JPS59218025A - Tuning fork type crystal oscillator - Google Patents
Tuning fork type crystal oscillatorInfo
- Publication number
- JPS59218025A JPS59218025A JP9205983A JP9205983A JPS59218025A JP S59218025 A JPS59218025 A JP S59218025A JP 9205983 A JP9205983 A JP 9205983A JP 9205983 A JP9205983 A JP 9205983A JP S59218025 A JPS59218025 A JP S59218025A
- Authority
- JP
- Japan
- Prior art keywords
- tuning fork
- type crystal
- fork type
- oscillator
- elastic coupling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 64
- 238000005452 bending Methods 0.000 claims abstract description 23
- 238000005520 cutting process Methods 0.000 claims description 7
- 230000008878 coupling Effects 0.000 abstract description 36
- 238000010168 coupling process Methods 0.000 abstract description 36
- 238000005859 coupling reaction Methods 0.000 abstract description 36
- 230000010355 oscillation Effects 0.000 abstract description 5
- 230000005684 electric field Effects 0.000 abstract description 2
- 238000006073 displacement reaction Methods 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 241000257465 Echinoidea Species 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010036 direct spinning Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/15—Constructional features of resonators consisting of piezoelectric or electrostrictive material
- H03H9/21—Crystal tuning forks
- H03H9/215—Crystal tuning forks consisting of quartz
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、屈曲振動の基本振動と捩れ振動の基本振動の
弾性結合を利用する音叉型水晶振動子の寸法と切り出し
方位に関するものでめる。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to the dimensions and cutting orientation of a tuning fork type crystal resonator that utilizes elastic coupling of the fundamental vibration of bending vibration and the fundamental vibration of torsional vibration.
従来技術
近年、屈曲振動と・捩れ撮動の弾性結合を利用し、屈曲
振動の周波数温度特性(以後、f−T特性と呼ぶ)を良
好にした音叉型水晶振動子が注目されている。この振動
子は、現在腕時計用振動子として使われている音叉型水
晶振動子に比較し、f−T特性が数段に優れているため
、現在の腕時計が月差10秒ないし15秒合保証するの
に比べ、この振動子を使用した腕時計は年差10秒を満
足することが可能と考えられている。BACKGROUND OF THE INVENTION In recent years, a tuning fork type crystal resonator that utilizes elastic coupling between bending vibration and torsional imaging to improve the frequency-temperature characteristics of bending vibration (hereinafter referred to as f-T characteristics) has been attracting attention. This oscillator has much superior f-T characteristics compared to the tuning fork type crystal oscillators currently used as oscillators for wristwatches, so current watches are guaranteed to have a monthly difference of 10 to 15 seconds. In contrast, it is thought that a wristwatch using this oscillator can satisfy the yearly difference of 10 seconds.
屈曲振動と捩れ機動の弾性結合金利用する音叉型水晶振
動子は、従来、屈曲の二次振動(以後、F2と呼ぶ)と
捩れの基本振動(以後、T1と呼ぶ)の弾性結合を利用
する方式が考えられてき穴。Tuning fork crystal oscillators that utilize an elastic coupling between bending vibration and torsional motion conventionally utilize an elastic coupling between the secondary vibration of bending (hereinafter referred to as F2) and the fundamental vibration of torsion (hereinafter referred to as T1). The method has been thought out and it is a hole.
この方式は、F2tl−利用することにより、振動子の
R1を小さくすることができる特徴を持っている。しか
し、屈曲の基本振動(以後、Flと呼ぶ)とT1の弾性
結合を利用すると、F2とT1の弾性結合を利用する場
合に比べ、同一の周波数を得る時・振動子の大きさが小
さくなり、体積も小さくなり、振動子の小型化に有利で
ある。This method has the feature that R1 of the vibrator can be reduced by using F2tl. However, when using the elastic coupling between the fundamental vibration of bending (hereinafter referred to as Fl) and T1, the size of the oscillator becomes smaller when obtaining the same frequency compared to when using the elastic coupling between F2 and T1. , the volume is also reduced, which is advantageous for miniaturizing the vibrator.
第1図にFlの、第2図にF2の振動変位の様子を破線
によって示す。The state of vibrational displacement of Fl is shown in FIG. 1, and the state of vibrational displacement of F2 is shown in FIG. 2 by broken lines.
Flを利用すると振動子が小型になる理由を以下に説明
する。第6図に示す如く、振動子の厚みIt、音叉腕の
長さと振音それぞれ2及びWとすると、屈曲振動の周波
数fy (以後、f「と呼ぶ)と捩゛れ振動の周波数f
T(以後、fTと呼ぶ)は次式で表わすことができる。The reason why the vibrator becomes smaller when Fl is used will be explained below. As shown in Fig. 6, when the thickness It of the vibrator, the length of the tuning fork arm, and the vibration sound are respectively 2 and W, the frequency of bending vibration fy (hereinafter referred to as f'') and the frequency of torsional vibration f
T (hereinafter referred to as fT) can be expressed by the following equation.
f F = OF −w/422−− (1)fT=
OT −t /(Aw)−−・・(2)ここで、QF
及びQTは定数である。同一の形状を持つ音叉型水晶振
動子において、F2の周波数はFlの周波数の約6倍の
値を持っている。故に、屈曲の二次振動と同一の周波数
を基本振動で実現しようとする時、屈曲二次振動をする
音叉型水晶振動子に比較し、Wを大きくするが、βを短
かぐすれば良い。Wを太きくすると、限られた容器に入
れにぐくなるため、普通はnl短がくする。f F = OF −w/422−− (1) fT=
OT −t /(Aw) --- (2) Here, QF
and QT are constants. In tuning fork type crystal resonators having the same shape, the frequency of F2 has a value about six times the frequency of Fl. Therefore, when trying to achieve the same frequency as the secondary vibration of bending in the fundamental vibration, it is sufficient to increase W and shorten β compared to a tuning fork type crystal resonator that generates secondary vibration of bending. If W is made thicker, it becomes difficult to fit it into a limited container, so it is usually made shorter by nl.
故に、F2の周波数と同じ周波数をFlで実現する場合
、音叉腕の長さ2は普通、屈曲二次撮動の場合の約40
%位になる。Therefore, if the same frequency as that of F2 is to be achieved in Fl, the length 2 of the tuning fork arm is usually about 40 mm for bending secondary imaging.
It will be around %.
又、屈曲振動と捩れ振動の弾性結合を利用する場合、f
TをfFに近ずける必要がある。年差表示可能な高精度
の周波数温度特性を持つ時のfyとfTが満たすべき条
件は、次式でほぼ表わすことができる。Furthermore, when using elastic coupling between bending vibration and torsional vibration, f
It is necessary to bring T closer to fF. The conditions that fy and fT should satisfy when they have highly accurate frequency-temperature characteristics capable of displaying yearly differences can be approximately expressed by the following equation.
(fF fT)/fF=0.02〜0.05−・・・
(3)故に、F2とT1の弾性結合を利用する場合に比
べ、FlとT1の弾性結合を利用する場合は、(3)式
を実現するために、2が小さくなっていることから厚み
tを小さくしなければならない。(fF fT)/fF=0.02~0.05-...
(3) Therefore, compared to the case where the elastic connection between F2 and T1 is used, when the elastic connection between Fl and T1 is used, in order to realize the equation (3), since 2 is smaller, the thickness t must be made smaller.
Lとtを小さくする事がらFlとT1の弾性結合を利用
すると、F2とT1の弾性結合を利用する場合に比べ、
振動子の体積ははるかに小さくなる。By reducing L and t and using the elastic coupling between Fl and T1, compared to using the elastic coupling between F2 and T1,
The volume of the oscillator becomes much smaller.
又、フォトリソグラフィを利用して音叉型水晶振動子を
作製する場合、振動子の厚みが薄いことは、水晶のエツ
チングを行なう時、時間を短かくする事が可能となる。Furthermore, when a tuning fork type crystal resonator is manufactured using photolithography, the thinness of the resonator makes it possible to shorten the time required for etching the crystal.
この様に、FlとT1の弾性結合を利用すると、振動子
は小型になり、しかもフォトリソグラフィを利用して振
動子を作る場合、短時間で作製できることから、コスト
も安い大きな利点を持っている。In this way, by using the elastic coupling between Fl and T1, the resonator can be made smaller, and when making the resonator using photolithography, it can be manufactured in a short time, which has the great advantage of being low cost. .
従来、屈曲振動と捩れ振動の弾性結合を利用する音叉型
水晶振動子において、年差表示可能な侵れr(fT%性
が得られる水晶振動子のカット方位は、2面を水晶の電
気軸(X軸)の回シに、反時計方向の回転を正とした時
、0度から一15度の間において得らねると考えられて
きた。ここで、2面とは水晶の光軸(Z @it )に
垂直な面を言う。Conventionally, in a tuning fork type crystal resonator that utilizes elastic coupling of bending vibration and torsional vibration, the cutting direction of the crystal resonator that provides the erosion r (fT%) that can display the annual difference is such that the two sides are aligned with the electrical axis of the crystal. It has been thought that it cannot be obtained between 0 degrees and 115 degrees when counterclockwise rotation is considered positive for the rotation of the (X axis).Here, the second plane is the optical axis ( A plane perpendicular to Z (@it).
しかし、FlとT1の弾性結合を利用し、しかも腕時計
用振動子として十分小屋の振動子を実現する場合、良好
なf−T特性は、従米考えられているカット角では得ら
れないことが分った。However, when making use of the elastic coupling between Fl and T1 and realizing a sufficiently small oscillator as a wristwatch oscillator, it has been found that good f-T characteristics cannot be obtained with the cut angle considered by the US. It was.
発明の目的
本発明は、十分に小型で、しがも年差表示可能な高精度
腕時計用振動子となり得るf−T特性を有するFlとT
1の弾性結合を利用する音叉型水晶振動子を提供するこ
とを目的としたものである。Purpose of the Invention The present invention provides Fl and T characteristics that are sufficiently small and have f-T characteristics that can be used as a high-precision watch vibrator that can display yearly differences.
The object of the present invention is to provide a tuning fork type crystal resonator that utilizes the elastic coupling described above.
実施例 以下、図面を参照し、本発明の詳細な説明する。Example Hereinafter, the present invention will be described in detail with reference to the drawings.
第4図は、音叉型水晶振動子が容器に封入されている状
態を示した平面図である。41は音叉型水晶振動子、4
2は励振電極に交流電界を加えるための振動子の支持も
兼ねたリード、43はプラグ、44は容器を表わしてい
る。腕時計用水晶振動子の容器は、腕時計の厚みや大き
さの制限から、現在、直径りが1.5簾ないし2.0
M、、長gr、、カs謡ないし6mの大きさとなってい
る。この容器に入れる孕めに、音叉型水晶振動子の大き
さは自づから制限される。容器の直径りの制限から、第
3図に示す音叉型水晶振動子の一本の音叉腕の腕幅寸法
Wは約0.5〃以下にしなければならない。Wを0.5
8以上にすると容器の内壁と振動子の間の空間が狭くな
るため、落下衝撃時に音叉型水晶振動子は容器に衝突し
、折れる恐れがあるからである。FIG. 4 is a plan view showing a tuning fork type crystal resonator sealed in a container. 41 is a tuning fork type crystal resonator, 4
Reference numeral 2 represents a lead that also serves as a support for a vibrator for applying an alternating electric field to the excitation electrode, 43 represents a plug, and 44 represents a container. Due to restrictions on the thickness and size of wristwatches, the diameter of containers for crystal units for watches is currently 1.5 to 2.0 mm.
The size is M, long, or 6m long. The size of the tuning fork crystal resonator is naturally limited by the size of the tuning fork crystal resonator. Due to limitations on the diameter of the container, the arm width W of one tuning fork arm of the tuning fork type crystal resonator shown in FIG. 3 must be approximately 0.5 or less. W to 0.5
This is because if the value is 8 or more, the space between the inner wall of the container and the vibrator becomes narrow, so that the tuning fork type crystal vibrator may collide with the container and break during a fall impact.
また、二つの撮動の弾性結合を利用し、屈曲振動のf−
T特性を良好にする場合、二つの振動の周波数差(以後
、δfと呼ぶ)を適切な値にする必要がある。何故なら
、二つの振動の結合の強さは、主にδfに依るからでお
る。捩れ振動の周波数fTは振動子の厚み尤に比例し、
振動子の厚みtが1μm’&化するとfTil−i約2
〜”s K Hzも変化する。一方、屈曲振動の周波数
1’yは尤に殆ど依らないため、fFのバラツキは小さ
い。この事から、一枚の水晶ウエノ\から100ケ以上
も振動子を作製する場合、その水晶ウエノ・のウエト内
の厚みのバラツキが大きいと、振動子間のδfのバラツ
キは太きく、振動子間で全く異ったf−T%性が得られ
る。そのため、水晶ウニ/・内の厚みのバラツキは1μ
m以内にしなければならない。この条件を満たす事は、
現在の研磨技術では、水晶ウェハの厚みの絶対値があま
り薄過ぎると、即ち50μ惧以下になると難しくなる。In addition, by using the elastic coupling of two imaging systems, we can
In order to improve the T characteristics, it is necessary to set the frequency difference between the two vibrations (hereinafter referred to as δf) to an appropriate value. This is because the strength of the coupling between the two vibrations mainly depends on δf. The frequency fT of torsional vibration is proportional to the thickness of the vibrator,
When the thickness t of the vibrator is 1 μm', fTil-i is approximately 2
~"s K Hz also changes. On the other hand, the frequency 1'y of bending vibration hardly depends, so the variation in fF is small. From this, more than 100 oscillators can be made from one piece of crystal Ueno. When manufacturing, if there is a large variation in the thickness of the quartz crystal, the variation in δf between the oscillators will be large, resulting in completely different f-T% characteristics between the oscillators. Sea urchin/・The variation in the inner thickness is 1μ
Must be within m. Satisfying this condition is
With current polishing techniques, it becomes difficult to polish when the absolute value of the thickness of the crystal wafer is too thin, that is, less than 50 μm.
以上の議論から、Flと71の弾性結合を利用する音叉
型水晶振動子全腕時計用振動子として使用する場合、一
本の音叉腕の腕幅は0.5鵡以下で、かつ振動子の厚み
は50μm (0,05鴎)以上である事が望ましい。From the above discussion, when using a tuning fork type crystal oscillator that utilizes the elastic coupling of Fl and 71 as a oscillator for all wristwatches, the arm width of one tuning fork arm should be 0.5 mm or less, and the thickness of the oscillator should be It is desirable that the thickness is 50 μm (0.05 μm) or more.
ところで、腕時計c1最終的にIHzの信号が必要であ
る。現状の腕時計では、2の15乗である52768H
2の水晶振動子の振動を分周して、IH2の信号を作っ
ている。故に、FlとT1の弾性結合を利用する音叉型
水晶撮動子を腕時計用振動子として使用する場合、この
振動子の主振動である屈曲振動の周波数fFは5276
8Hzの整数倍あるいは整数分の1の値である必要があ
る。By the way, the wristwatch c1 ultimately requires an IHz signal. The current wristwatch is 52768H which is 2 to the 15th power.
The IH2 signal is created by frequency-dividing the vibration of the 2nd crystal oscillator. Therefore, when using a tuning fork type crystal sensor that utilizes the elastic coupling between Fl and T1 as a wristwatch vibrator, the frequency fF of the bending vibration, which is the main vibration of this vibrator, is 5276.
The value must be an integral multiple or a fraction of 8 Hz.
ここで、主振動とは、発揚回路に組んだ時発振する振動
、即ち、等価抵抗R1の低い振動のことをいう。Here, the main vibration refers to a vibration that oscillates when assembled in an oscillation circuit, that is, a vibration with a low equivalent resistance R1.
前述した如く、良好なf−T特性を持つ屈曲振動と捩れ
振動の弾性結合を利用する音叉型水晶振動子を得るには
、(3)式を満たす必要がある。(3)式から明らかな
様に、良好なf−T特性を得るには、fyとfTはかな
り近い値を持つ必要があり、fFとfTの差δfの最適
値も決ってしまう。fyはw/ ji、 2に比例し、
fTはt/βWにほぼ比例するため、f、Pを3276
8Hzの整数あるいは整数分の1のある値に設定した時
、℃とWとtの関係は殆ど一義的に決ってしまう。即ち
、Lが決まればfye望みの値にする1めWが決まり、
膣た、f−T特性を良好にするためにfTをfFの値と
近い値を持つ様に、tも自づから決ってしまう。As mentioned above, in order to obtain a tuning fork type crystal resonator that utilizes elastic coupling between bending vibration and torsional vibration and has good f-T characteristics, it is necessary to satisfy equation (3). As is clear from equation (3), in order to obtain good f-T characteristics, fy and fT need to have fairly close values, which also determines the optimum value of the difference δf between fF and fT. fy is proportional to w/ji, 2,
Since fT is almost proportional to t/βW, let f and P be 3276
When set to a certain value that is an integer or a fraction of an integer of 8Hz, the relationship between °C, W, and t is almost uniquely determined. That is, once L is determined, the first W to make fye the desired value is determined,
In order to improve the f-T characteristic, t is also determined by itself so that fT has a value close to the value of fF.
第5図は、音叉型水晶撮動子の方位を示す斜視図である
。51は音叉型水晶振興1子、X、7.Z軸(1それぞ
れ、水晶の電気軸1機械軸、光軸を表わしている。第5
図に示す音叉型水晶振動子は、2面即ち、2軸に垂直が
面食、X軸の回りに反時計方向に角度θだけ回転された
面内で形成され、揚動子の長さ方向はy′軸、振動子の
厚み方向は2′軸方向金向いている。カット角θは、X
軸−の回9に反時計方向に回転した場合を王とする。FIG. 5 is a perspective view showing the orientation of the tuning fork type crystal sensor. 51 is a tuning fork type crystal Shinko 1 child, X, 7. Z-axis (1 represents the electrical axis, 1 mechanical axis, and optical axis of the crystal, respectively.
The tuning fork crystal resonator shown in the figure is formed in two planes, that is, in a plane perpendicular to the two axes, which is rotated counterclockwise by an angle θ around the X axis, and in the longitudinal direction of the lifter. The y' axis and the thickness direction of the vibrator are oriented toward the 2' axis. The cut angle θ is
The case where the axis rotates counterclockwise at rotation 9 is considered to be the king.
第6図は、FlとT1の弾性結合を利用する音叉型水晶
振動子のfFが52768Hzの整数倍の値を持つ時に
、(3)式を満たすためにほぼ一義的に決まるA、w、
tの内、音叉腕の幅寸法Wと振動子の厚みtの関係を示
したグラフである。61゜62.65,64.65 の
曲線は、それぞれfIlが32768Hz 、65.5
KH2,13,1,1KHz。FIG. 6 shows that when fF of a tuning fork crystal resonator that utilizes the elastic coupling between Fl and T1 has a value that is an integer multiple of 52768 Hz, A, w, which are almost uniquely determined to satisfy equation (3), are shown.
It is a graph showing the relationship between the width dimension W of the tuning fork arm and the thickness t of the vibrator. The curves of 61°62.65 and 64.65 have fIl of 32768Hz and 65.5, respectively.
KH2,13,1,1KHz.
196.6に’klz 、 262.1 KHzに設定
された場合のtとWの関係を示している。第6図のグラ
フは、第5図に示すカット角θが一15度の場合のもの
でおる。θが一10度と一20度の間の範囲にあれば、
第6図の関係は殆どそのままあてはまる。It shows the relationship between t and W when 'klz is set to 196.6 KHz and 262.1 KHz. The graph in FIG. 6 is for the case where the cut angle θ shown in FIG. 5 is 115 degrees. If θ is in the range between 110 degrees and 120 degrees,
Most of the relationships shown in Figure 6 apply as is.
第6図において、破線66はt=50μmを示す直線、
破線67はw == [1,5脳を示す直!!全表わし
ている。第4図に示す容器に音叉型水晶振動子を入れる
ためには、音叉型水晶撮動子のWとtの溝穴すべき組合
せは、第6図のグラフにおいて直線66より上側、かつ
直線67より左側の領域にある組合せである必要がある
。第6図から明らかな様に、曲線61はこの領域にはな
く、fyが32768Hzの場合、FlとT1の弾性結
合を利用する音叉型水J4振動子を第4図に示す容器に
入オしることは不可能である。fFが65.5KHzの
時には、Wとtの組合せの中で僅かの条件の時に、かろ
うじて、第4図に示す容器に入れることが可能となる。In FIG. 6, the broken line 66 is a straight line indicating t=50 μm;
The dashed line 67 indicates w == [1,5 brain! ! Fully expressed. In order to put the tuning fork type crystal resonator into the container shown in FIG. The combination must be located in the area further to the left. As is clear from FIG. 6, the curve 61 is not in this region, and when fy is 32768 Hz, a tuning fork type water J4 vibrator that utilizes the elastic coupling between Fl and T1 is placed in the container shown in FIG. It is impossible. When fF is 65.5 KHz, it is possible to put it into the container shown in FIG. 4 under only a few conditions among the combinations of W and t.
即ち、FlとT1の弾性結合を利用する音叉型水晶振動
子を腕時計用撮動子として使用する場合、fIPは1s
5KHz以上でちることが必要となる。In other words, when a tuning fork crystal resonator that utilizes the elastic coupling between Fl and T1 is used as a wristwatch camera, fIP is 1 s.
It is necessary to turn off at 5KHz or higher.
第7図は、第6図の直線66の上側かつ直線67の左側
の領域にあるWともの組合せに対するtとw / Il
、の関係を表わしたグラフである。71゜72.73.
74は、それぞれflfが65.5KHz。FIG. 7 shows t and w/Il for the combination of W and mono in the area above the straight line 66 and to the left of the straight line 67 in FIG.
This is a graph showing the relationship between . 71°72.73.
74 has an flf of 65.5KHz.
131、lKH2,196,6KH2,262,1KH
2の場合のtとW/μの関係を示している。fye高く
し−Cいくに従い w / 54の直は大さくなる。131, lKH2, 196, 6KH2, 262, 1KH
The relationship between t and W/μ in the case of 2 is shown. As fye becomes higher and -C goes, the direct value of w/54 becomes larger.
第7図から明らかな如く、FlとT1の弾性結合を利用
する音叉型水晶振動子を腕時計用振動子として利用する
場合、音叉腕の幅Wと長さLの比W/βの値は約0.2
5以上である必要がある。As is clear from FIG. 7, when a tuning fork type crystal oscillator that utilizes the elastic coupling between Fl and T1 is used as a wristwatch oscillator, the value of the ratio W/β of the width W and length L of the tuning fork arm is approximately 0.2
Must be 5 or more.
ところで、f−’r特性は次式で表わすことができる。Incidentally, the f-'r characteristic can be expressed by the following equation.
(f (T)−f(To )/ f (To)=α(T
−To)十β(T−To)2+γ(T−To)3・・・
・・・(4)
ここで、f(T)は任意の温度Tにおける周波数%
f (To)は基準温度’roにおける周波数を表わし
、α、β、γはそれぞれ一次、二次、三次周波数温度係
数と呼ばれている。基準温度T。は、普通、常温付近の
温度、例えば20度C等の値を選ぶ。(f(T)−f(To)/f(To)=α(T
-To) 10β(T-To)2+γ(T-To)3...
...(4) Here, f(T) is the frequency % at any temperature T
f (To) represents the frequency at the reference temperature 'ro, and α, β, and γ are called primary, secondary, and tertiary frequency temperature coefficients, respectively. Reference temperature T. Usually, a value near normal temperature, such as 20 degrees Celsius, is selected.
従来、腕時計に使われている音叉型水晶振動子は屈曲振
動のみを利用しておシ、αがゼロの時、βはゼロになら
ず、負の値を持っている。故に、そのf−’l’%性は
上に凸の二次曲線を示している。Traditionally, tuning fork crystal oscillators used in wristwatches utilize only bending vibration, and when α is zero, β is not zero and has a negative value. Therefore, the f-'l'% property shows an upwardly convex quadratic curve.
ところが、屈曲振動と捩れ振動の弾性結合を利用する音
叉型水晶振動子の場合、fTがfFに近ずくに従い、α
とβは共に負の値から正の値へと変化する。ff−fF
即ち、δfをある値に設定すると、αは必ずゼロになる
。しかし、その時βも同時にゼロにするには、第5図に
示すカット角θを適切な値にしなけれ(ばならない。α
とβを同時にすることができれば、現在使われている腕
時計用水晶振動子に比べ、f−T特91.ははるかに優
れ、手差10秒程度の高精度腕時計用水晶振動子になり
得る。従来、αとβが同時にゼロになる値は、θが0度
から一15度の間にある場合であると言われていた。し
かし、FlとT1の弾性結合を゛利用する音叉型水晶振
動子、即ちw / Xの値が0.25以上と大きい値を
持つと、適切なθは上記の範囲にないことが明らかとな
った。こころみに、従来考えられているF2とT1の弾
性結合を利用する音叉型水晶振動子のw / nの値は
、約0.1から0.15の範囲の値になる。However, in the case of a tuning fork crystal resonator that utilizes elastic coupling between bending vibration and torsional vibration, as fT approaches fF, α
and β both change from negative values to positive values. ff-fF
That is, when δf is set to a certain value, α is always zero. However, in order to make β zero at the same time, the cut angle θ shown in Fig. 5 must be set to an appropriate value.
and β at the same time, f-T special 91. is far superior, and can be used as a high-precision wristwatch crystal unit with a hand difference of about 10 seconds. Conventionally, it has been said that the value where α and β become zero at the same time is when θ is between 0 degrees and 115 degrees. However, in a tuning fork type crystal resonator that utilizes the elastic coupling between Fl and T1, that is, when the value of w/X is as large as 0.25 or more, it is clear that the appropriate θ is not within the above range. Ta. Incidentally, the value of w/n of a tuning fork type crystal resonator that utilizes the elastic coupling between F2 and T1 that has been conventionally considered is in the range of about 0.1 to 0.15.
8g8図は、FlとT1の弾性結合を利用する音叉型水
晶振動子のαとβの関係を、カット角θをハラメータに
して表わしたグラフである。このグラフは、f!+が1
96.6 KHz 、 w/1の値が約r1.56の場
合のものである。81,82,83゜84はそれぞれθ
が一10度、−12度、−15度、−16度に対するα
とβの関係である。Figure 8g8 is a graph showing the relationship between α and β of a tuning fork type crystal resonator that utilizes the elastic coupling between Fl and T1, using the cut angle θ as a haramometer. This graph shows f! + is 1
96.6 KHz and the value of w/1 is approximately r1.56. 81, 82, 83°84 are respectively θ
α for -10 degrees, -12 degrees, -15 degrees, -16 degrees
and β.
第9図は、第8図の結果から、αがゼロの時のβの値と
θの関係を表わしたグラフである。第9図から明らかな
様に、θが一16度の時にαとβは同時にゼロになる。FIG. 9 is a graph showing the relationship between the value of β and θ when α is zero, based on the results of FIG. As is clear from FIG. 9, when θ is 116 degrees, α and β become zero at the same time.
手差10秒程度の精度を満足させるには、振動子のf−
T特性は、αがゼロの時のβの値の絶対値は約I X
10””以下の値が必要である。第9図から明らかl様
に、w / nの値が約0.56のFlとT1の弾性結
合を利用する音叉型水晶振動子の場合、θは一15度か
ら一17度の間にあることが望ましい。In order to satisfy the accuracy of about 10 seconds for manual difference, the f-
In the T characteristic, the absolute value of β when α is zero is approximately I
A value of 10"" or less is required. As is clear from Figure 9, in the case of a tuning fork crystal resonator that uses elastic coupling between Fl and T1 with a w/n value of approximately 0.56, θ is between 115 degrees and 117 degrees. This is desirable.
αとβが共にゼロになるθは、W/μの値に依存する。θ at which both α and β become zero depends on the value of W/μ.
従来の屈曲振動と捩れ振動の弾性結合を利用する音叉型
水晶−ttS子、特にF′2とT1の弾性結合を利用す
る音叉型水晶振動子に比べ、FlとT1の弾性結合を利
用する音叉型水晶振動子はv / Lの値が大き?、そ
のため適切なカット角θはよりz面から離れた値になる
。Compared to the conventional tuning fork type crystal resonator which utilizes the elastic coupling between bending vibration and torsional vibration, especially the tuning fork type crystal resonator which utilizes the elastic coupling between F'2 and T1, the tuning fork which utilizes the elastic coupling between Fl and T1. Does the type crystal oscillator have a large v/L value? , Therefore, the appropriate cut angle θ is a value that is further away from the z-plane.
発明の効果
以上、詳細に説明した様に、本発明の音叉型水晶振動子
は、FlとT1の弾性結合を利用することにより、従来
のF2とT1の弾性結合を利用する音叉型水晶振動子よ
り非常に小型にすることができ、しかもαとβを共にゼ
ロにすることが可能となり、小型かつ高精度な腕時計用
振動子として優れた性質を持っている。Effects of the Invention As explained in detail above, the tuning fork type crystal resonator of the present invention utilizes the elastic coupling between Fl and T1, and is therefore different from the conventional tuning fork type crystal resonator that utilizes the elastic coupling between F2 and T1. It can be made much smaller, and both α and β can be made zero, making it excellent as a small and highly accurate wristwatch vibrator.
第1図は、屈曲の基本振動の変位の様子を示す音叉型水
晶振動子の平面図。第2図は、屈曲の二次撮動の変位の
様子を示す音叉型水晶振動子の平面図。第3図は音叉型
水晶振動子の外形形状を示す胴視図。第4図は音叉型水
晶振動子が容器に刺入され′Cいる状態を示す一部断面
図。第5図は音叉型水晶振動子の切り出し方位を示す斜
視図。第6図はFlどT1の弾性結合を利用する音叉型
水晶振動子のflが!+2768Hzの整数倍の値を持
つ時に、(3)式を満たすためにほぼ一義的に決まるn
、w、tの内、音叉腕の幅寸法Wと振動子の厚みtの
関係を示したグラフである。第7図は、第6図の直i!
166の上側かつ直紡67の左側の領域にあるWとtの
組合せに対するtとw / ftの関係を表わしたグラ
フである。第8図は、FlとT1の弾性結合を利用する
音叉型水晶振動子のαとβの関係を、カット角θ全パラ
メータにして表わしたグラフである。第9図は、αがゼ
ロの時のβとθの関係を表わしたグラフである。
51・・・・・・音叉型水晶振動子
L・・・・・・音叉腕の長さ
W・・・・・・音叉腕の幅
θ・・・・・・切シ出し方位
以 上
出願人 株式会社 第二精工舎
代理人 弁理士 最上 務
第1図
第2図
第3図
ftf54図
第5図
+y(μm)
/、:PS 7図
ψm)
θ2 θ25 0M o、J!; 041) 0.4
5 asv吟
d (X10’/’C)
00度)FIG. 1 is a plan view of a tuning fork crystal resonator showing the displacement of the fundamental vibration of bending. FIG. 2 is a plan view of a tuning fork crystal resonator showing the state of displacement during secondary imaging of bending. FIG. 3 is a trunk view showing the external shape of a tuning fork type crystal resonator. FIG. 4 is a partial cross-sectional view showing a state in which a tuning fork type crystal vibrator is inserted into a container. FIG. 5 is a perspective view showing the cutting direction of a tuning fork type crystal resonator. Figure 6 shows the tuning fork type crystal oscillator fl that utilizes the elastic coupling of Fl and T1! When the value is an integer multiple of +2768Hz, n is almost uniquely determined to satisfy equation (3).
, w, and t, is a graph showing the relationship between the width dimension W of the tuning fork arm and the thickness t of the vibrator. Figure 7 shows the direct i! of Figure 6!
166 and to the left of the direct spinning 67. FIG. FIG. 8 is a graph showing the relationship between α and β of a tuning fork crystal resonator that utilizes the elastic coupling between Fl and T1 in terms of all parameters of the cut angle θ. FIG. 9 is a graph showing the relationship between β and θ when α is zero. 51... Tuning fork type crystal oscillator L... Length of tuning fork arm W... Width of tuning fork arm θ... Cutting direction or more Applicant Daini Seikosha Co., Ltd. Agent Patent Attorney Tsutomu Mogami Figure 1 Figure 2 Figure 3 ftf54 Figure 5 +y (μm) /, :PS Figure 7 ψm) θ2 θ25 0M o, J! ;041) 0.4
5 asvgind (X10'/'C) 00 degrees)
Claims (2)
を利用する音叉型水晶振動子であって、し力亀も音叉腕
の幅Wと長さλの比W/μの値75フ約0.25以上で
ある音叉型水晶振動子において、その振動子の切り出し
方位は、水晶の電気軸の回りに反時計方向に回転する場
合ケ回転の正方向とした時、水晶の電気軸の回りに2面
を一15度よりも負の方向に大きい角度であることを特
徴とする音叉型水晶振動子。(1) A tuning fork type crystal oscillator that utilizes the simple combination of the fundamental vibration of bending and the fundamental vibration of torsion, and the ratio W/μ of the width W and length λ of the tuning fork arm is 75. In a tuning fork type crystal resonator with a f of approximately 0.25 or more, the cutting direction of the resonator is: When rotating counterclockwise around the electric axis of the crystal, When rotating in the positive direction of rotation, the direction of cutting the resonator is A tuning fork type crystal resonator characterized in that two faces around the oscillator are at an angle larger in the negative direction than 115 degrees.
36で、かつ切り出し方位が一15度と一17度の間の
範囲内にあることを特徴とする特許請求の範g!A第1
項記載の音叉型水晶振動子。(2) The ratio W and l of the width W and length L of the line arm is about 0.
36, and the cutting direction is within a range between 115 degrees and 117 degrees g! A 1st
Tuning fork type crystal resonator as described in section.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9205983A JPS59218025A (en) | 1983-05-25 | 1983-05-25 | Tuning fork type crystal oscillator |
US06/594,536 US4540909A (en) | 1983-04-04 | 1984-03-29 | Tuning fork type quartz crystal resonator with variable width base |
GB08408482A GB2140970B (en) | 1983-04-04 | 1984-04-02 | Tuning fork type piezo-electric resonator |
CH170984A CH662240GA3 (en) | 1983-04-04 | 1984-04-04 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9205983A JPS59218025A (en) | 1983-05-25 | 1983-05-25 | Tuning fork type crystal oscillator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59218025A true JPS59218025A (en) | 1984-12-08 |
Family
ID=14043912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9205983A Pending JPS59218025A (en) | 1983-04-04 | 1983-05-25 | Tuning fork type crystal oscillator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59218025A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011259426A (en) * | 2010-06-10 | 2011-12-22 | Swatch Group Research & Development Ltd | First and second order temperature-compensated resonator |
US9331602B2 (en) | 2013-10-15 | 2016-05-03 | Seiko Epson Corporation | Vibrator, oscillator, electronic device, and moving object |
-
1983
- 1983-05-25 JP JP9205983A patent/JPS59218025A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011259426A (en) * | 2010-06-10 | 2011-12-22 | Swatch Group Research & Development Ltd | First and second order temperature-compensated resonator |
US9331602B2 (en) | 2013-10-15 | 2016-05-03 | Seiko Epson Corporation | Vibrator, oscillator, electronic device, and moving object |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS594310A (en) | Surface acoustic wave device | |
JP2005106819A (en) | Thermoregulated spring balance resonator | |
JPH0232807B2 (en) | ||
US4503353A (en) | Cut angles for tuning fork type quartz resonators | |
JP3096472B2 (en) | SC-cut crystal unit | |
JPS61187411A (en) | Tuning fork type crystal resonator | |
US4540909A (en) | Tuning fork type quartz crystal resonator with variable width base | |
JPS59218025A (en) | Tuning fork type crystal oscillator | |
US4349763A (en) | Tuning fork type quartz resonator | |
JP2005197946A (en) | Tuning fork type crystal resonator | |
JP2005197946A6 (en) | Tuning fork crystal unit | |
JP4848873B2 (en) | Gyro vibrating piece | |
US4873465A (en) | 2T-cut piezoelectric resonator using coupled contour modes | |
US20070024158A1 (en) | Integrated resonators and time base incorporating said resonators | |
WO2002031975A1 (en) | Torsional vibrator | |
JPS6246089B2 (en) | ||
JPH0674834A (en) | Quartz oscillator for detecting temperature | |
JP3194442B2 (en) | SC-cut crystal unit | |
JPS59218026A (en) | Tuning fork type crystal oscillator | |
JPS5851689B2 (en) | Tuning fork crystal oscillator | |
JP4067044B2 (en) | Oscillator and vibratory gyroscope | |
US4525646A (en) | Flexural mode vibrator formed of lithium tantalate | |
JPS5928714A (en) | Crystal oscillator | |
JPS6246093B2 (en) | ||
JPS6246092B2 (en) |