) | 1984-12-13 |
JPS6235837B2 JPS6235837B2 (en) | 1987-08-04 |
Family
ID=13507842
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7307583A Granted JPS59222292A (en) | 1983-04-27 | 1983-04-27 | Treatment of waste liquid of chemical cleaning containing ethylenediamine tetraacetate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59222292A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5102640A (en) * | 1990-06-29 | 1992-04-07 | Schlapfer Carl W | Process for removing metal ions from solution with a dipicolylamine chemically bound to the surface of a silicate |
WO1995027681A1 (en) * | 1994-04-07 | 1995-10-19 | Membrane Products Kiryat Weizmann Ltd. | Process and system for purifying a contaminated caustic feed solution |
DE19619828A1 (en) * | 1996-05-16 | 1997-11-20 | Roger Noero | Process for the preparation of photographic baths from color processes |
JP2002020481A (en) * | 2000-07-03 | 2002-01-23 | Mitsubishi Gas Chem Co Inc | Process for producing polyphenylene ether |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03124843U (en) * | 1990-03-30 | 1991-12-18 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5243453A (en) * | 1975-10-02 | 1977-04-05 | Furuno Electric Co Ltd | Ultrasonic detector |
JPS57147493A (en) * | 1981-03-09 | 1982-09-11 | Kurita Water Ind Ltd | Treatment of chemical cleaning waste liquid |
JPS5876177A (en) * | 1981-10-30 | 1983-05-09 | Kurita Water Ind Ltd | Purification of phosphate-contg. water |
-
1983
- 1983-04-27 JP JP7307583A patent/JPS59222292A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5243453A (en) * | 1975-10-02 | 1977-04-05 | Furuno Electric Co Ltd | Ultrasonic detector |
JPS57147493A (en) * | 1981-03-09 | 1982-09-11 | Kurita Water Ind Ltd | Treatment of chemical cleaning waste liquid |
JPS5876177A (en) * | 1981-10-30 | 1983-05-09 | Kurita Water Ind Ltd | Purification of phosphate-contg. water |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5102640A (en) * | 1990-06-29 | 1992-04-07 | Schlapfer Carl W | Process for removing metal ions from solution with a dipicolylamine chemically bound to the surface of a silicate |
WO1995027681A1 (en) * | 1994-04-07 | 1995-10-19 | Membrane Products Kiryat Weizmann Ltd. | Process and system for purifying a contaminated caustic feed solution |
DE19619828A1 (en) * | 1996-05-16 | 1997-11-20 | Roger Noero | Process for the preparation of photographic baths from color processes |
JP2002020481A (en) * | 2000-07-03 | 2002-01-23 | Mitsubishi Gas Chem Co Inc | Process for producing polyphenylene ether |
Also Published As
Publication number | Publication date |
---|---|
JPS6235837B2 (en) | 1987-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4332687A (en) | Removal of complexed heavy metals from waste effluents | |
EP0139622A1 (en) | A method for purifying aqueous solutions | |
JPH09276875A (en) | Treatment of waste water | |
TWI383958B (en) | Wastewater treatment methods | |
US5451327A (en) | Compound and method for treating water containing metal ions and organic and/or inorganic impurities | |
CN214611993U (en) | Mine strong brine zero release processing system | |
JPS59222292A (en) | Treatment of waste liquid of chemical cleaning containing ethylenediamine tetraacetate | |
US4279869A (en) | Process for recovering concentrated, purified tungsten values from brine | |
CN110023250A (en) | For handling the processing system and processing method of the water containing silica | |
JPH0592187A (en) | Treatment of fluorine-containing water | |
JP2002177963A (en) | Water cleaning treatment system and water cleaning method | |
KR100367356B1 (en) | Method for Purifying Liquid Medium by Extraction | |
JP3399276B2 (en) | Treatment method for fluorine-containing wastewater | |
US3511606A (en) | Process for removing aluminate from aqueous alkali metal hydroxide solutions | |
JPS6035200B2 (en) | Hard water slow softening method | |
EP0189831A1 (en) | Cobalt recovery method | |
CN115583752A (en) | Method for treating fluorine-containing acidic wastewater in grading manner and recycling calcium fluoride resources | |
JPS5846355B2 (en) | Treatment method for fluorine-containing ammonia waste liquid | |
JPS5976593A (en) | Treatment of chemical washing waste liquor containing edta | |
AU2019430430B2 (en) | Method and process arrangement for removing Si based compounds from a leaching liquor and use | |
KR19980702743A (en) | Ammonia Metal Solution Recirculation Method | |
CN108996752B (en) | Method for recovering low-concentration nickel from nickel extraction waste water | |
JPS62294491A (en) | Treatment of waste water incorporating gallium and arsenic | |
RU2213064C1 (en) | Method of recovering ethylenediaminetetraacetic acid from spent washing solution in power station steam generators | |
CN105174583B (en) | A kind of recycling processing method of diluted alkaline waste water |