JPS5921918A - Combustion controlling mechanism employing multiburner - Google Patents
Combustion controlling mechanism employing multiburnerInfo
- Publication number
- JPS5921918A JPS5921918A JP57131027A JP13102782A JPS5921918A JP S5921918 A JPS5921918 A JP S5921918A JP 57131027 A JP57131027 A JP 57131027A JP 13102782 A JP13102782 A JP 13102782A JP S5921918 A JPS5921918 A JP S5921918A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- burner
- flow rate
- furnace
- section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N1/00—Regulating fuel supply
- F23N1/02—Regulating fuel supply conjointly with air supply
- F23N1/022—Regulating fuel supply conjointly with air supply using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2223/00—Signal processing; Details thereof
- F23N2223/08—Microprocessor; Microcomputer
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2237/00—Controlling
- F23N2237/02—Controlling two or more burners
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Regulation And Control Of Combustion (AREA)
- Control Of Combustion (AREA)
- Feeding And Controlling Fuel (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、マルチバーナを用いた燃焼制御機構の新規有
用外提供に係るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the provision of a new and useful combustion control mechanism using a multi-burner.
最近の燃料価格の高騰にともない、条里の燃料を使用す
る工業用各種加熱炉、ボイラー、溶解炉等において、省
エネルギ技術の進展にt」、目覚しいものがある。With the recent rise in fuel prices, there has been remarkable progress in energy-saving technology for various industrial heating furnaces, boilers, melting furnaces, etc. that use Jori fuel.
これは、特に燃焼制御において顕著であり、より高度な
、エシシビアな制御の技術IVlffi発が絶えず望1
れている。This is particularly noticeable in combustion control, and the development of more advanced and efficient control technology is constantly desired.
It is.
ところで、各種燃焼設備では、被加熱物があり、その効
率と品質管理が特に重要な問題となっている。Incidentally, in various types of combustion equipment, there are objects to be heated, and efficiency and quality control thereof are particularly important issues.
このような中で、燃焼制御の代表的なものとしては、排
ガスのO,制御や燃料投入)(ターンなどのシビアな制
御技術が開発され、実用化されつつあるが、これらはい
ずれも炉内を均一的なものとして取扱った技術である。Under these circumstances, as typical combustion control techniques, severe control technologies such as exhaust gas O2 control and fuel injection (turn) have been developed and are being put into practical use. This is a technique that treats information as uniform.
燃焼炉の炉内では、火炎、燃焼ガス、炉壁などを含めて
温度分布が存在している。このため−1被加熱物で昇温
しにくい部分があると、その部分の昇温を待たねばなら
ず、すでに加熱が完了している部分は過剰加熱となって
燃料や時間の無駄を生じていた。Inside a combustion furnace, there is a temperature distribution including the flame, combustion gas, furnace wall, etc. Therefore, if there is a part of the object to be heated that is difficult to heat up, you will have to wait for that part to rise in temperature, and the part that has already been heated will be overheated, resulting in wasted fuel and time. Ta.
甘た、加熱ムラは、熱応力による材料のワレ、温度ムラ
による圧延精度の低下、ざらに材質的にも不均質を生じ
るなど品質上にも悪影響を及ぼしている。Uneven heating also has a negative impact on quality, such as cracking of the material due to thermal stress, reduced rolling accuracy due to temperature unevenness, and unevenness in the material.
ここで、第1図を参照して従来の燃焼制御1機構を概説
する。Here, one conventional combustion control mechanism will be outlined with reference to FIG.
第1図において、(1)は燃焼炉で、この炉内温度は温
度検出端(8)を介して検出され、温度制御部(2)で
制御演算が行われるようされている。In FIG. 1, (1) is a combustion furnace, and the temperature inside this furnace is detected through a temperature detection terminal (8), and control calculations are performed in a temperature control section (2).
温度制御部(2)の111力信号は燃料制御部(3)の
設定値として接続されている。The 111 force signal of the temperature control (2) is connected as a setpoint to the fuel control (3).
燃料制御部(3)で制御された燃料流量は燃料供給部(
A)の検出端(9)で検出され、比率設定器(4)を通
して燃焼空気制御部(5)の設定値として接続され、空
気供給部(B)の流量゛を検出端(Idで検出し、空気
量を制御するものであシ、燃料は流量調整部(6)を介
して、空気は流量調整部(7)を介してそり、それ送出
され、燃焼炉(1)に取付けられたパーナロ1)によυ
燃焼可能とされている。The fuel flow rate controlled by the fuel control section (3) is transferred to the fuel supply section (
A) is detected at the detection end (9) and connected as a setting value of the combustion air control section (5) through the ratio setting device (4), and the flow rate of the air supply section (B) is detected at the detection end (Id). , the amount of air is controlled, the fuel goes through the flow rate adjustment part (6), the air goes through the flow rate adjustment part (7), and is sent out to the Panaro attached to the combustion furnace (1). 1) yoυ
It is considered combustible.
第1図および上記説明の構成から明かな工うに、従来の
燃焼制御機構にあっては、炉内の温度分布を制御するこ
とはできない。As is clear from FIG. 1 and the configuration described above, the conventional combustion control mechanism cannot control the temperature distribution within the furnace.
而して、炉内の温度分布を制御する手段として、単純に
バーナ数を多くしてそれぞれを制御する方法とか、燃料
や燃焼用空気の噴射角度や流速を可変にする方法が考え
られる。As a means of controlling the temperature distribution in the furnace, there may be a method of simply increasing the number of burners and controlling each one, or a method of varying the injection angle and flow rate of fuel and combustion air.
しかしながら、前者の場合、通常、バーナは、1バーナ
ガンに対して1バーナタイル、および1エアレジスタで
構成され、バーナ1基についてバーナガン径の数倍から
数十倍の場所を必要とするため、場所的な制約や、これ
にともなう炉の大改造が必要となるので実現性が少ない
。However, in the former case, the burner usually consists of one burner tile and one air register for one burner gun, and one burner requires a space several to several tens of times the diameter of the burner gun. However, it is not very practical due to technical restrictions and the need for major remodeling of the furnace.
後者の場合、発想としては可能であるが、バーナt7を
造が複雑になpすぎ、実用上で問題がある。In the latter case, although it is possible in concept, the construction of the burner T7 becomes too complicated and there is a problem in practical use.
又、バーナ部は高温にさらされるのでffG造が複雑な
ものほど故障が発生しやすいことになり、あくまでも発
想の域に止まり、実現性がない。In addition, since the burner section is exposed to high temperatures, the more complex the ffG structure is, the more likely it is that failures will occur, so this remains just a concept and is not practical.
そこで、木発明者等は、各種燃焼炉の木質的な問題にか
かわる炉内温度の分布が制御可能であシながら、(IG
造がシンプルでかつメンテナンスが容易で、コストが安
価で更に耐久性がある制御機構の開発に成功したのであ
る。Therefore, wood inventors and others have developed a system that allows control of the temperature distribution within the furnace, which is related to wood-related problems in various combustion furnaces.
They succeeded in developing a control mechanism that is simple in construction, easy to maintain, inexpensive, and durable.
即ち、木発明は概略して、従来のバーナガンが単数であ
ることから脱却して複数本とし、その個々の燃料配分を
かえることで炉内の温度分布を容易に制御できるマルチ
バーナを用いた燃焼制御機構の提供にある。In other words, the invention of the tree is based on the idea of combustion using a multi-burner, which breaks away from the conventional single burner gun and uses a plurality of burners, making it possible to easily control the temperature distribution inside the furnace by changing the individual fuel distribution. The purpose is to provide a control mechanism.
更に、マルチバーナのバーナ支管の先端には特定の噴射
角度をもつバーナチップを取付けることで、昇温しにく
い部分に熱をまわすことかでき、かつ、ターンダウン(
燃料流量の減少)時には特定バーナ支管のみに燃料を流
すことで、一定の流速が確保できるようにし、最適な温
度分布の制御が可能なマルチバーナを用いた燃焼制御機
構の提供にある。Furthermore, by attaching a burner tip with a specific injection angle to the tip of the burner branch pipe of the multi-burner, it is possible to distribute heat to areas that are difficult to heat up, and to reduce turndown (
The purpose of the present invention is to provide a combustion control mechanism using a multi-burner that is capable of ensuring a constant flow velocity by flowing fuel only to a specific burner branch pipe when the fuel flow rate decreases, and that can control optimal temperature distribution.
なお、これまでにマルチタイプのバーナは第2図に示す
ような形での使用例がある。Incidentally, multi-type burners have been used in the form shown in FIG. 2 so far.
即ち、第2図において、02はマルチバーナで、先端に
バーナチップ03を有するバーナ支管04)の複数本を
マルチ化したものである。That is, in FIG. 2, 02 is a multi-burner, which is made up of a plurality of burner branch pipes 04) each having a burner tip 03 at its tip.
このバーナではマルチ化さノ1.た本来の目的は燃焼用
空気流の中に燃料を分離して投入することで混合を促進
し、燃焼性の向上を図る点にある。This burner allows for multi-purpose use. The original purpose of this method is to separate and inject fuel into the combustion air stream to promote mixing and improve combustibility.
従って、図から明らかな如くマルチ化ざitでいるが、
各バーナ支管04)の燃料配分をコントロールできるも
のではない。例えば、各バーナ支管04)のバーナチッ
プ031の燃料噴射孔径をかえることで、同一孔径の条
件時と温度分布に差をつけることはできるが、明らかに
制御因子とはならないものである。Therefore, as is clear from the figure, it is necessary to make it multi-purpose.
It is not possible to control fuel distribution to each burner branch 04). For example, by changing the fuel injection hole diameter of the burner tip 031 of each burner branch pipe 04), it is possible to make a difference in temperature distribution compared to when the hole diameter is the same, but this is clearly not a control factor.
また、バーナ支管のそれぞれに孔径可変などの制御装置
を組込むと構造が複雑になシすぎ実用上で問題が生じる
。Furthermore, if a control device for controlling the hole diameter is incorporated into each of the burner branch pipes, the structure becomes too complicated, which causes problems in practical use.
そこで、本発明にあっては、バーナをマルチ化し、かつ
それぞれのバーナ支管を独立させて制御するところに大
きな窓錠がある。Therefore, in the present invention, there is a large window lock in which the burners are multiplied and each burner branch pipe is controlled independently.
斯る、マルチバーナを用いることによシ、バーナ外部で
燃料配分の制御ができ、バーナ及びその制御機構がシン
プルにできるのである。By using such a multi-burner, fuel distribution can be controlled outside the burner, and the burner and its control mechanism can be simplified.
マルチバーナを用いる実用上の利点は次の通りである。The practical advantages of using a multi-burner are as follows.
第2図に示した一体形式の工栗用マルチ/(−すでは、
長さが数メートル、重量が数百キロにおよぶことがあυ
、バーナのメンテナンスが非常に困難となる。In the integrated type chestnut mulch shown in Figure 2,
They can be several meters long and weigh hundreds of kilos.
, maintenance of the burner becomes extremely difficult.
その点、木発明に用いるマルチバーナぞは各)(−す支
管ごとに取扱えるので軽量となシ、メンテナンスが簡単
にできるのである。In this respect, the multi-burners used in woodwork can be handled individually, making them lightweight and easy to maintain.
また、メンテナンスの際は、点検するバーナ支管だけを
消火して取出せばよく、他のバーナ支管は燃焼した−1
まで点検可能とすることもできる。In addition, during maintenance, it is only necessary to extinguish and remove the burner branch pipe to be inspected, and other burner branch pipes are burned out.
It may also be possible to inspect up to
サラニ、既設バーナの周辺に配置すればよく、既設バー
ナをとくに改造する必要はなく、そのままの機能を残し
ておくことができ、これは異種の燃料を使用するときや
、既設バーナも使用する混焼のときなど非常に有効とな
る。その他、新たな燃料が増加する場合など独立的にバ
ーナ支管を増設して燃焼させることができる。There is no need to modify the existing burners, and the functions can be left as they are. It is very effective when In addition, when new fuel is added, burner branch pipes can be added and burned independently.
本発明のマルチバーナを用いた燃焼制御機Fietは、
特に、ガス系燃料でその効果が発揮できる。The combustion control machine Fiet using the multi-burner of the present invention is
In particular, this effect can be demonstrated with gas-based fuels.
燃料を燃ゼすと火炎ができ、火炎や燃焼ガスから周囲に
熱を放散して熱が伝えられる。この場合、大きく分ける
と輻射と対流の形があることは周知の通シである。When fuel burns, a flame is created, and heat is transferred from the flame and combustion gas to the surrounding area. In this case, it is well known that there are two main types: radiation and convection.
工業炉の中で高温用の炉では大部分(90%以上)が輻
射によるものである。Among industrial furnaces, most (90% or more) of high-temperature furnaces are caused by radiation.
火痰輻射伝熱は、輝炎輻射とガス輻射にわけられる。Fire-phlegm radiation heat transfer can be divided into bright flame radiation and gas radiation.
ここに、輝炎輻射は火炎中に浮遊する固体物質(例えば
未燃カーボン、灰分など)からの輻射であり、ガス輻射
はCo、、H,Oなどからの2原子ガスによるものであ
る。Here, the bright flame radiation is radiation from solid substances (for example, unburned carbon, ash, etc.) floating in the flame, and the gas radiation is from diatomic gases such as Co, H, and O.
輻射量は、輻射率と温度の関数であシ、一般的に輻射率
が高いとガス温度は低下し、輻射率が低いと周囲に熱を
出しにくいのでガス温度は高くなる。The amount of radiation is a function of emissivity and temperature; generally, when the emissivity is high, the gas temperature decreases, and when the emissivity is low, it is difficult to emit heat to the surroundings, so the gas temperature increases.
また、輝炎輻射〉ガス輻射の関係にある。Also, there is a relationship between bright flame radiation and gas radiation.
ガス燃焼では、重油燃焼時に比べ、一般に輝炎輻射が低
く、炭化水泳を含まないものでは煤塵等は除きガス輻射
のみになる。In gas combustion, bright flame radiation is generally lower than in heavy oil combustion, and in those that do not include carbonization swimming, only gas radiation is produced, excluding soot and dust.
このため、重油燃焼では輝炎輻射で炉内温度は均一化し
やすく、ガス燃焼では熱放散が少ないので局所的な高温
部を形成しやすい特性がある。For this reason, in heavy oil combustion, the temperature inside the furnace tends to be uniform due to bright flame radiation, and in gas combustion, there is little heat dissipation, so localized high temperature areas are easily formed.
例えば、鉄鋼朶で広く使用されている上部一方向焚き均
熱炉を想定して検討する。For example, we will consider an upper one-way firing soaking furnace that is widely used in steel mills.
ガス燃焼でできた高温燃焼ガス流は、反バーナ側(バー
ナ側との対抗側)炉壁と衝突し、その部分を局所的に加
熱する。その影響を受けて反バーナ側に近い位置の被加
熱物の昇温は早くなカ、昇温しにくいバーナ側材料はい
つまでも昇温かおそいという問題があった。The high-temperature combustion gas flow generated by gas combustion collides with the furnace wall on the side opposite the burner (the side opposite to the burner side) and locally heats that part. Under the influence of this, there was a problem in that the temperature of the object to be heated near the side opposite to the burner did not rise quickly, and the material on the burner side, which was difficult to heat up, continued to heat up slowly.
コノ温度分布の問題の他に、ターンダウン時の問題もあ
る。In addition to the problem of temperature distribution, there is also a problem at turndown.
均熱期にガス流量が低下すると、燃料や空気の噴射流速
が低下し、混合性が悪くなって燃焼性が悪化することや
、運動量の低下で燃焼ガスの貫通力が弱−!シ炉内温度
分布が悪く々つたり、加熱効率が低下したシする。When the gas flow rate decreases during the soaking period, the injection flow rate of fuel and air decreases, resulting in poor mixing and combustibility, and a decrease in momentum, which weakens the penetration force of the combustion gas. The temperature distribution inside the furnace is poor and the heating efficiency has decreased.
このように、ガス燃焼では、燃料の木質と操業上からく
る問題で不均一な温度分布を生じやすく、それがそのま
捷前述した省エネルギーや品質の問題に関連している。As described above, gas combustion tends to cause uneven temperature distribution due to the wood quality of the fuel and operational issues, and this is related to the energy saving and quality problems mentioned above.
従って、ガス燃焼ではとくに燃焼ガス流や、炉内の温度
分布を制御することが重要となる。Therefore, in gas combustion, it is especially important to control the flow of combustion gas and the temperature distribution within the furnace.
以上の各諸点を加味して要するに本発明ではマルチバー
ナを用いた燃焼制御機構としてまず第1に、複数のバー
ナ支管の先端にそれぞれバーナチップが備えられたガス
焚用マルチバーナが、燃焼炉に前記バーナチップを介し
て炉内に燃料を噴出可能に設けられ、燃焼炉の炉内温度
を検出する温度制御部が設けられ、該温度制御部の出力
信号で作動される流量調節器が備えられた燃料制御部が
設けられ、燃料供給部の流量゛を検出する燃料供給流量
検出部が設けられ、前記流US節器が温度制御部からの
出力信号を受けこれに応じた流量が設定されるとともに
該流量設定値と前記燃料供給流量検出部との測定信号と
を比較可能にPIII11成され、核比顧された偏差に
応じて作動される燃料流量調節部が設けられ、更に、前
記バーナ支管のそれぞれに燃料を分配する燃料分配弁が
設けられ、前記燃料制御部から分岐された燃料流量信号
で作動する燃料分配演算器が設けられ、該燃料分配演算
器が、燃料流故に見合ってあらかじめ定められた燃料配
分に従って前記燃料分配弁のそれぞれの開度を設定可能
に連動され、前記燃料流量調節部で制御された燃料を前
記燃料分配弁のそれぞれに分岐送出する燃料分岐部が設
けられ、前記燃料分配弁のそれぞれの開度に比例した燃
料がそれぞれバーナ支管に送出可能に構成されているこ
とを特徴とする。Taking the above points into account, in the present invention, first of all, as a combustion control mechanism using a multi-burner, a gas-fired multi-burner is installed in a combustion furnace, in which a plurality of burner branch pipes are each equipped with a burner tip. A temperature control unit is provided to be able to inject fuel into the furnace through the burner chip, and detects the temperature inside the combustion furnace, and a flow rate regulator is provided that is operated by an output signal of the temperature control unit. A fuel control section is provided, a fuel supply flow rate detection section for detecting the flow rate of the fuel supply section is provided, and the flow rate US moderator receives an output signal from the temperature control section and sets a flow rate in accordance with the output signal. A fuel flow rate adjustment section is also provided, which is configured to be able to compare the flow rate set value and a measurement signal from the fuel supply flow rate detection section, and is operated according to the nuclear-computed deviation, A fuel distribution valve for distributing fuel to each of the above is provided, and a fuel distribution calculator is provided which operates based on a fuel flow signal branched from the fuel control section, and the fuel distribution calculator operates in accordance with a predetermined fuel flow rate. A fuel branching section is provided, which is interlocked so that the opening degree of each of the fuel distribution valves can be set according to the determined fuel distribution, and branching and sending out the fuel controlled by the fuel flow rate adjusting section to each of the fuel distribution valves; The present invention is characterized in that fuel proportional to the opening degree of each fuel distribution valve can be delivered to each burner branch pipe.
更に、本発明の第2の特徴は、前記第1の特徴に加えて
、バーナ支管の先端に備えられたバーナチップの少なく
ともひとつがその噴孔軸心が支管軸心に対して偏心され
ていることを特徴とする。Furthermore, a second feature of the present invention, in addition to the first feature, is that at least one of the burner chips provided at the tip of the burner branch pipe has its nozzle hole axis eccentric with respect to the branch pipe axis. It is characterized by
以下、本発明の実施例を第8図以下を参照して詳述する
。Hereinafter, embodiments of the present invention will be described in detail with reference to FIG. 8 and subsequent figures.
第8図は本発明実施例の全体系統を概略水しており、こ
の第8図において、(20)は燃焼炉で、例えばガス焚
均熱炉であり、その炉壁には燃焼空気取入口f21)を
有するバーナ取付部シzが設けられている。Figure 8 schematically shows the entire system of the embodiment of the present invention. In Figure 8, (20) is a combustion furnace, for example a gas-fired soaking furnace, and the furnace wall has a combustion air intake f21) is provided.
■はガス焚用マルチバーナで、複数のノく−ナ支管Qa
の先端にそれぞれバーナチップ■が備えられておp、該
マルチバーナは、前記バーナ取付部C721に設けられ
、燃焼炉内に前記バーナチップ(8)のそれぞれを介し
て燃料、即ち、ガスを噴出可能である。■ is a gas-fired multi-burner with multiple nookana branch pipes Qa.
The multi-burner is provided with a burner chip (8) at the tip of each of the burner tips (8), and the multi-burner is installed in the burner mounting portion C721 and injects fuel, that is, gas, into the combustion furnace through each of the burner tips (8). It is possible.
QGlは炉内温度を検出する温度制御部で、検出端(4
)で炉内温度を検出し、温度制御部(26)で制御演算
が行なわれ、その出方信号は燃料制御部□□□)の設定
値として接続されている。QGl is a temperature control unit that detects the temperature inside the furnace, and the detection end (4
) detects the temperature inside the furnace, a temperature control section (26) performs control calculations, and the output signal is connected as a set value to the fuel control section (26).
燃料制御部(28)には燃料流情調節部が組込まれてお
り、該燃料流情調節部は、温度制御部(5))からの出
力信号を受け、その信号に対応する流量設定値を設定し
、かつ燃料供給部(イ)に設置された燃料供給流量検出
部■の測定信号と前記雌爪°設定値とを比較し、偏差に
応じた制御信号を燃料流情調節部(3I)に与えるよう
にされ、このようにして燃料制御部(至)で燃料流量が
制御されるように構成されている。The fuel control section (28) has a built-in fuel flow control section, which receives an output signal from the temperature control section (5) and sets a flow rate setting value corresponding to the signal. and compares the measurement signal of the fuel supply flow rate detection unit (■) installed in the fuel supply unit (A) with the female claw ° set value, and outputs a control signal according to the deviation to the fuel flow condition adjustment unit (3I). In this way, the fuel flow rate is controlled by the fuel control section.
θ2は燃焼用空気供給部で、空気流量検出部(331を
有する空気制御部附)が備えられ、流凰調節部0Fi1
を介して前記燃焼空気取入口121)に接続されている
。θ2 is a combustion air supply section, which is equipped with an air flow rate detection section (attached to an air control section having 331), and a flow control section 0Fi1.
The combustion air intake port 121) is connected to the combustion air intake port 121) through the combustion air intake port 121).
なお、(a6)は比率設定器を示している。Note that (a6) indicates a ratio setting device.
罰は燃料分配演算器で、前記燃刺制御部弼から分岐され
た燃料流11信号で作動され、該燃料分配演算器Mが、
燃料流量に見合ってあらかじめ定められた燃料配分に従
って、燃料分配弁色8)のそれぞれの開度を設定可能に
連動されている。The penalty is a fuel distribution computing unit, which is operated by the fuel flow 11 signal branched from the combustion control unit 2, and the fuel distribution computing unit M:
The opening degrees of the fuel distribution valves 8) can be set in conjunction with each other in accordance with a predetermined fuel distribution corresponding to the fuel flow rate.
燃料分配弁色)はマルチバーナののそれぞれのバーナ支
管c24)に対応して設けられ、本図示例ではバーナ支
管(241が4個の独立形であることから、それに応じ
て燃料分配弁(38)もそれぞれ独立して4側設けであ
る。The fuel distribution valves (color) are provided corresponding to the respective burner branch pipes c24) of the multi-burner, and in this illustrated example, since there are four independent burner branch pipes (241), the fuel distribution valves (38 ) are also provided independently on four sides.
(39)は燃料分岐部で、前記燃料流量調節部l31)
からの燃料を前記それぞれの燃料分配弁(38)に送出
可能としている。(39) is a fuel branch part, the fuel flow rate adjustment part l31)
The fuel can be delivered to each of the fuel distribution valves (38).
即ち、前記燃料分配弁(38)のそれぞわの開度に比例
した燃料がそれぞれバーナ支管(241に送出され、そ
れぞれのバーナチップがを介して炉内に噴出可第3図を
参照して説明した木発U9J実施例において、バーナ支
管財は複数本であれば何本でもよく、多いほど温度分布
もシビアに制御できるが、燃料分岐部(39)以後の構
造が複雑になることで、通常は2〜xzfr2よく、さ
らに、4〜8木が来用上最も有利である。That is, fuel proportional to the opening degree of each of the fuel distribution valves (38) is delivered to each burner branch pipe (241), and each burner tip can be injected into the furnace through the (see FIG. 3). In the Kihatsu U9J example described above, any number of burner branches may be used as long as they are multiple, and the larger the number, the more severe the temperature distribution can be controlled, but the structure after the fuel branch (39) becomes more complicated. Usually, 2 to xzfr2 is good, and 4 to 8 trees are most advantageous for conventional use.
バーナチップのについての構造は本発明のv、1の特徴
にあってはとくに限定されるものではなく、炉特性や全
体のバランスで決定される。燃料の噴射方向はストレー
ト形や特定の方向性をっけ、全体的に対称形あるいは非
対称形にすることができる。The structure of the burner chip is not particularly limited in terms of characteristics v and 1 of the present invention, and is determined depending on the furnace characteristics and overall balance. The direction of fuel injection can be straight or in a specific direction, and can be generally symmetrical or asymmetrical.
第4図(1)〜(5)を参照してその代表例を説明する
と1.第4図(1)は全チップストレード形で、比較的
長炎となる。第4図(2)は上部一対のバーナ支管はは
そのバーナチップ(25)がストレート形である。が、
−Q部一対のバーナチップr25)はその噴孔軸心が支
管軸心に対して偏心されたもので(以下、このようなも
のを偏心形という)、とくに、下部側に熱を多く寸わし
たいときに有効である。なお、第4図(2)の実施例に
おいて上下逆にすれば、上部側に熱がよく1わるものに
できる。Typical examples will be explained with reference to FIGS. 4 (1) to (5): 1. Figure 4 (1) shows an all-chip-trade type with a relatively long flame. In FIG. 4(2), the burner tips (25) of the upper pair of burner branches are straight. but,
- The pair of burner tips r25) in the Q part have their nozzle holes eccentrically centered with respect to the branch pipe axis (hereinafter referred to as eccentric type), and especially the lower part of the burner tip r25) has a large amount of heat. It is effective when you want to. In addition, if the embodiment shown in FIG. 4(2) is turned upside down, the heat can be distributed to the upper side.
第4図(3)はすべてのバーナチップ■を所謂外向偏心
形としたもので、4方に火炎をひろげてショート火炎と
したいときに有利となる。In Fig. 4 (3), all burner tips (3) are of the so-called outward eccentric type, which is advantageous when it is desired to spread the flame in four directions to create a short flame.
第4図(4)は所謂内向偏心形のバーナチップにの例で
あり、小さいショート火炎をつくシたいときに有利とな
る。FIG. 4 (4) is an example of a so-called inwardly eccentric burner tip, which is advantageous when it is desired to light a small short flame.
第4図(5)は第4図(2)のパターンを反時計針方向
1わシに90°回転したものでバーナに向って右側に熱
をまわしたいときに有利となp、時計針方向にまわすと
左側に熱をまわすものにできる。Figure 4 (5) is the pattern of Figure 4 (2) rotated 90 degrees in the counterclockwise direction, which is advantageous when you want to distribute heat to the right side facing the burner. If you turn it around, you can make it turn the heat to the left side.
而して、第4図の各側からも明らかな如く使用バーナ支
管数、噴射方向および分配弁開度の組合せで種々の温度
分布をつくり出すことができる。As is clear from each side of FIG. 4, various temperature distributions can be created by combining the number of burner branches used, the injection direction, and the opening degree of the distribution valve.
バーナ支管が多い場合は、分配弁をバーナ支管数本で共
用するようにしてもよい。If there are many burner branch pipes, the distribution valve may be shared by several burner branch pipes.
また、燃料分配弁の制御は燃料流量に比例するようにし
てもよいし、ターンダウンで負荷が76%になれば、い
ずれか1本を閉とし、50係では2木閉とすれば大幅な
燃料流速の低下はなく、一定の燃焼性が確保さハる(但
し、バーナ支管4木のときの例である)。Also, the control of the fuel distribution valve may be made proportional to the fuel flow rate, and if the load reaches 76% at turndown, one of the valves is closed, and when the 50th section is closed, two valves are closed. There is no reduction in the fuel flow rate, and a certain level of combustibility is ensured (this is an example when there are four burner branch pipes).
燃料流量の大幅な変動がない炉では、あらかじめ配分割
合を定めて分配弁開度を決定しておき、手動で設定して
もよい。この場合、分配弁を省略してバーナチップ孔径
をかえることで配分割合を決定することができるが、こ
れでは燃料流速が一定になるように流量が配分これるの
で実施例はどの温度分布制御効果は期待できない。In a furnace where the fuel flow rate does not fluctuate significantly, the distribution ratio may be determined in advance and the distribution valve opening may be determined and then manually set. In this case, the distribution ratio can be determined by omitting the distribution valve and changing the burner tip hole diameter. However, in this case, the flow rate is distributed so that the fuel flow rate is constant. cannot be expected.
分配弁色8)はその弁構造、形式は自由で、簡便なダン
パ構造のものでも十分に使用できる。The distribution valve color 8) can have any valve structure and type, and even one with a simple damper structure can be used.
−!た、分配弁(38)のそれぞれの上流側に流量針を
併設することで燃料流量の制御弁を兼ねることができ、
このときは、第8図に示す燃料供給流量検出部(30)
及び同調節部(31)を省略でき、このとき、流量計が
調節部賄)に相当する。-! In addition, by providing a flow rate needle on the upstream side of each distribution valve (38), it can also serve as a control valve for fuel flow rate.
At this time, the fuel supply flow rate detection section (30) shown in FIG.
The adjustment section (31) can be omitted, and in this case, the flow meter corresponds to the adjustment section (31).
実施例ニジもさらにシビアな方法として、検出端(4)
を増設して炉の各代表位置(例えば、炉内上下部、バー
ナ側、反バーナ側等)にとυっけ、その出力信号で各バ
ーナ支管(24)の燃料流量を全く独立的に制御するこ
ともできる。In Example Niji, as a more severe method, the detection end (4)
The fuel flow rate of each burner branch pipe (24) can be controlled completely independently using the output signal by adding υ to each representative position of the furnace (for example, upper and lower parts of the furnace, burner side, anti-burner side, etc.). You can also.
また、燃料供給ライン即ち、燃料供給部囚及び燃料分岐
部(39)を別に設けることで、各バーナ支管側に種類
の異なる燃料を流すこともできるし、既設バーナの周辺
に、実施例のマルチバーナーを設置することで、既設バ
ーナとの混焼も容易に実施できる。In addition, by separately providing a fuel supply line, that is, a fuel supply section and a fuel branch section (39), it is possible to flow different types of fuel to each burner branch pipe side, and the fuel supply line of the embodiment can be installed around the existing burners. By installing a burner, co-firing with existing burners can be easily carried out.
前記実施例の制御機構により、燃焼試験炉で実施した種
々の試験結果について述べる。・試験炉は高す700朋
、幅50ONM、長す97(lrx)角形耐火型(苛造
である。The results of various tests conducted in a combustion test furnace using the control mechanism of the above embodiment will be described.・The test furnace is a rectangular fireproof type (ironized) with a height of 700 mm, a width of 50 ONM, and a length of 97 (lrx).
燃料は転炉ガス(00i 65%IH,;1.5%、N
。The fuel is converter gas (00i 65% IH,; 1.5%, N
.
;17チ、 ooバ12チ、水分; 4.5 % )で
、真発熱片は1o 90 / Nnr’である。; 17%, 0% and 12%, moisture content: 4.5%), and the net exothermic value is 1o90/Nnr'.
燃焼条件は次の通りである。The combustion conditions are as follows.
燃焼量 100 X 10” Kcal/ h (流量
的50”/h)排ガス0,1%
燃焼空気温度 400℃
バーナ 支管4木形
而して、炉内温度分布の測定結果を第5図に示し、同図
は炉中央縦断面を示したものである。Combustion amount: 100 x 10" Kcal/h (flow rate: 50"/h) Exhaust gas: 0.1% Combustion air temperature: 400°C Burner: 4 branch pipes The measurement results of the temperature distribution inside the furnace are shown in Figure 5. The figure shows a vertical cross section at the center of the furnace.
第5図(1)は従来例で、各ノ(−す支管に同一流量を
流し、ストレート形バーナチップを使用した結果で、第
5図(2)は同条件にて上部側2本の/く−す支管のそ
れぞれに5N′/h、下部側2木のそれぞれに2ONM
′//hの燃料を流した本発明の一例である。Figure 5 (1) is a conventional example in which the same flow rate was passed through each branch pipe and a straight type burner tip was used, and Figure 5 (2) shows the results of the two upper pipes under the same conditions. 5N'/h for each branch pipe, 2ONM for each of the two lower trees.
This is an example of the present invention in which fuel of '//h was flowed.
第5図(1)の従来形ではバーナタイル中心軸上に高温
域が形成されているが、第5図(2)の本発明の一例で
は炉下部側に高温域が移行し、領域も長くなって、温度
分布に差が生じている。In the conventional type shown in Fig. 5 (1), a high temperature area is formed on the central axis of the burner tile, but in the example of the present invention shown in Fig. 5 (2), the high temperature area moves to the lower part of the furnace, and the area is also long. This causes a difference in temperature distribution.
第5図(3)は第5図(2)の燃料配分で、上記側のバ
ーナチップはストレート形とし、下部(11112木は
10度の噴射角度をつけて、下向きに噴射した本発明の
他の例である。高温域がさらに下部側に移行しているこ
とが判る。従って、被加熱物が炉の下部側にあるときは
第5図(3)の条件が最も加熱効率がよくなる。Figure 5 (3) shows the fuel distribution shown in Figure 5 (2), in which the burner tip on the above side is straight, and the lower part (11112) has an injection angle of 10 degrees and injects downward. It can be seen that the high temperature region has moved further to the lower side. Therefore, when the object to be heated is at the lower side of the furnace, the condition shown in FIG. 5 (3) has the highest heating efficiency.
次に、実際に炉内に被加熱物(鋼材)を装入して測温し
た結果について述べる。Next, we will discuss the results of actually measuring the temperature of an object to be heated (steel material) placed in the furnace.
鋼材(0)は120朋×820朋の角形で、単位重量約
86kgで、炉には8本装入した。The steel material (0) had a square shape of 120 mm x 820 mm, had a unit weight of approximately 86 kg, and 8 pieces were charged into the furnace.
第6図に鋼材(0)の装入位置および測温点(D)を示
し、第7図でその鋼材昇温曲線の従来例を示している。FIG. 6 shows the charging position of the steel material (0) and the temperature measurement point (D), and FIG. 7 shows a conventional example of the steel material temperature rise curve.
即ち、バーナ支管4木のバーナを用い、バーナチップは
ストレート形を使用して均等に燃料を流した場合を第7
図で示している。In other words, when using a burner with 4 wooden burner branches and a straight burner tip to allow the fuel to flow evenly, the 7th
It is shown in the figure.
第7図において、符号(1)は反バーナ側炉温、(2)
はバーナ側炉温、(3)〜(6)は鋼材温度、(7)は
燃料負荷、(8)は排ガス温度をそれぞれ示している。In Fig. 7, code (1) is the furnace temperature on the anti-burner side, and (2)
indicates the burner side furnace temperature, (3) to (6) indicate the steel material temperature, (7) indicates the fuel load, and (8) indicates the exhaust gas temperature, respectively.
鋼材(0)の温度については、最も温度差のはげしいバ
ーナ側と反バーナ側鋼材の上部と下部の合計4点を代表
して示している。Regarding the temperature of the steel material (0), a total of four points are representatively shown: the burner side where the temperature difference is the greatest, and the upper and lower parts of the steel material on the anti-burner side.
而して、第7図において、(3)は反バーナ側鋼材上部
中心、(4)は同下部中心、(5)はバーナ側鋼材上部
中心、(6)は同下部中心である。In FIG. 7, (3) is the center of the upper part of the steel material on the side opposite to the burner, (4) is the center of the lower part, (5) is the center of the upper part of the steel material on the burner side, and (6) is the center of the lower part.
なお、燃焼用空気温度は400℃一定とし、過剰空気率
は排ガスO1で1%となるように調整した。Note that the combustion air temperature was kept constant at 400° C., and the excess air ratio was adjusted to be 1% with exhaust gas O1.
第7図で明らかな如く、反バーナ側鋼材の昇温がよく、
中でも上部側が最もよい。これは前述した第5図の炉内
温度分布から明らかなように、輝炎輻射がほとんどない
燃料の転炉ガスでは、火炎からの熱放散が少なく、燃焼
にともなって形成される高温ガス流は、そのまま反パー
ツ“側に到達し、その部分の炉壁を加熱する。その結果
、反バーナ側炉壁の輻射熱が大きくカシ、反バーナ側鋼
材の昇温かよくなったものである。As is clear from Fig. 7, the temperature of the steel material on the opposite side of the burner rises well.
The upper part is the best. This is clear from the temperature distribution in the furnace shown in Figure 5, which is explained above, when converter gas is a fuel with almost no bright flame radiation, there is little heat dissipation from the flame, and the high-temperature gas flow formed during combustion is As it is, it reaches the side opposite to the part and heats the furnace wall in that area.As a result, the radiant heat of the furnace wall on the side opposite to the burner is large, and the temperature of the steel material on the side opposite to the burner increases.
これに比べて、バーナ側鋼材下部の1温が最も悪く、均
熱末期になっても目標とする1200℃になっていない
。工業炉では、この最低温度の管理が重要である。第7
図のように炉温分布制御ができない従来例では、さらに
長時間な燃焼と燃料が必要なことがよく判る。In comparison, the temperature at the bottom of the steel material on the burner side was the worst, and did not reach the target temperature of 1200°C even at the end of soaking. Control of this minimum temperature is important in industrial furnaces. 7th
As shown in the figure, it is clear that in the conventional example where furnace temperature distribution cannot be controlled, a longer combustion period and more fuel are required.
この場合、バーナ側の炉側か高くなるよう炉内温度分布
を制御すれば燃料と時間の節約が図れることが明らかで
ある。In this case, it is clear that fuel and time can be saved by controlling the temperature distribution in the furnace so that the temperature is higher on the burner side than on the furnace side.
他の実験で、バーナ形状をかえ、バーナ側と反バーナ側
で炉温か均一になる条件でも測温した。In another experiment, we changed the shape of the burner and measured temperatures under conditions where the furnace temperature was uniform on the burner side and on the opposite side.
その結果によると、第7図のときエリもパーナ側鋼材下
部の温度は高くなったが排ガス損失が大きくなることが
わかった。これは、バーナ側に燃焼ガスの出口があるの
で、バーナ側の炉温を高くすることは、そのまま排ガス
温度の上昇につながって損失が大きくなったものである
。According to the results, it was found that in the case of FIG. 7, the temperature of the lower part of the steel material on the Pana side also increased, but the exhaust gas loss increased. This is because there is a combustion gas outlet on the burner side, so increasing the furnace temperature on the burner side directly leads to a rise in exhaust gas temperature, which increases loss.
そこで、これらの結果から次のような炉温パターンに本
発明ではするのである。Therefore, based on these results, the following furnace temperature pattern is adopted in the present invention.
加熱期(燃焼量負荷100%)では、ガス燃焼及び炉特
性を有効利用して、反バーナ側鋼材を主体に加熱し、均
熱期(燃料ターンダウン時)でバーナ側鋼材を主体的に
加熱する。During the heating period (combustion amount load 100%), gas combustion and furnace characteristics are effectively used to mainly heat the steel material on the side opposite to the burner, and during the soaking period (during fuel turndown), the steel material on the burner side is mainly heated. do.
即ち、第7図から、加熱期ではもともと反バーナ側鋼材
の加熱性がよく、排ガス温度も低いのでその効果をよシ
よく利用するため、バーナの上部側バーナ支管2木には
ストレート形バーナチップをつけて下部バーナ支管よシ
多量の燃料を流し、熱をさらに反バーナ側に多く与える
。In other words, from Figure 7, during the heating period, the steel material on the side opposite the burner has good heatability and the exhaust gas temperature is low, so in order to make good use of this effect, a straight burner chip is installed in the burner branch pipe 2 on the upper side of the burner. A large amount of fuel flows through the lower burner branch pipe, giving more heat to the side opposite the burner.
こわ、にエフ加熱期では、従来例に比べて、反バーナ側
鋼材の昇熱向上と排ガス温度低下の効果が得られる。During the heating period, the heating of the steel material on the opposite burner side is improved and the exhaust gas temperature is lowered, compared to the conventional example.
さらに、下部側のバーナ支管には馬刺噴射角が10度と
されたバーナチップを下向きに取付け、均熱期では下部
側に多く燃料を流して、バーナ側鋼材と鋼材下部側の昇
熱をはかる。Furthermore, a burner tip with a 10-degree injection angle is installed downward on the burner branch pipe on the lower side, and during the soaking period, more fuel flows toward the lower side, increasing the heat of the steel material on the burner side and the lower side of the steel material. .
これらの効果により鋼材温度の均一化と加熱時間の短縮
及び燃料使用量の低減をはかることができる。These effects make it possible to equalize the temperature of the steel material, shorten the heating time, and reduce the amount of fuel used.
バーナ上部側のバーナ支管と下部側のバーナ支管に流す
燃料の割合については当然種々のパターンが考えられる
が、加熱期では上部側に多く、均熱期では下部側に多く
流すこともできるのであシ、いずれも前記効果が認めら
れた。Of course, various patterns can be considered for the ratio of fuel flowing into the burner branch pipe on the upper side of the burner and the burner branch pipe on the lower side, but it is possible to have more flow in the upper side during the heating period and more in the lower side during the soaking period. The above effects were observed in both cases.
その中で代表的パターンの例を第8図に示している。An example of a typical pattern among them is shown in FIG.
第8図において、(1)はトータル燃料負荷、(2+
+31は従来例による上、下バーナ支管の負荷、(4)
は上部2木のバーナ支管の負荷、(5)Pi下部2木の
、バーナ支管の負荷である。In Figure 8, (1) is the total fuel load, (2+
+31 is the load on the upper and lower burner branches according to the conventional example, (4)
is the load on the burner branch pipes of the upper two trees, and (5) is the load on the burner branch pipes of the lower two Pi trees.
第8図で明らかなように、従来例(2) +31では、
当然上下部同一負荷しかできないが、本発明(4)(5
)では任意のパターンをつくることができる。As is clear from Fig. 8, in conventional example (2) +31,
Naturally, only the same load can be applied to the upper and lower parts, but the present invention (4) (5)
) allows you to create any pattern.
代表例は、加熱期、上部バーナ支管に全体の75係の、
下部側バーナ支管に25%の燃料を流し、均熱期に入っ
てトータルバーナ負荷が85%になったときに、上下部
の各バーナ支管に均一に流れるようにし、それ以下では
下部側の燃料割合を多くしたものでおる。A typical example is a total of 75 sections in the upper burner branch during the heating period.
25% of the fuel flows into the lower burner branch pipe, and when the total burner load reaches 85% during the soaking period, it flows uniformly to each upper and lower burner branch pipe. Use a higher proportion.
第8図に示し+、e料配分、即ち、炉温分布制御時の鋼
材測温結果を第9図に示している。Fig. 8 shows the steel material temperature measurement results during the e-material distribution, ie, furnace temperature distribution control, is shown in Fig. 9.
従来例の第6図と木発明による第9図とを比較すると、
加熱期では反バーナ側鋼材の昇温性がよくなυ、排ガス
温度が80〜40℃低くなっている。Comparing Fig. 6 of the conventional example and Fig. 9 of the tree invention,
During the heating period, the temperature rising property of the steel material on the opposite burner side is good υ, and the exhaust gas temperature is 80 to 40 degrees Celsius lower.
均熱期ではバーナ側炉温の上昇がよくなp、バーナ側鋼
材及び鋼材下部側の昇温かよくなっている。During the soaking period, the furnace temperature on the burner side rises well, and the temperature rises on the burner side steel material and the lower part of the steel material.
l&終的にはバーナ側鋼材下部の温度も1200℃以上
と々つで均熱性は向上している。また、昇温時間(在炉
時間)も短くなり、トータルの排ガス損失も減少した。Finally, the temperature at the bottom of the steel material on the burner side is 1200°C or higher, improving the uniformity of heat. In addition, the temperature rise time (furnace time) was also shortened, and the total exhaust gas loss was reduced.
以」二により、木発明によると燃料使用量は従来夙に比
べて在炉時間同一条件で約16%節約できた。As a result, according to the invention, fuel consumption can be reduced by approximately 16% compared to the conventional method under the same furnace operating time.
本実施例により実施したのは、燃料配分パターンをあら
かじめ決定したが、一部、次のテストも実施例
加熱期では上部側と下部側の各バーナ支管にそれぞれ燃
料を均等に60チづつ流し、均熱期では上部バーナ支管
のみでターンダウンした。即ち、トータル燃料負荷が5
0%時では上部側0となり、下部側のみの燃焼である。Although the fuel distribution pattern was determined in advance in this example, some of the following tests were also conducted in the heating period of the example, in which 60 liters of fuel was evenly distributed to each of the burner branches on the upper and lower sides. During the soaking period, only the upper burner branch pipe was turned down. That is, the total fuel load is 5
At 0%, the upper side becomes 0, and only the lower side is burned.
この条件でも約8%の燃料節約が確認できたが、第8図
の実施例よシは在炉時間がやや長くなった。Even under these conditions, a fuel saving of about 8% was confirmed, but in the embodiment shown in FIG. 8, the furnace time was slightly longer.
さらに、詳細な温度分布制御としては、バーナ側と反バ
ーナ側の炉温信号にニジ、上下部のバーナ支管の流量を
独立して制御することもできる。Furthermore, as detailed temperature distribution control, the flow rates of the upper and lower burner branch pipes can be independently controlled based on the furnace temperature signals on the burner side and the anti-burner side.
以上、詳述した処から明らかなように木発明によれば、
構造及び機(@がシンプルで、実用に十分供し得るもの
である。As is clear from the detailed description above, according to the wooden invention,
The structure and mechanism (@) are simple and can be used for practical purposes.
また、炉の特性にあった温度パターンを考慮すればよい
ので、あらゆる炉への適用が可能である。Furthermore, since it is only necessary to consider a temperature pattern that matches the characteristics of the furnace, it is possible to apply it to any furnace.
炉の改造やバーナタイル、エアレジスタ等の改造は必要
なく、バーナガン本体と燃料ラスンの力の改造となるの
で炉を大幅に休止する必要もなく、既設炉への適用も容
易である。There is no need to modify the furnace, burner tile, air register, etc., and the power of the burner gun body and fuel lasn is modified, so there is no need to significantly shut down the furnace, and it can be easily applied to existing furnaces.
従って、木発明では所期目的を有効に達成した実用価値
大なるものといえる。Therefore, it can be said that the invention of wood has great practical value as it has effectively achieved its intended purpose.
第1図は従来の燃焼制御系の構成図、第2図は従来形マ
ルチバーナの斜視図、第8図は木発明の一実施例を示す
燃焼制御系の構成図、第4図(1) (24(31(4
1(51は本発明に使用されるマルチバーナ数例の正面
図とバーナ断面図、第5図(1) (21(31は炉内
温度分布を示す8例の説明図、第6図は鋼材の装入位置
と鋼材を示す説明図、第7図は従来例による昇温カーブ
を示すグラフ、第8図は燃料配分パターンを示す説明図
、第9図は本発明による制御時の昇温カーブを示すグラ
フである。
の・・・燃焼炉、の・・・マルチバーナ、G41・・・
バーナ支管、匹・・・バーナチップ、(財)・・・温度
制御部、(28+・・・燃料制御部、(311・・・燃
料流量調節部、0η・・・燃料分配演算器、(38)・
・・燃料分配弁、(39)・・・燃料分岐部。Fig. 1 is a block diagram of a conventional combustion control system, Fig. 2 is a perspective view of a conventional multi-burner, Fig. 8 is a block diagram of a combustion control system showing an embodiment of the wooden invention, and Fig. 4 (1). (24(31(4)
1 (51 is a front view and burner sectional view of several examples of multi-burners used in the present invention, FIG. 5 (1) (21 (31 is an explanatory diagram of 8 examples showing the temperature distribution in the furnace, Fig. 7 is a graph showing the temperature rise curve according to the conventional example, Fig. 8 is an explanatory drawing showing the fuel distribution pattern, and Fig. 9 is the temperature rise curve during control according to the present invention. This is a graph showing the combustion furnace, multi-burner, G41...
Burner branch pipe, burner chip, (Incorporated Foundation)...temperature control unit, (28+...fuel control unit, (311...fuel flow rate adjustment unit, 0η...fuel distribution calculator, (38 )・
...Fuel distribution valve, (39)...Fuel branch.
Claims (1)
備えられたガス焚用マルチバーナが、燃焼炉に前記バー
チチップを介して炉内に燃料を噴出可能に設けられ、燃
焼炉の炉内温度を検出する温度制御部が設けられ、該温
度制御部の出力信号で作動される流量調節器が備えられ
た燃料制御部が設けられ、燃料供給部の流量を検出する
燃料供給流量検出部が設けられ、前記流量調節器が温度
制御部処)らの出力信号を受けこれに応じた流量が設定
されるとともに該流量設定値と前記燃料供給流量検出部
との測定信号とを比較可能に構成され、該比較された偏
差に応じて作動される燃料流量調節部が設けられ、更に
、前記バーナ支管のそれぞれに燃料を分配する燃料分配
弁が設けられ、前記燃料制御部から分岐された燃料流口
:信号で作動する燃料分配演算器が設けられ、該燃料分
配演算器が、燃料流量に見合ってあらかじめ定められた
燃料配分に従って前記燃料分配弁のそれぞれの開度を設
定可能に連動され、前記燃料流量調節部で制御された燃
料を前記燃料分配弁のそれぞれに分岐送出する燃料分岐
部が設けられ、前記燃料分配弁のそれぞれの開度に比例
した燃料がそれぞれ/々−す支管に送出可能に構成され
ていることを特徴とするマルチバーナを用いた燃焼制御
機構。 2、複数のバーナ支管の先端にそれぞれノ)−ナチツプ
が備えられたガス焚用マルチバーナが、燃焼炉に前記バ
ーナチップを介して炉内に燃料を噴出可能に設けられ、
燃焼炉の炉内温度を検出する温度制御部が設けられ、該
温度制御部の出力信号で作動される流量調節器が備えら
れた燃料制御部が設けられ、燃料供給部の流量を検出す
る燃料供給流量検出部が設けられ、前記流量調節器が温
度制御部からの出力信号を受けこれに応じた流量が設定
されるとともに該流量設定値と前記燃料供給流量検出部
との測定信号とを比較可能に構成され、該比較された偏
差に応じて作動される燃料流量調節部が設けられ、更に
、前記バーナ支管のそれぞれに燃料を分配する燃料分配
弁が設けられ、前記燃料制御部から分岐された燃料流比
1信号で作動する燃料分配演算器が設けられ、該燃料分
配演算器が、燃料流量に見合ってあらかじめ定められた
燃料配分に従って前記燃料分配弁のそれぞれの開度を設
定可能に連動され、前記燃料流量調節部で制御された燃
料を前記燃料分配弁のそれぞれに分岐送出する燃料分岐
部が設けられ、前記燃料分配弁のそれぞれの開度に比例
した燃ネ・1がそれぞれバーナ支管に送出可能に(構成
され、更に、バーナ支管の先端に備えられたバーナチッ
プの少なくともひとつがその噴孔軸心が支管軸心に対し
て偏心されていることを特徴とするマルチバーナを用い
た燃焼制御機構。[Scope of Claims] 1. A gas-fired multi-burner, each of which has a burner tip at the tip of a plurality of burner branch pipes, is installed in a combustion furnace so that fuel can be injected into the furnace through the birch tips, and the combustion A fuel control unit includes a temperature control unit that detects the temperature inside the furnace, a fuel control unit that includes a flow rate regulator operated by an output signal of the temperature control unit, and a fuel supply unit that detects the flow rate of the fuel supply unit. A flow rate detection section is provided, and the flow rate regulator receives an output signal from the temperature control section and sets a flow rate corresponding thereto, and also outputs the flow rate setting value and a measurement signal from the fuel supply flow rate detection section. A fuel flow control section configured to be comparable and operated in accordance with the compared deviation is provided, and further provided is a fuel distribution valve for distributing fuel to each of the burner branch pipes, the fuel flow control section branching from the fuel control section. a fuel distribution operator operated by a signal, the fuel distribution operator being able to set the opening degree of each of the fuel distribution valves according to a predetermined fuel distribution commensurate with the fuel flow rate; A fuel branching section is provided which branches and sends the fuel controlled by the fuel flow rate adjusting section to each of the fuel distribution valves, and the fuel branching section is configured to branch and send the fuel controlled by the fuel flow rate adjusting section to each of the fuel distribution valves. A combustion control mechanism using a multi-burner characterized by being configured so that it can be sent to a branch pipe. 2. A gas-fired multi-burner, each of which is provided with a na tip at the tip of a plurality of burner branch pipes, is installed in the combustion furnace so that fuel can be injected into the furnace through the burner tip,
A temperature control section that detects the internal temperature of the combustion furnace is provided, a fuel control section that is equipped with a flow rate regulator that is operated by an output signal of the temperature control section, and a fuel control section that detects the flow rate of the fuel supply section. A supply flow rate detection section is provided, and the flow rate regulator receives an output signal from the temperature control section, sets a flow rate corresponding to the output signal, and compares the flow rate setting value with a measurement signal from the fuel supply flow rate detection section. A fuel flow regulator configured to be operable in response to the compared deviation is provided, and further provided is a fuel distribution valve for distributing fuel to each of the burner branches, the fuel distribution valve being branched from the fuel control unit. A fuel distribution calculator that operates with a fuel flow ratio 1 signal is provided, and the fuel distribution calculator is interlocked so that the opening degree of each of the fuel distribution valves can be set according to a predetermined fuel distribution corresponding to the fuel flow rate. A fuel branching section is provided for branching and sending the fuel controlled by the fuel flow rate adjusting section to each of the fuel distribution valves, and fuel 1 proportional to the opening degree of each of the fuel distribution valves is supplied to each burner branch pipe. The multi-burner is configured such that at least one of the burner chips provided at the tip of the burner branch pipe has its nozzle hole axis eccentric with respect to the branch pipe axis. Combustion control mechanism.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57131027A JPS5921918A (en) | 1982-07-26 | 1982-07-26 | Combustion controlling mechanism employing multiburner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57131027A JPS5921918A (en) | 1982-07-26 | 1982-07-26 | Combustion controlling mechanism employing multiburner |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5921918A true JPS5921918A (en) | 1984-02-04 |
JPS642850B2 JPS642850B2 (en) | 1989-01-18 |
Family
ID=15048295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57131027A Granted JPS5921918A (en) | 1982-07-26 | 1982-07-26 | Combustion controlling mechanism employing multiburner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5921918A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015165180A (en) * | 2014-02-28 | 2015-09-17 | エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated | transient heating burner and transient heating method |
-
1982
- 1982-07-26 JP JP57131027A patent/JPS5921918A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015165180A (en) * | 2014-02-28 | 2015-09-17 | エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated | transient heating burner and transient heating method |
US9976741B2 (en) | 2014-02-28 | 2018-05-22 | Air Products And Chemicals, Inc. | Transient heating burner and method |
Also Published As
Publication number | Publication date |
---|---|
JPS642850B2 (en) | 1989-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102165254B (en) | Oxy/fuel combustion system with minimized flue gas recirculation | |
CN102439363B (en) | Combustion system with precombustor for recycled flue gas | |
JP2010521648A (en) | Closed-loop flame temperature controlled oxyfuel combustion system | |
CN201269526Y (en) | High-efficiency rotational flow diffusion type combustor of top-burning hot blast stove | |
CN103471101B (en) | Multi-spray-nozzle bulky combustion low-NOx gas combustor | |
CN101776277B (en) | Method and device for improving heat efficiency of combustion furnace by oxygen-rich partial oxygen-enriched jet flow combustion supporting | |
US6638061B1 (en) | Low NOx combustion method and apparatus | |
CN107477578A (en) | Combustor and water heater | |
CN207065568U (en) | A kind of fuel gas with low heat value burner and hot-blast stove | |
CN105925276B (en) | A kind of coke oven combustion chamber segmentation gas supply heating device and its method | |
EP3745026B1 (en) | Gas furnace | |
JPS6128885B2 (en) | ||
JPS5921918A (en) | Combustion controlling mechanism employing multiburner | |
CN205838912U (en) | A kind of coke oven combustion chamber segmentation supply heater | |
KR20200138040A (en) | Gas furnace | |
CN109268827B (en) | Low-calorific-value gas burner and hot blast stove | |
KR20140010703A (en) | Oxygen enriched combustion apparatus and method of the same | |
CN109059535A (en) | Method and device for heating furnace | |
CN1683832A (en) | Method for controlling burning state of coal powder boiler fire | |
US11428403B2 (en) | Gas furnace | |
JP7555927B2 (en) | Gaseous fuel injection assembly and method | |
JP3149666B2 (en) | Radiant heating device and combustion method thereof | |
JPS6011018A (en) | Combustion control of side burner in direct firing type heating furnace | |
RU2739877C1 (en) | Furnace burners unit for fire tests | |
CN219693255U (en) | Low-nitrogen burner of heating furnace |