[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS59225863A - Continuous casting method of ingot of aluminum or aluminum alloy, etc. - Google Patents

Continuous casting method of ingot of aluminum or aluminum alloy, etc.

Info

Publication number
JPS59225863A
JPS59225863A JP10632784A JP10632784A JPS59225863A JP S59225863 A JPS59225863 A JP S59225863A JP 10632784 A JP10632784 A JP 10632784A JP 10632784 A JP10632784 A JP 10632784A JP S59225863 A JPS59225863 A JP S59225863A
Authority
JP
Japan
Prior art keywords
ingot
carbon dioxide
water
aluminum
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10632784A
Other languages
Japanese (ja)
Inventor
ヴアルタ−・ハラ−
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcan Holdings Switzerland AG
Original Assignee
Alusuisse Holdings AG
Schweizerische Aluminium AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alusuisse Holdings AG, Schweizerische Aluminium AG filed Critical Alusuisse Holdings AG
Publication of JPS59225863A publication Critical patent/JPS59225863A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はアルミニウム又はアルミニウム合金等のインゴ
ットをモールドから連続鋳造する間に突−1−−一へ 出ストランドを炭酸ガスを含む水で冷却する連続鋳造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a continuous casting process in which an ingot of aluminum or an aluminum alloy is continuously cast from a mold, and the strands coming out of the protrusion are cooled with water containing carbon dioxide gas. Regarding the method.

従来の技術 直接冷却を使用して連続鋳造する時にモールド/)s 
+ら突出するインゴットから熱を奪うためにモールド直
下Cインボッ1〜面に冷却剤を噴射する。鋳造開始に際
して、最初は冷却剤はダミーブロックのみに衝突する。
Conventional technology: When continuous casting using direct cooling mold/)s
In order to remove heat from the ingot protruding from the mold, coolant is injected onto the surface of the C ingot directly below the mold. At the start of casting, the coolant initially impinges only on the dummy block.

この結果として、熱の間接除去は溶融金属の緩やかな硬
化と/にり、鋳造されるインボッ1〜の底部は平な形状
となる。ダミーブロックが順次低下すれば、冷却剤はイ
ンボッ1〜の面に直接衝突し、インゴットからの熱の除
去は急激に増加する。この熱衝撃によって生じた応力は
インボッi−の弾性限界よりも大となり、このため永久
変形を生じてインゴットベースの凸曲面の形状となる。
As a result of this, the indirect removal of heat results in a gradual hardening of the molten metal and/or a flat bottom of the cast ingot. If the dummy blocks are lowered one after another, the coolant will directly impinge on the surface of the ingot 1~, and the heat removal from the ingot will increase rapidly. The stress generated by this thermal shock becomes larger than the elastic limit of the ingot, causing permanent deformation and resulting in a convex curved shape of the ingot base.

月利の抗張力を超えればインゴットに亀裂を生ずる。平
なベースのインゴットを得るためには、インゴットの降
下の最初の間には過度に強く冷却してはならない。
If the tensile strength of the monthly rate is exceeded, cracks will occur in the ingot. In order to obtain an ingot with a flat base, it must not be cooled too strongly during the initial descent of the ingot.

このための提案として、米国特許3441079号で2
− は降下の最初の間はインゴット(J冷却剤を間欠的に作
用さける。しかし、この方法の欠点は不規則な熱パター
ンを生じ、インボッ1〜の不)↓1則な凝固パターンを
生ずる。
As a proposal for this purpose, US Patent No. 3,441,079
- Avoid intermittently applying coolant to the ingot during the initial descent. However, the disadvantage of this method is that it produces an irregular heating pattern, resulting in a uniform solidification pattern.

ドイツ特許公告D[−八81293956号は連続鋳造
の薄くストリップ、板等の冷却方法を示し、モールド内
でエゼクタ状に生成される水とガスの混合物を利用し、
モールドを離れる前にインゴットを直接に冷却、即15
冷却剤を薄いストリップ等に直接噴射して冷TJ1する
と共に、モールド内のストラツ1〜を介して間接冷却す
る。空気及び又は水の但を変化させて液溜の深さ及び/
又は鋳造Jる博いス1−リップの温度を調製ザる。水と
空気の混合物は霧状で噴射するため、特に直接冷却間は
冷却の特定の制御を行なうことは不可能である。この特
許では間接冷却間は、モールドの覆うスペース内のイン
ゴットの間接冷却のためには水晶を増す必要があり、直
接冷却の時は空気量を増す必要が生ずる。この方法では
インボッ1〜に特定の所要の方法で連続的に冷却剤を噴
射することはできない1上述の方法の他の捉案として、
ドイツ特許公開D E−OS 2408285号がある
。上述の例と同様にL−ルドから出るス(ヘランドを冷
y111するために水と空気の混合物を使用する。第1
に冷却水が加圧下でモールド内の窒又は通路に流入し、
モールドの成形面を冷却する。モールドを出た水はI造
ストリップを直接冷却する。冷却剤出口と別の空隙との
断面積の差によって空気は水ジJツトポンプ効果で後者
から引抜かれる。この空気は水の冷却能力に比較してほ
とんど効果がない。更に冷却の調製に問題があり、例え
ば噴射水損を増せば誘導される空気量も増加する。冷却
効果の増加は期待できず、空気と水の混合物は広く分散
するだけである。
German Patent Publication No. D [-881293956] describes a method for cooling continuously cast thin strips, plates, etc., which utilizes a mixture of water and gas produced in the form of an ejector within the mold;
Cool the ingot directly before leaving the mold, immediately
Coolant is directly injected onto a thin strip or the like to perform cooling TJ1, and indirect cooling is performed via struts 1 in the mold. By changing the air and/or water content, the depth of the liquid reservoir and/or
Or adjust the temperature of the casting lip. Since the water/air mixture is injected in the form of a mist, it is not possible to carry out specific control of the cooling, especially during direct cooling. In this patent, during indirect cooling, it is necessary to increase the amount of crystal for indirect cooling of the ingot in the space covered by the mold, and during direct cooling, it is necessary to increase the amount of air. This method does not allow continuous injection of coolant into the injector in the specific required manner.1 Another alternative to the method described above is to
There is a German patent publication DE-OS 2408285. Similar to the example above, a mixture of water and air is used to cool the steam exiting the L-rud.
Cooling water flows under pressure into the nitrogen or passages in the mold,
Cool the molding surface of the mold. The water leaving the mold directly cools the I-shaped strip. Due to the difference in cross-sectional area between the coolant outlet and the further air gap, air is drawn out of the latter with the effect of a water jet pump. This air has little effect compared to the cooling capacity of water. Furthermore, there are problems with the provision of cooling, for example, increasing the injection water loss also increases the amount of induced air. No increase in the cooling effect can be expected; the air/water mixture will only be widely dispersed.

ドイツ特許公開D E−OS 2909990号に示す
方法は金属ブロック又はインゴットの直接急冷鋳造法で
あり、冷却流体によってインゴットから取去る熱を少な
くとも鋳造の始動時に減少させる。このためにガス、好
適な例では炭酸ガスを加圧下で冷却剤に混合づる。冷却
剤内に溶解したガスは冷却剤がインゴツト面に衝突した
時にインゴツト面に絶縁フィルムを形成する。冷却強さ
が減少し、熱を取去る桁が減少づる。
The method described in DE-OS 2909990 is a direct quench casting of metal blocks or ingots, in which the heat removed from the ingot by means of a cooling fluid is reduced, at least at the start of the casting. For this purpose, a gas, preferably carbon dioxide, is mixed with the coolant under pressure. The gas dissolved in the coolant forms an insulating film on the ingot surface when the coolant impinges on the ingot surface. The cooling intensity decreases and the amount of heat removed decreases.

始動過程の終りに冷却剤に添加でるガス量を減少すれば
、熱を取去る祖は増加する。
Reducing the amount of gas added to the coolant at the end of the startup process increases the amount of heat removed.

上述の方法の最も大き41欠点は費用であり、特に冷却
剤にガスを溶解させるだめの所要の混合調製装置が高価
である。更に冷却の制御は液冷却剤内のガスの溶解性に
従って定まる。溶解性は各種の異なるパラメータによっ
て定まり、鋳)告全期間で変化する各種条件その他の関
数ににつで変化する。
The biggest drawback of the above-described method is the cost, especially the required mixing and preparation equipment for dissolving the gas in the coolant. Furthermore, the control of cooling depends on the solubility of the gas in the liquid coolant. Solubility is determined by a variety of different parameters and varies as a function of various conditions and other variables that change over the casting period.

発明が解決しようとする。に一 本発明は上述の型式の冷却方法を捏供し、−F述の欠点
を克服して冷却方法の正確な制御を、間接冷却期間及び
直接冷却期間に関して得J:うどするものである。
The invention attempts to solve the problem. The present invention provides a cooling method of the type described above, which overcomes the drawbacks mentioned above and provides precise control of the cooling method with respect to the indirect cooling period and the direct cooling period.

問題点を解決するための手段 り述の目的を達するだめの本発明による冷却方法は、水
に添加する炭酸ガス量は始動位相間一定とし、インゴツ
ト面と冷却剤との間の熱接触が増加すると共に水の流量
を増すことによって冷却剤内の炭酸ガス81度を低下さ
せる。
Means for Solving the Problems In order to achieve the stated objectives, the cooling method according to the invention consists in that the amount of carbon dioxide gas added to the water is constant during the starting phase, and the thermal contact between the ingot surface and the coolant is increased. At the same time, by increasing the water flow rate, the carbon dioxide gas in the coolant is reduced by 81 degrees.

L−皿 本発明によって、水と炭酸ガスの所定温度の水炭酸ガス
混合物を使用するため、冷却水内の炭酸ガスの溶解度に
は炭酸ガス効果に影響しない。即ち、飽和眼疾等の不確
かな限度値は重要ではない。
L-Dish According to the present invention, since a water-carbon dioxide mixture of water and carbon dioxide at a predetermined temperature is used, the solubility of carbon dioxide in the cooling water does not affect the carbon dioxide effect. That is, uncertain limits such as saturated eye disease are not important.

インゴット冷却間に炭酸ガスによる熱絶縁の程度が温度
を低下し、冷却水のエネルギー又は速度を増加すること
によって影響する。これは単に冷却水の流量を増加する
ことによって可能となる。インゴツト面に到達する冷却
水mが増加すれば炭酸ガスの形成する絶縁フィルムは薄
くなり、水の貫通が容易となる。R羨にフィルムはなく
なり、水による通常の冷却効果を完全に利用される。冷
却剤用の炭酸ガスm度の所定値で、又は始動位相の最後
に炭酸ガスの供給を停止することもできる。
The degree of thermal insulation provided by carbon dioxide during ingot cooling is affected by lowering the temperature and increasing the energy or velocity of the cooling water. This is possible simply by increasing the flow rate of cooling water. As the amount of cooling water m reaching the ingot surface increases, the insulating film formed by carbon dioxide gas becomes thinner, making it easier for water to penetrate. There is no film in the R-enable, and the normal cooling effect of water is fully utilized. It is also possible to stop the supply of carbon dioxide at a predetermined value of m degrees of carbon dioxide for the coolant or at the end of the start-up phase.

実施例 始動に際しての水と炭酸ガス混合物は、モールじににつ
て生ずる間接冷/J]とダミーベース等を下げた時の直
接冷却どの間の熱伸1撃をて・′さるだ(J小さく−す
るJ:うに況合比を定める必要がある1、同II、1に
、この比は水中の炭酸ガスの最大濃度値であり、水を加
えて濃度を下げることに困難は4丁い。水量を同じに保
って炭酸ガス最を下げる既知の万ン去には、溶解炭酸ガ
スの実際量が不lif「定になる。ぞ−れ故、本発明の
実施例ににっで、始動過程の前に特定の濃度の炭酸ガス
ど水の混合物をタンク等に準備し、水を加えて始動過程
に際して使用づる。他の実施例どして、混合装置内で炭
酸ガスど水の混合物を連続的に準備し、連続的に水量を
増加する。
At the time of starting the example, the water and carbon dioxide mixture is heated by one blow of heat expansion between the indirect cooling that occurs when the molding is done and the direct cooling that occurs when the dummy base etc. is lowered. - J: It is necessary to determine the sea urchin situation ratio 1, 2, 1, this ratio is the maximum concentration value of carbon dioxide gas in water, and there are 4 difficulties in reducing the concentration by adding water. Known methods of lowering the carbon dioxide level while keeping the water level the same will result in an indeterminate amount of dissolved carbon dioxide. Before starting the process, a mixture of carbon dioxide gas and water with a specific concentration is prepared in a tank or the like, and water is added to use it during the startup process.In another embodiment, the mixture of carbon dioxide gas and water is continuously prepared in a mixing device. Prepare and continuously increase the amount of water.

発明の効果 本発明によるインボッ1〜冷却制御方法を使用すること
ににって、断面積変化の最小のインゴットを、特にイン
ボッ1〜始動11.1のヘッド部分で得られる。
Effects of the Invention By using the invoking 1-cooling control method according to the invention, an ingot with minimal cross-sectional area changes is obtained, especially in the head section of invoking 1-starting 11.1.

特許出願人  スイス・アルミニウム・リミテッド 7−Patent applicant: Swiss Aluminum Limited 7-

Claims (1)

【特許請求の範囲】 1、 アルミニウム又はアルミニウム合金等のインボッ
1へをモールドから炭酸ガスを含む水によって冷却する
鋳造方法において、水に加える炭酸ガスの量を鋳造始動
の間は一定とし、インゴットの面と冷却水との間の熱接
触が増加すれば水の流量を増加することににっで炭酸ガ
ス濃度を減少ざ11ることを特徴とするアルミニウム又
はアルミニウム合金等のインゴットの連続鋳造方法。 2、 鋳造の始動の後又は冷却剤内の炭酸ガス濃度が所
定値以下となった時は炭酸ガスの供給を停止1ニする特
許請求の範囲第1項記載の方法。
[Claims] 1. In a casting method in which an ingot 1 of aluminum or aluminum alloy is cooled from a mold with water containing carbon dioxide gas, the amount of carbon dioxide gas added to the water is kept constant during the start of casting, and the ingot A method for continuous casting of ingots such as aluminum or aluminum alloys, characterized in that increasing the thermal contact between the surface and the cooling water increases the flow rate of water and thereby decreases the concentration of carbon dioxide gas. 2. The method according to claim 1, wherein the supply of carbon dioxide gas is stopped after the start of casting or when the concentration of carbon dioxide gas in the coolant becomes less than a predetermined value.
JP10632784A 1983-05-26 1984-05-25 Continuous casting method of ingot of aluminum or aluminum alloy, etc. Pending JPS59225863A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE33190879 1983-05-26
DE33190887 1983-05-26
DE3319087 1983-05-26
DE3346151124 1983-12-21

Publications (1)

Publication Number Publication Date
JPS59225863A true JPS59225863A (en) 1984-12-18

Family

ID=6199917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10632784A Pending JPS59225863A (en) 1983-05-26 1984-05-25 Continuous casting method of ingot of aluminum or aluminum alloy, etc.

Country Status (2)

Country Link
JP (1) JPS59225863A (en)
ZA (1) ZA843824B (en)

Also Published As

Publication number Publication date
ZA843824B (en) 1985-01-30

Similar Documents

Publication Publication Date Title
US4166495A (en) Ingot casting method
TW342357B (en) Method of casting steel strip
KR950031314A (en) Continuous steel casting method
JPH03243247A (en) Horizontal type continuous casting method for hoop cast metal and apparatus thereof
JPS59225863A (en) Continuous casting method of ingot of aluminum or aluminum alloy, etc.
JP3101069B2 (en) Continuous casting method
US2280833A (en) Treatment of cast metals
JPS5850167A (en) Prevention for clogging of sprue
JPH0857584A (en) Production of stainless steel cast slab having good surface quality and workability
KR880001833A (en) How to control the density of solidified aluminum
JPS62187556A (en) Continuous casting method
SU531681A1 (en) Method of wear-resistant surfacing
JP3546137B2 (en) Steel continuous casting method
JPS6340650A (en) Apparatus for reducing center segregation in continuously casting slab
RU2214884C2 (en) Method for continuous casting of metals by melting-to-melting process
SU1747234A1 (en) Process for producing rimming steel ingots
JPS60240355A (en) Continuous casting method of slab
RU2048962C1 (en) Method of continuous casting of metals
JPS60196251A (en) Continuous casting method
NO842040L (en) PROCEDURE FOR STRUCTURE CASTING, SPECIFICALLY OF ALUMINUM OR ALUMINUM ALLOY
SU1404161A1 (en) Method of casting rimmed steel
JPH02258152A (en) Continuous casting method
JPH04224050A (en) Method for preventing solidification of end parts in strip casting
KR950012627B1 (en) Method for cooling of bloom casting
JP3238781B2 (en) Stable casting method for metal strip