JPS5921491A - Laser working robot - Google Patents
Laser working robotInfo
- Publication number
- JPS5921491A JPS5921491A JP57133143A JP13314382A JPS5921491A JP S5921491 A JPS5921491 A JP S5921491A JP 57133143 A JP57133143 A JP 57133143A JP 13314382 A JP13314382 A JP 13314382A JP S5921491 A JPS5921491 A JP S5921491A
- Authority
- JP
- Japan
- Prior art keywords
- laser
- bending arm
- line
- laser beam
- arm member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/0869—Devices involving movement of the laser head in at least one axial direction
- B23K26/0876—Devices involving movement of the laser head in at least one axial direction in at least two axial directions
- B23K26/0884—Devices involving movement of the laser head in at least one axial direction in at least two axial directions in at least in three axial directions, e.g. manipulators, robots
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/0823—Devices involving rotation of the workpiece
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/14—Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
- B23K26/1462—Nozzles; Features related to nozzles
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Robotics (AREA)
- Laser Beam Processing (AREA)
Abstract
Description
本発明は、レーザー光を用いて金属板などの溶断や溶接
の自動加工を行うレーザー加工ロボ・71□に関する。
近年、レーザー光を溶断・溶接の加工に応用したレーザ
ー加工機が実用化されるに至っている。
この種のレーザー加工機は、一般にレーザー発振器でレ
ーザー光を発生させ、このレーザー光を反射鏡等でワー
ク付近1で導き、最終的に集光レンズでレーザー光を紋
ってワーク面に照射するように構成されている。このレ
ーザー加工で重要なことは、例えば溶断の場合、エネル
ギー密度の最も高いレーザー光の焦点をワークの加工線
に合わせることであり、さらにこの状態を保持したまま
光軸をワークの加工面に直角になる姿勢とすれば加1:
能力および精度が一段と向上する。
現在、一般的に使用されているCO2レーザー加工「機
は、水平2次元に移動し得るワークテーブル上にワーク
を載置し、このワークテーブルの上方に17−ザー照射
器を配置し、集光レンズの光軸を垂直に保持した状態で
この集光レンズを上下動させて焦点をワーク加工面に合
わせるようになっている。従って、ワーク加工面が曲面
であったり傾斜している場合には、光軸が加工面に直角
になるところと、直角にならないところが生じ、場所に
よ−)で加工能力に差が出てくる。たとえ前述レーザー
照射器全体を自由に傾斜させて光軸の姿勢を変化させる
ことができても、その都度、焦点位置が狂い、焦点の調
整をし直さねばならず、連続的な加工作業が困難である
。
本発明は前述事情に鑑み、レーザー照射機構を少なくと
も1次元に移動し得る支持部劇に取付け、前述レーザー
照射機構は前記支持部材に垂直中心軸線1わりに回転可
能に基部を支持した中空状の屈曲腕部材と、前記支持部
材またはロボットの固定部に設置し直接または屈折案内
手段を介して前記垂直中心軸線に沿って前記基部内にレ
ーザー光を投射し得るレーザー発振器と、前記屈曲腕部
材の各屈曲部に内装し前記レーザー光を該屈曲腕部材の
中心軸線に沿って反射案内し得る複数のレーザー光屈折
手段と、前記屈曲腕部材の先端開口部に装着1.た集光
レンズとから成り、該集光レンズを通過したレーザー光
を前記垂直中心軸線上に収束させるごとくしたことを特
徴とし、簡単な機械的機構により焦点位置を不変のまル
−ザー光の光軸の姿勢を可変と成し得ることを目的とし
たレーザー加工ロボソトを提供せんとするものである1
、以下、図面の実施例に基づき詳述する。
第1図はし=ザー加7F−ロボット1の全体斜視図であ
る0、2・2は基台3−ヒに左右離間・対向して据え付
けた1対C)ワーク取付具で、互いに向き合う側に円板
状のワーク取付板2a・2aを備え、このうち左側の取
付板2aを自由回転となし、右側σ)取付板2aの背面
に設置した正・逆転モータ適宜治具(図示ぜず)により
固定したワークWを中心壕わり(矢印θ方向)に回転さ
せるごとくしである。
て基台3上に左右離間して立設した柱で、該両柱4・4
間には梁5が架設しである。6は前記梁5動体6の上部
に嵌挿して前後方向水平(矢印Y方向)に移動可能とし
た前後移動体、8は前記前後移動体7の前部に嵌挿し−
〔垂直方向(矢印Z方向)に上下動可能とした上下移動
体、9は前記上下移動体1317) ””F端に固定し
て前方に延びる水平状の支持部材で、該支持部材9の前
部にレーザー照射機構10を設けている。
前記レーザー照射機構11よ第2区1にivy 、nn
をZJ及口の円筒状軸受体で、上部にi、j:垂直”z
lo N+線M1((沿って下向きにレーザー光L
Bを脂身、■し30るレーザー発振器12を据付けてい
る。
13は中空筒状の第1の屈曲腕で、垂rr;−1t41
38上部を前記軸受体11の下方間「1より1JJ音し
に1中入し前記垂直中心軸線M1まわり(欠口」Φ方r
aj) ’iこ揺動自在に支持してあり、前記垂直音V
S18 a F’OiMより水平中心軸線M2方向に屈
ffl+L−r水平音1s 13 bを形成し、該水平
部131〕先端より水イーに交↑し45°の角度で内側
下方に延びる傾斜τIJ・0軸m M3方+ij+に傾
斜部13cを形成している。、14は倉iJ R己支」
前部材9の中間部に固設置−た減速機およびブレーキ付
の正逆転モータで、下方に延びる出ブJ mat+端(
C駆動歯車14aを固定し、該駆動歯y−14aを′帛
時前記垂直部13a中間部に固定した被動歯車15に噛
合させ、前記モータ14C)駆f+11によりnfJ
n己第■の屈曲腕13を垂直中心軸線Mはわり・に揺動
制預11The present invention relates to a laser processing robot 71□ that performs automatic cutting and welding of metal plates using laser light. In recent years, laser processing machines that apply laser light to cutting and welding processes have come into practical use. This type of laser processing machine generally generates laser light with a laser oscillator, guides this laser light near the workpiece with a reflecting mirror, etc., and finally forms the laser light with a condenser lens and irradiates it onto the workpiece surface. It is configured as follows. What is important in this laser processing, for example in the case of fusing, is to focus the laser beam with the highest energy density on the processing line of the workpiece, and while maintaining this state, keep the optical axis perpendicular to the processing surface of the workpiece. If the posture becomes, add 1:
Greater ability and accuracy. The currently commonly used CO2 laser processing machine places the workpiece on a worktable that can move horizontally in two dimensions, and places a 17-laser irradiator above the worktable to focus the light. With the optical axis of the lens held vertically, this condensing lens is moved up and down to focus on the workpiece processing surface.Therefore, if the workpiece processing surface is curved or inclined, , there are places where the optical axis is perpendicular to the processing surface and places where it is not, resulting in differences in processing performance depending on the location.Even if the entire laser irradiator mentioned above is tilted freely, Even if it is possible to change the laser irradiation mechanism, the focal position will be distorted each time, and the focal point must be readjusted, making continuous processing difficult. The laser irradiation mechanism is attached to a support part that can move in one dimension, and the laser irradiation mechanism includes a hollow bending arm member whose base is rotatably supported on the support member so as to be rotatable about a vertical central axis, and a fixed part of the support member or the robot. a laser oscillator that is installed and capable of projecting a laser beam into the base along the vertical central axis directly or through a refraction guide means; 1. a plurality of laser beam refracting means capable of reflecting and guiding along the central axis of the bending arm member; and a condensing lens attached to the opening at the tip of the bent arm member, the laser beam passing through the condensing lens is directed to the vertical direction. We provide a laser processing robot that is characterized by convergence on the central axis, and aims to make the posture of the optical axis of the laser light variable while keeping the focal position unchanged using a simple mechanical mechanism. 1.
, will be described in detail below based on the embodiments shown in the drawings. Figure 1 is an overall perspective view of the robot 1. 0, 2, and 2 are a pair of workpiece fixtures installed on the base 3-H with a distance between them on the left and right, facing each other, and the sides facing each other. are equipped with disk-shaped workpiece mounting plates 2a, 2a, of which the left mounting plate 2a is free-rotating, and the right side σ) is equipped with appropriate jigs (not shown) for forward and reverse motors installed on the back of the mounting plate 2a. This is as if the workpiece W, which has been fixed by a rotation angle, is rotated around the center (in the direction of the arrow θ). A pillar erected on the base 3 at a distance from the left and right, and both pillars 4 and 4
A beam 5 is installed between them. Reference numeral 6 indicates a longitudinal moving body which is inserted into the upper part of the beam 5 moving body 6 and is movable in the front and rear direction horizontally (direction of arrow Y); 8 is inserted into the front part of the longitudinal moving body 7.
[Vertically movable body capable of moving up and down in the vertical direction (direction of arrow Z); 9 is the vertically movable body 1317) ``'' A horizontal support member that is fixed to the F end and extends forward; A laser irradiation mechanism 10 is provided in the section. From the laser irradiation mechanism 11 to the second section 1, ivy, nn
ZJ and opening cylindrical bearing body, with i, j: vertical "z" on the top
lo N+ line M1 (( Laser beam L downwards along
A laser oscillator 12 is installed to remove B from fat. 13 is a hollow cylindrical first bent arm;
38, insert the upper part of the bearing body 11 between the lower part of the bearing body 11 with a 1JJ sound, and insert it around the vertical center axis M1 (notch) in the Φ direction r.
aj) 'i is supported so as to be able to swing freely, and the vertical sound V
S18 a F'OiM forms a bending ffl+L-r horizontal sound 1s 13 b in the direction of the horizontal central axis M2, and an inclination τIJ that intersects water E from the tip of the horizontal part 131] and extends downward inwardly at an angle of 45°. An inclined portion 13c is formed in the 0-axis m M3 direction +ij+. , 14 is Kura iJR Kochi”
A forward/reverse motor with a speed reducer and a brake is fixedly installed in the middle part of the front member 9, and a downwardly extending protrusion J mat+ end (
The C drive gear 14a is fixed, and the drive tooth y-14a is meshed with the driven gear 15 fixed to the intermediate part of the vertical part 13a during operation.
The vertical center axis M of the nth bending arm 13 is rotated by the swinging system 11.
【す能としである。
1にの、中空節状の第2の屈曲腕で、+側斜斜部167
I上部を前記傾斜部18(・先端に外嵌し前記傾斜中心
軸線M3−まわり(矢印αJj向)に揺動自在l)を斤
6成シ72、該ド側傾斜部16b下部より前記傾斜中心
軸線M、3に111−、45”の角度で内方に延び且つ
常に111I記車+1j中・L=輔線M1と傾斜中心軸
線M、3の交点■)を通る揺動中上・軸線M5方向にレ
ンズ装着部】6Cを片a成している。17は前記I−側
側斜斜部6aに固設した減速機」・・よびブレーキ刊の
正逆転モータで、内側下刃に延びる出力軸端に駆動歯車
17aを固定し2、該駆動歯車17aを常時前詫斗側傾
斜部16 Hに固定した破動歯市18に噛合させ、1)
1■記士−タ17σ)駆動によゆ前記第2の屈曲腕16
を前記傾斜中心軸線M31わりに揺動制御可能としであ
る3、前記第1および第2の屈曲腕13・16をも7)
て力]1曲腕部材を構成している。
I9・20.21・22は前記第1および第2の屈曲腕
13・16の各屈曲部に着脱げ能に内蔵1−だレーザー
光屈折手段とし−Cの4個の反射鏡、23は前記レンズ
装着部16cの先端に装着L fr集尤レンズで、前記
レーザー発振器12より照射しまたレーザー光L Bは
垂直中心軸線M1に71)っ−Ct・方に進み、反射鏡
19で反射屈折し−て水平中心軸線M2に沿って進み、
以ド同様に反射鏡20・21・22で順次反射屈折し7
、#i斜中心軸線M3・Mlおよび揺動中心軸線M5に
沿って進み、最後に集光レンズ23を通過し、前記交点
Pが焦点となるように収束するごとくなっている。この
焦点を交点Pに一致させる操作は図示しない焦点調整手
段により焦光レンズ23自体を光軸方向に微動させ−C
行う。
24は前記レンズ装着部16cの先端に装着した先細り
のガス噴射ノズルで、ガス供給管24aより導入1〜た
補助ガス(通常は酸素)を前記焦点■)に向けて噴射し
、レーザー光LBによるワ りWの加熱溶融を補助する
ごとくしである。
しかして、前述構成のレーザー加工ロボノトlは別に設
けた図示しないマイクロコンピュータ内蔵の制御手段に
より制御されるもので、即ち該マイクロコンビコータは
予め記憶した所定の工程順序に従ってワークWのθ方向
への回転、レーザー照射機構10全体のx−y−z方向
への移動、第1および第2の屈曲腕18・16のΦ方向
への揺動および第2の屈曲腕16のα方向への揺動等を
制御しながら、レーザー光L Bの光軸をワークWの所
望6γ置に最適角度(溶断の場合は、ワークWの面に直
角となるのがよい)で照射するように制御し、ワ−りW
に対する溶断や溶接を自動的に実行するもめである。
尚、前述実施例ではレーザー発振器12をX・Y−Z方
向に移動する支持部材9に設置したが、支軸部材9の移
動に伴う振動が精密機器としてのし・−ザー発振器に悪
影響を及ぼす恐れのある場合は、第3図に示すごとくレ
ーザー発振器をロボットの固定部に設置すればよい。即
ち、第3図に示すレーザー加丁ロボット100は、梁1
05の右側部に固設した支持台111にレーザー発振器
112を据付け、該発振器112は梁105の上方を左
方水平にレーザー光L Bを照射するごとく配置しであ
る。そして左右移動体106上7前後移動体107の前
端右側面、上下移動体108の下端に固設せる右方に延
長した支持部材109の後部上面、および該支持部材1
09の前部上面に同一構成の4個9反射器113〜11
6を固設している。前記反射器118〜116は、反射
器118について第4図に詳細を示すごとく、立方状箱
形で直交し7て隣接する右側面と前面に開口118a・
113bを形成し、一方の開口118aから入射したレ
ーザー光LBを直角に屈折反射して他方の開口113b
より出射させるように前記右側面と前面に対し45°の
角度で反射鏡M Rを取付けている。他の反射器114
〜116はそれぞれ2つの開口が後面・下面、上面・前
面、後面・下面となるように配置しである。そして、レ
ーザー発振器112・反射器113・114・115相
互の開口間は伸縮自在の蛇腹117・118・119で
覆っており、また反射器115・116の開[1間は固
定の筒体120で覆っている。
110は前記レーザー照射機構10からレーザー発振器
12を除去したものと同一構成のレーザー照射機構で、
前記反射器116の下面間「二」を前記軸受体11に相
当する軸受体(図示せず)の上面間rlに接続しである
。
以上詳述せるごとく、本発明のレーザー加工ロボノトに
依れば、レーザー発振器からのレーザー光を案内する屈
曲腕部材を少なくとも1次元に移動し得る支持部材に垂
直中心軸線まわりに揺動可能とし、屈曲腕部材の末端に
設けた集光レンズを通過するレーザー光の焦点を垂直中
心軸線上に一致させたfこめ、焦点位置を不変のまま光
軸を加工に最適の姿勢に種々変化させることができ、加
工作が複雑な曲面であっても加工条件の均−且つ畑土精
度の高い仕上りが期待できる。[This is Suno. 1, the hollow joint-shaped second bent arm, + side oblique part 167
The upper part of the inclined part 18 (fitted on the tip and able to swing freely around the inclined center axis M3 (in the direction of arrow αJj)) is formed into a plate 72, and the inclined center is moved from the lower part of the side inclined part 16b. 111-, extends inwardly at an angle of 45" to the axis M, 3, and always passes through the 111I + 1j middle L = intersection point of the center line M1 and the tilt center axis M, 3) 17 is a speed reducer fixed to the inclined portion 6a on the I-side side and a forward/reverse motor manufactured by Brake, which outputs an output extending to the inner lower blade. A driving gear 17a is fixed to the shaft end, 2, and the driving gear 17a is always meshed with a fracture gear 18 fixed to the front sloping part 16H, 1)
1) Recorder 17σ) Said second bending arm 16 for driving
The tilting center axis M31 can be controlled to swing (3), and the first and second bending arms 13 and 16 can also be controlled (7).
[force] constitutes one bent arm member. I9, 20, 21, and 22 are removably built in each bending part of the first and second bending arms 13 and 16, and four reflecting mirrors C are included; The laser beam LB is irradiated from the laser oscillator 12 by the Lfr condensing lens attached to the tip of the lens attachment part 16c, and the laser beam LB travels along the vertical central axis M1 in the direction of 71)-Ct, and is reflected and refracted by the reflecting mirror 19. - and proceed along the horizontal central axis M2;
In the same way as above, the reflection mirrors 20, 21, and 22 sequentially reflect and refract the light 7.
, #i along the oblique center axes M3 and M1 and the swing center axis M5, and finally pass through the condenser lens 23 and converge so that the intersection point P becomes the focal point. The operation for aligning this focal point with the intersection point P is performed by slightly moving the focusing lens 23 itself in the optical axis direction using a focus adjusting means (not shown).
conduct. Reference numeral 24 denotes a tapered gas injection nozzle attached to the tip of the lens attachment part 16c, which injects the auxiliary gas (usually oxygen) introduced from the gas supply pipe 24a toward the focal point (2), and is ejected by the laser beam LB. This is to assist in heating and melting the warp W. The laser processing robot l having the above-mentioned configuration is controlled by a separately provided control means built in a microcomputer (not shown), that is, the microcombi coater controls the workpiece W in the θ direction according to a predetermined process sequence stored in advance. rotation, movement of the entire laser irradiation mechanism 10 in the x-y-z direction, swinging of the first and second bending arms 18 and 16 in the Φ direction, and swinging of the second bending arm 16 in the α direction. etc., the optical axis of the laser beam LB is controlled to irradiate the workpiece W at a desired 6γ position at an optimal angle (in the case of fusing, it is better to be perpendicular to the surface of the workpiece W), and the workpiece is - RiW
This is a problem in automatically performing fusing and welding. In the above-mentioned embodiment, the laser oscillator 12 was installed on the support member 9 that moves in the X, Y, and Z directions, but the vibrations caused by the movement of the support shaft member 9 have an adverse effect on the laser oscillator as a precision instrument. If there is a possibility, a laser oscillator may be installed on the fixed part of the robot as shown in FIG. That is, the laser cutting robot 100 shown in FIG.
A laser oscillator 112 is installed on a support stand 111 fixed to the right side of the beam 105, and the oscillator 112 is arranged so as to irradiate a laser beam LB horizontally to the left above the beam 105. Upper 7 of the left-right moving body 106 , the right side of the front end of the front-back moving body 107 , the rear upper surface of the support member 109 extending to the right fixed to the lower end of the vertical moving body 108 , and the support member 1
Four 9 reflectors 113 to 11 with the same configuration on the front upper surface of 09
6 is permanently installed. As shown in detail in FIG. 4 for the reflector 118, each of the reflectors 118 to 116 has a cubic box shape and has openings 118a and 7 on the right side and front side, which are perpendicular to each other and adjacent to each other.
113b, and refracts and reflects the laser beam LB incident from one aperture 118a at right angles to the other aperture 113b.
A reflector MR is attached at an angle of 45° to the right side and front surface to emit more light. Other reflector 114
- 116 are arranged so that two openings are respectively provided on the rear surface/lower surface, the upper surface/front surface, and the rear surface/lower surface. The openings between the laser oscillator 112 and the reflectors 113, 114, and 115 are covered with expandable bellows 117, 118, and 119, and the openings between the reflectors 115 and 116 are covered with a fixed cylindrical body 120. covered. 110 is a laser irradiation mechanism having the same configuration as the laser irradiation mechanism 10 except that the laser oscillator 12 is removed;
The lower surfaces of the reflector 116 are connected to the upper surfaces rl of a bearing body (not shown) corresponding to the bearing body 11. As detailed above, according to the laser processing roboto of the present invention, the bending arm member that guides the laser beam from the laser oscillator is made swingable around the vertical center axis on the support member that can move in at least one dimension, By aligning the focus of the laser beam that passes through the condensing lens provided at the end of the bending arm member on the vertical central axis, the optical axis can be changed to the optimal posture for processing while keeping the focal position unchanged. Even when processing a complex curved surface, uniform processing conditions and a highly accurate finish can be expected.
図面はいずれも本発明の実施例を示すもので、第1図は
レーザー加工ロポノトの全体斜視図、第2図は第1図の
11矢視拡大断面図、第3図回;レーザー発振器をロボ
ットの固定部に設置した実施例におけるレーザー加工ロ
ボノトの全体斜視図、第4図は第8図の■部拡犬図であ
る。。
図中、9は支持部材、】0けレーザー照射機構、12は
レーザー発振器、13は第1の屈曲腕、16は第2の屈
曲腕、23は集光レンズ、L Bはレーザー光である。
出願人代理人 渭 東 隆The drawings all show embodiments of the present invention. Fig. 1 is an overall perspective view of a laser processing robot, Fig. 2 is an enlarged sectional view taken in the direction of arrow 11 in Fig. 1, and Fig. 3 is a laser oscillator mounted on a robot. FIG. 4 is an enlarged view of part 2 in FIG. 8. . In the figure, 9 is a support member, 12 is a laser oscillator, 13 is a first bending arm, 16 is a second bending arm, 23 is a condenser lens, and LB is a laser beam. Applicant's agent Takashi Higashi
Claims (1)
ー照射機構を取付は該レーザー照射機構から照射したレ
ーザー光の焦点とワークとの相対位置を制御可能と(7
たレーザー加工ロボノトにおいて、前記レーザー照射機
構は前記支持部材に垂直中心軸線まわりに回転可能に基
部を支持(−た中空状の屈曲腕部材と、前記支持部材に
設置した直接またはロボットの固定部に設置して伸縮自
在な屈折案内手段を介する間接的に前記垂直中心軸線に
沿って前記基部内にレーザー光を投射し得るレーザー発
振器と、前記屈曲腕部材の各屈曲部に内装し前記レーザ
ー光を該屈曲腕部材の中心軸線に沿って反射案内し2得
る複数のレーザー光屈折手段と、前記屈曲腕部材の先端
開口部に装着し友集光レンズとから成り、該集光レンズ
を通過したレーザー光を前記垂直中心軸線上に収束させ
るごとくしたことを特徴とする、レーザー加工ロボット
。 (2)前記レーザー光屈折手段を反射鏡とした、特許請
求の範囲第1項記載のレーザー加工ロボノト0(3)前
記屈曲腕部材は、前記基部を含む第1の屈曲腕に前記集
光レンズを含む第2の屈曲腕を水平に対し45°の傾斜
中心軸線まわりに回転可能に且つ該傾斜中心軸線と同軸
に嵌装支持した、特許請求の範囲第1項記載のレーザー
加工ロボノト。 (4)前記先端開口部まわりに補助ガス噴射ノズルを一
装着した、特許請求の範囲第1項記載のレーザー加工ロ
ポソト。[Claims] (1) A laser irradiation mechanism is attached to a support member that can move in at least one dimension, and the relative position between the focal point of the laser beam irradiated from the laser irradiation mechanism and the workpiece can be controlled (7
In the laser processing robot, the laser irradiation mechanism includes a hollow bent arm member that supports the base rotatably around the vertical center axis on the support member, and a hollow bending arm member installed on the support member or a fixed part of the robot. a laser oscillator that can be installed to indirectly project a laser beam into the base along the vertical central axis via a telescoping refraction guide means; It consists of a plurality of laser beam refracting means for reflecting and guiding along the central axis of the bending arm member, and a condensing lens attached to the tip opening of the bending arm member, the laser beam passing through the condensing lens. A laser processing robot characterized in that the light is converged on the vertical central axis. (2) A laser processing robot according to claim 1, wherein the laser beam refraction means is a reflecting mirror. 3) The bending arm member is configured such that the first bending arm including the base portion and the second bending arm including the condensing lens are rotatable around an inclined center axis at 45° with respect to the horizontal, and the bending arm member is arranged such that the first bending arm including the base portion and the second bending arm including the condensing lens are rotatable around an inclined central axis at an angle of 45° with respect to the horizontal. The laser processing robot according to claim 1, which is coaxially fitted and supported. (4) The laser processing robot according to claim 1, which has an auxiliary gas injection nozzle installed around the tip opening. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57133143A JPS5921491A (en) | 1982-07-28 | 1982-07-28 | Laser working robot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57133143A JPS5921491A (en) | 1982-07-28 | 1982-07-28 | Laser working robot |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5921491A true JPS5921491A (en) | 1984-02-03 |
Family
ID=15097738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57133143A Pending JPS5921491A (en) | 1982-07-28 | 1982-07-28 | Laser working robot |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5921491A (en) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4578554A (en) * | 1984-04-30 | 1986-03-25 | Teledyne, Inc. | Laser welding apparatus |
JPS61199593A (en) * | 1984-12-03 | 1986-09-04 | バルタ−・レ−ダ− | Laser-beam induction device for machining three-dimensional work |
FR2578769A1 (en) * | 1985-03-15 | 1986-09-19 | Binder Karl Franz | MACHINING MACHINE, SUCH AS A TORCH CUTTING MACHINE OR THE LIKE |
JPS61255786A (en) * | 1985-05-10 | 1986-11-13 | Toyoda Mach Works Ltd | Laser beam machine |
US4638143A (en) * | 1985-01-23 | 1987-01-20 | Gmf Robotics Corporation | Robot-laser system |
JPS6224882A (en) * | 1985-07-03 | 1987-02-02 | アセア アクチ−ボラグ | Wrist device for robot |
US4661681A (en) * | 1986-10-06 | 1987-04-28 | Cincinnati Milacron Inc. | Robotic marking machine |
US4695701A (en) * | 1986-03-17 | 1987-09-22 | Cincinnati Milacron Inc. | Laser wrist |
US4710606A (en) * | 1986-05-28 | 1987-12-01 | Westinghouse Electric Corp. | Two-axis optic wrist for laser applications |
JPS6356386A (en) * | 1986-08-28 | 1988-03-10 | Honda Motor Co Ltd | Laser beam cutting device |
JPS6363594A (en) * | 1986-09-04 | 1988-03-19 | Fanuc Ltd | Gas laser device |
US4794222A (en) * | 1986-06-30 | 1988-12-27 | Manabu Funayama | Laser beam machining apparatus |
US4967053A (en) * | 1989-05-02 | 1990-10-30 | F.I.A. Futurologie Industrielle Automation Gmbh | Laser system |
US4972062A (en) * | 1989-05-02 | 1990-11-20 | F.I.A. Futurologie Industrielle Automation Gmbh | Laser system |
JPH02290685A (en) * | 1989-01-09 | 1990-11-30 | Mitsubishi Electric Corp | Laser beam machine |
JPH03151184A (en) * | 1989-11-06 | 1991-06-27 | Amada Co Ltd | Machining head in laser beam machining device |
US5053602A (en) * | 1990-08-22 | 1991-10-01 | Robomatix, Ltd. | Laser beam delivery system |
WO1994004968A1 (en) * | 1992-08-14 | 1994-03-03 | Lumonics Corporation | Robotic movement of object over a workpiece surface |
USRE34597E (en) * | 1984-12-20 | 1994-05-03 | Gmfanuc Robotics Corporation | Robot-laser system |
EP1254747A1 (en) * | 2001-05-03 | 2002-11-06 | Robot Technology GmbH | Integration of a laser to a robot arm |
JP2004195531A (en) * | 2002-12-20 | 2004-07-15 | Koike Sanso Kogyo Co Ltd | Laser beam machining apparatus |
CN104368910A (en) * | 2013-08-15 | 2015-02-25 | 昆山思拓机器有限公司 | Laser cutting device |
CN106077971A (en) * | 2016-06-29 | 2016-11-09 | 韦醒妃 | A kind of can the laser cutting device of autonomous classification |
CN109175686A (en) * | 2018-09-07 | 2019-01-11 | 上海航天精密机械研究所 | A kind of laser-beam welding machine and its welding method |
CN111112826A (en) * | 2019-11-26 | 2020-05-08 | 福尼斯智能装备(珠海)有限公司 | Method for building composite welding laboratory platform |
-
1982
- 1982-07-28 JP JP57133143A patent/JPS5921491A/en active Pending
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4578554A (en) * | 1984-04-30 | 1986-03-25 | Teledyne, Inc. | Laser welding apparatus |
JPS61199593A (en) * | 1984-12-03 | 1986-09-04 | バルタ−・レ−ダ− | Laser-beam induction device for machining three-dimensional work |
USRE34597E (en) * | 1984-12-20 | 1994-05-03 | Gmfanuc Robotics Corporation | Robot-laser system |
US4638143A (en) * | 1985-01-23 | 1987-01-20 | Gmf Robotics Corporation | Robot-laser system |
FR2578769A1 (en) * | 1985-03-15 | 1986-09-19 | Binder Karl Franz | MACHINING MACHINE, SUCH AS A TORCH CUTTING MACHINE OR THE LIKE |
JPS61255786A (en) * | 1985-05-10 | 1986-11-13 | Toyoda Mach Works Ltd | Laser beam machine |
JPS6224882A (en) * | 1985-07-03 | 1987-02-02 | アセア アクチ−ボラグ | Wrist device for robot |
US4695701A (en) * | 1986-03-17 | 1987-09-22 | Cincinnati Milacron Inc. | Laser wrist |
US4710606A (en) * | 1986-05-28 | 1987-12-01 | Westinghouse Electric Corp. | Two-axis optic wrist for laser applications |
US4794222A (en) * | 1986-06-30 | 1988-12-27 | Manabu Funayama | Laser beam machining apparatus |
JPS6356386A (en) * | 1986-08-28 | 1988-03-10 | Honda Motor Co Ltd | Laser beam cutting device |
JPS6363594A (en) * | 1986-09-04 | 1988-03-19 | Fanuc Ltd | Gas laser device |
US4661681A (en) * | 1986-10-06 | 1987-04-28 | Cincinnati Milacron Inc. | Robotic marking machine |
JPH02290685A (en) * | 1989-01-09 | 1990-11-30 | Mitsubishi Electric Corp | Laser beam machine |
US4972062A (en) * | 1989-05-02 | 1990-11-20 | F.I.A. Futurologie Industrielle Automation Gmbh | Laser system |
US4967053A (en) * | 1989-05-02 | 1990-10-30 | F.I.A. Futurologie Industrielle Automation Gmbh | Laser system |
JPH03151184A (en) * | 1989-11-06 | 1991-06-27 | Amada Co Ltd | Machining head in laser beam machining device |
US5053602A (en) * | 1990-08-22 | 1991-10-01 | Robomatix, Ltd. | Laser beam delivery system |
WO1994004968A1 (en) * | 1992-08-14 | 1994-03-03 | Lumonics Corporation | Robotic movement of object over a workpiece surface |
US5340962A (en) * | 1992-08-14 | 1994-08-23 | Lumonics Corporation | Automatic control of laser beam tool positioning |
EP1254747A1 (en) * | 2001-05-03 | 2002-11-06 | Robot Technology GmbH | Integration of a laser to a robot arm |
EP1759818A1 (en) * | 2001-05-03 | 2007-03-07 | Robot Technology GmbH | Integration of a laser to a robot arm |
JP2004195531A (en) * | 2002-12-20 | 2004-07-15 | Koike Sanso Kogyo Co Ltd | Laser beam machining apparatus |
JP4603764B2 (en) * | 2002-12-20 | 2010-12-22 | 小池酸素工業株式会社 | Laser processing equipment |
CN104368910A (en) * | 2013-08-15 | 2015-02-25 | 昆山思拓机器有限公司 | Laser cutting device |
CN106077971A (en) * | 2016-06-29 | 2016-11-09 | 韦醒妃 | A kind of can the laser cutting device of autonomous classification |
CN106077971B (en) * | 2016-06-29 | 2018-03-20 | 中江机电科技江苏有限公司 | A kind of laser cutting device for being capable of autonomous classification |
CN109175686A (en) * | 2018-09-07 | 2019-01-11 | 上海航天精密机械研究所 | A kind of laser-beam welding machine and its welding method |
CN111112826A (en) * | 2019-11-26 | 2020-05-08 | 福尼斯智能装备(珠海)有限公司 | Method for building composite welding laboratory platform |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5921491A (en) | Laser working robot | |
JPH05293730A (en) | Complex machine tool capable of laser machining | |
JP3831271B2 (en) | Laser welding system and welding method by remote control | |
JPH075385A (en) | Apparatus and system for positioning of laser beam | |
CN107584205A (en) | The laser processing of metal material and the machine and computer program of correlation | |
JP2009520995A (en) | Scanner head and processing equipment using the scanner head | |
CN110181170A (en) | Laser processing device | |
JPH03492A (en) | Laser device | |
JP3680025B2 (en) | Laser processing head of laser processing equipment | |
JPH055596B2 (en) | ||
JP2003260580A (en) | Laser beam machining apparatus | |
JP2005254618A (en) | Resin welding apparatus | |
KR100597906B1 (en) | Apparatus for laser processing for machine tool | |
JP3745810B2 (en) | Laser processing method and apparatus | |
JPH06190581A (en) | Laser beam machine | |
JP2006239717A (en) | Laser beam machining apparatus and laser beam machining method | |
JP2000197982A (en) | Laser beam welding method and welding equipment | |
JP6450038B2 (en) | Laser peening processing apparatus and laser peening processing method | |
US20020148819A1 (en) | Laser cutting torch | |
JP2001150168A (en) | Groove cutting device by laser | |
JPS6037287A (en) | Beam moving type laser working device | |
JPS5916556B2 (en) | Laser processing equipment | |
JPH0545358B2 (en) | ||
JPS62197289A (en) | Laser beam machining device | |
JP3511049B2 (en) | Laser processing equipment |