JPS59202720A - Tuning fork type crystal resonator - Google Patents
Tuning fork type crystal resonatorInfo
- Publication number
- JPS59202720A JPS59202720A JP7774683A JP7774683A JPS59202720A JP S59202720 A JPS59202720 A JP S59202720A JP 7774683 A JP7774683 A JP 7774683A JP 7774683 A JP7774683 A JP 7774683A JP S59202720 A JPS59202720 A JP S59202720A
- Authority
- JP
- Japan
- Prior art keywords
- vibration
- tuning fork
- weight
- frequency
- crystal resonator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 37
- 238000010168 coupling process Methods 0.000 claims abstract description 21
- 230000008878 coupling Effects 0.000 claims abstract description 20
- 238000005859 coupling reaction Methods 0.000 claims abstract description 20
- 230000003247 decreasing effect Effects 0.000 claims abstract description 17
- 238000005452 bending Methods 0.000 claims description 29
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 230000007423 decrease Effects 0.000 description 16
- 239000010953 base metal Substances 0.000 description 3
- 230000005284 excitation Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000007664 blowing Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H3/00—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
- H03H3/007—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
- H03H3/02—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
- H03H3/04—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、屈曲振動の基本振動と捩れ振動の基本振動の
弾性結合を利用する音叉型水晶振動子において、主振動
の周波数及び周波数温度特性の両方を調整するための増
減するオモリの位置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for adjusting both the frequency of the main vibration and the frequency temperature characteristic in a tuning fork type crystal resonator that utilizes elastic coupling of the fundamental vibration of bending vibration and the fundamental vibration of torsional vibration. It is related to the position of the weight that increases or decreases.
近年、屈曲振動と捩れ振動の弾性結合を利用して、屈曲
振動の周波数温度特性(以後、f−T特性と呼ぶ)を良
好にしようとする音叉型水晶振動子が提案されている。In recent years, tuning fork type crystal resonators have been proposed that utilize elastic coupling of bending vibrations and torsional vibrations to improve the frequency-temperature characteristics of bending vibrations (hereinafter referred to as fT characteristics).
この音叉型水晶振動子は、比較的低い周波数で年差表示
可能な高精度腕時計用水晶振動子になり得るため注目さ
れている。This tuning fork type crystal oscillator is attracting attention because it can be used as a high-precision wristwatch crystal oscillator that can display annual differences at a relatively low frequency.
ところで、二つの振動の弾性結合を利用し、屈曲振動の
f’−T特性を良好にする場合、二つの振動の周波数差
(以後、δfと呼ぶ)を適切な値にする必要がある。何
故なら二つの振動の結合の強さは、主にδfに依るから
である。第1図に示す如く、音叉型水晶振動子の厚みを
t、音叉腕の長さを!、音叉腕の幅をWとすると、屈曲
振動の周波数(以後、fFと呼ぶ)はW/ノ・2に、捩
れ振動の周波数(以後、fTと呼ぶ)はほぼt/(1w
)に比例する。故にδfを適切な値にするには、振動子
の厚みtを適切な値にすれば良い。ところが、厚みtに
よるfTの変化量は非常に大きいために、厚みtのみに
よシδfを適切な値にする事は殆んど不可能である。そ
こで、音叉型水晶振動子上にオモリの増減を施こし、δ
fの調整を行なうことが試みられている。By the way, when making use of the elastic coupling of two vibrations to improve the f'-T characteristics of bending vibration, it is necessary to set the frequency difference between the two vibrations (hereinafter referred to as δf) to an appropriate value. This is because the strength of the coupling between the two vibrations mainly depends on δf. As shown in Figure 1, the thickness of the tuning fork crystal resonator is t, and the length of the tuning fork arm is! , when the width of the tuning fork arm is W, the frequency of bending vibration (hereinafter referred to as fF) is W/no・2, and the frequency of torsional vibration (hereinafter referred to as fT) is approximately t/(1w).
) is proportional to Therefore, in order to set δf to an appropriate value, the thickness t of the vibrator should be set to an appropriate value. However, since the amount of change in fT due to the thickness t is very large, it is almost impossible to set δf to an appropriate value based only on the thickness t. Therefore, by increasing and decreasing the weights on the tuning fork crystal resonator, δ
Attempts have been made to adjust f.
オモリの増減による周波数調整には、主振動の周波数を
ねらい値にするものと、δfを調整することによシ、主
振動のf−T%性を調整する二種類のものが考えられる
。ここで、主振動とは、屈曲振動と捩れ振動の二つの振
動の内、発振回路に振動子を組んだ時に発振する振動、
即ち等価抵抗R1が低い振動を言う。以後、便利のため
屈曲振動が主振動である場合を想定して議論を進めてい
く。There are two types of frequency adjustment by increasing or decreasing the weight: one in which the frequency of the main vibration is set as a target value, and the other in which the f-T% characteristic of the main vibration is adjusted by adjusting δf. Here, the main vibration is the vibration that oscillates when a vibrator is assembled in an oscillation circuit, out of the two vibrations of bending vibration and torsional vibration.
That is, it refers to vibration with a low equivalent resistance R1. From now on, for convenience, we will proceed with the discussion assuming that the bending vibration is the main vibration.
この屈曲振動と捩れ振動の弾性結合を利用した音叉型水
晶振動子として、従来、主に屈曲の二次振動と捩れの基
本振動の弾性結合を利用したものが考えられてきた。同
一形状の音叉型水晶振動子を屈曲の二次振動で励振させ
た場合と屈曲の基本振動で励振させた場合とでは、前者
の周波数は後者の周波数に比べ約6倍の値を持つ。その
ため、屈曲の二次振動と捩れの基本振動の弾性結合を利
用する音叉型水晶振動子は、屈曲の基本振動と捩れの基
本振動の弾性結合を利用する音叉型水晶振動子に比べ、
主振動である屈曲振動の周波数を同一にする時、音叉腕
の長さ!を長くし々ければならない。しかも、!を長く
した結果、屈曲振動と捩れ振動の弾性結合を起させるた
めに、振動子の厚みtを厚くしなければならない。この
様に、屈曲の二次振動と捩れ振動の弾性結合企利用する
場合、振動子の大きさが大きくなることと、フォトリン
グラフィを利用してエツチングにより振動子を作製する
時に長時間を要し、拙産に適さない欠点を持っていた。Tuning fork-type crystal oscillators that utilize this elastic coupling of bending vibration and torsional vibration have conventionally been considered, mainly utilizing elastic coupling of secondary vibration of bending and fundamental vibration of torsion. When a tuning fork crystal resonator of the same shape is excited by the secondary vibration of bending and when it is excited by the fundamental vibration of bending, the frequency of the former has a value about six times that of the latter. Therefore, a tuning fork crystal oscillator that utilizes the elastic coupling of the secondary vibration of bending and the fundamental vibration of torsion has a higher
When the frequency of the bending vibration, which is the main vibration, is the same, the length of the tuning fork arm is! You have to hold on to it for a long time. Moreover,! As a result of increasing the length, the thickness t of the vibrator must be increased in order to cause elastic coupling between bending vibration and torsional vibration. In this way, when using an elastic coupling method for the secondary vibration of bending and torsional vibration, the size of the vibrator increases, and it takes a long time to fabricate the vibrator by etching using photolithography. However, it had some drawbacks that made it unsuitable for my production.
本発明は、従来の欠点を改善し、屈曲の基本振動と捩れ
の基本振動の弾性結合を利用することによシ、振動子を
小型にし、しかもフォトリソグラフィで作製する場合、
短時間で作製できる様にし、かつオモリの増減による主
振動の周波数とf−T特性の調整が簡単に実行できる。The present invention improves the conventional drawbacks and makes the vibrator smaller by utilizing the elastic coupling of the fundamental vibration of bending and the fundamental vibration of torsion.Moreover, when manufactured by photolithography,
It can be manufactured in a short time, and the main vibration frequency and f-T characteristics can be easily adjusted by increasing or decreasing the weight.
屈曲の基本振動と捩れの基本振動の弾性結合を利用する
音叉型水晶振動子を提供することを目的としたものであ
る。The object of the present invention is to provide a tuning fork type crystal resonator that utilizes elastic coupling of fundamental vibrations of bending and fundamental vibrations of torsion.
以下、図面を参照し、本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.
第2図は、屈曲の基本振動と捩れの基本振動の弾性結合
を利用する音叉型水晶振動子における増減するオモリの
位置21 、21’を示している。FIG. 2 shows the increasing and decreasing positions 21 and 21' of the weights in a tuning fork type crystal resonator that utilizes the elastic coupling of the fundamental vibration of bending and the fundamental vibration of torsion.
オモリを増減する音叉腕上の位置は、音叉腕長をkとす
る時、先端からI!=”=A15とする。この位置にオ
モリを蒸着等で付着させた時のfTとfyの変化量を第
3図に示す。第3図において、横軸は第2図にH、I
、 Hl、工1を示す音叉腕先端の幅方向の位置を表わ
している。縦軸はfyとfTの変化率δf/fを表わし
ている。31はfyの32はfTの変化量を表わしてい
る。この結果は有限要素法による計算から求めたもので
ある。The position on the tuning fork arm for increasing or decreasing the weight is from the tip to I, where k is the length of the tuning fork arm. ="= A15. Figure 3 shows the amount of change in fT and fy when a weight is attached to this position by vapor deposition. In Figure 3, the horizontal axis is H and I in Figure 2.
, Hl, represents the position in the width direction of the tip of the tuning fork arm indicating the work 1. The vertical axis represents the rate of change δf/f between fy and fT. 31 represents fy and 32 represents the amount of change in fT. This result was obtained from calculation using the finite element method.
第3図から明らかな様に、fpの変化量は音叉腕の幅方
向の位置に殆んど依らず、はぼ一定であるが、fTFi
音叉腕の幅方向中央部において殆んど変化せず、幅方向
両端部で大きく変化する。又第3図の31と32から明
らかな如く、オモリの付着によシfFとfTの周波数変
化量がほぼ等しくなる位置が、音叉腕幅方向中央部と両
端部の中間に存在する。As is clear from Fig. 3, the amount of change in fp is almost constant and does not depend on the position of the tuning fork arm in the width direction, but fTFi
There is almost no change at the center in the width direction of the tuning fork arm, and there is a large change at both ends in the width direction. Further, as is clear from 31 and 32 in FIG. 3, there is a position between the center and both ends of the tuning fork arm in the width direction where the frequency changes of fF and fT are almost equal due to the attachment of the weights.
ところで、f−T特性を式で表わすと次式で表わすこと
ができる。By the way, the f-T characteristic can be expressed by the following equation.
(fTlfTo )/fTo = a (Ts To
)+β、(Vt ’o)2+γ(Tl−To)++
ここで% fT+は任意の温度TIKおける周波数を、
fToは基準温度Toにおける周波数を、α、β、γは
それぞれ一次、二次、三次周波数温度係数を表わしてい
る。第4図は、水晶のあるカット方位における、屈曲振
動と捩れ振動の弾性結合を利用する音叉型水晶振動子の
主振動のα及びβのδf即ちCfF−fT)との関係を
表わしたグラフである。401がαを、402がβをそ
れぞれ表わしている。屈曲振動と捩れ振動の周波数差δ
fがδfoにおいて、αとβはゼロになり、温度による
周波数の変化が殆んどない優れたf−T特性が得られる
。第4図から明らかな如く、δfがδf。(fTlfTo)/fTo = a (TsTo
)+β, (Vt 'o)2+γ(Tl-To)++ Here, % fT+ is the frequency at any temperature TIK,
fTo represents the frequency at the reference temperature To, and α, β, and γ represent the primary, secondary, and tertiary frequency temperature coefficients, respectively. Figure 4 is a graph showing the relationship between δf (CfF-fT) of the main vibrations α and β of a tuning fork type crystal resonator that utilizes the elastic coupling of bending vibration and torsional vibration in a certain cutting direction of the crystal. be. 401 represents α and 402 represents β, respectively. Frequency difference δ between bending vibration and torsional vibration
When f is δfo, α and β become zero, and excellent f-T characteristics with almost no change in frequency due to temperature can be obtained. As is clear from FIG. 4, δf is δf.
よフ大きいとαとβは共に負の値を持ち、δfがδfo
よフ小さいとαとβは共に正の値を持つ。If δf is large, both α and β have negative values, and δf becomes δfo
If it is very small, both α and β have positive values.
第5図は、δfの大きさの違いによる主振動のf−T特
性を示したグラフである。51idδfがδfoの時、
52はδfがδfoよフ小さい時、53はδfがδfo
よシ大きい時のf−T特性を示している。FIG. 5 is a graph showing the f-T characteristics of the main vibration depending on the magnitude of δf. When 51id δf is δfo,
52 means that δf is smaller than δfo, 53 means that δf is less than δfo
It shows the f-T characteristic when it is large.
ところで、屈曲振動と捩れ振動の弾性結合を利用する音
叉型水晶振動子を量産により作製する場合、主に振動子
の厚みのバラツキにょpδfがバヲツ〈。その結果、量
産にょシ作製された多数の音叉型水晶振動子のf゛−T
特性は、第5図の51.52.53で示される様なαと
βが正や負の値を持った一定でない特性を持つことにな
る。そこで、全ての振動子のf−T特性を、αとβが共
にゼロとなる様にするために、オモリの増減を行なう必
要がある。By the way, when mass producing a tuning fork type crystal resonator that utilizes the elastic coupling of bending vibration and torsional vibration, the main problem is the variation in the thickness of the resonator pδf. As a result, the f-T of a large number of mass-produced tuning fork crystal resonators
The characteristics are non-constant, with α and β having positive or negative values, as shown at 51, 52, and 53 in FIG. Therefore, in order to make the f-T characteristics of all the vibrators such that α and β are both zero, it is necessary to increase or decrease the weights.
第6図は、屈曲の基本振動と捩れの基本振動の弾性結合
を利用する本発明の音叉型水晶振動子のオモリの位置の
一実施例を示す平面図である。第6図では、オモリのみ
示しておシ、励振電極は省略しである。第6図において
、I、II、IIIが本発明のオモリの位置を表わして
いる。前述した様に、二つの振動の弾性結合を利用する
振動子において、主振動のf−T特性を調整する温特調
整と主振動の周波数をねらい値に合わせこむ周波数調整
の二つの調整がオモリの増減にょシ必要となる。FIG. 6 is a plan view showing an example of the position of the weight of the tuning fork type crystal resonator of the present invention, which utilizes elastic coupling of the fundamental vibration of bending and the fundamental vibration of torsion. In FIG. 6, only the weight is shown, and the excitation electrode is omitted. In FIG. 6, I, II, and III represent the positions of the weights of the present invention. As mentioned above, in a vibrator that utilizes the elastic coupling of two vibrations, there are two types of adjustment: temperature characteristic adjustment that adjusts the f-T characteristic of the main vibration, and frequency adjustment that adjusts the frequency of the main vibration to a target value. It is necessary to increase or decrease the amount.
まず、オモリの増減にょ勺、f−T特性を調整すること
から考える。第3図から明らかな如く、■の位置にオモ
リを増減した場合、fTの変化量は少なく、fFの変化
量は大きい。反対にHの位置にオモリを増減した場合、
fTの変化量はfyの変化量よりも大きい。I、II、
1[Iの位置にオモリがあらかじめ付着されていて、そ
のオモリをレーザーにより飛ばすことによる調整を考え
る。初めのf−T特性が第5図の53に示す様に、αと
βが共に負の値を持った振動子を51に示す様なαとβ
が共にゼロの値を持っf−T特性にするKは、fl’(
!:fTの差δfを小さくすれば良いため、Hのオモリ
を飛ばせば良い。一方、初めのf−T特性が第5図の5
2に示す様に、αとβが共に正の値を持った振動子を5
1に示す様なαとβが共にゼロの値を持つf−T特性に
するには、δfを大きくすれば良いため、■のオモリを
飛ばせば良い。この様に、■と■のオモリの何れか一方
を飛ばすことによシ、aとβが共にゼロとなる優れたf
−T特性の振動子を得ることができる。これで、温特調
整は完了する。First, consider adjusting the weight increase/decrease and f-T characteristics. As is clear from FIG. 3, when the weight is increased or decreased at the position (■), the amount of change in fT is small and the amount of change in fF is large. On the other hand, if you increase or decrease the weight at the H position,
The amount of change in fT is greater than the amount of change in fy. I, II,
1 [Consider adjustment by having a weight attached to the position of I in advance and blowing the weight away with a laser. The initial f-T characteristic is as shown at 53 in Figure 5, and the oscillator where both α and β have negative values is α and β as shown in 51.
K, which has the value of both zero and makes f-T characteristic, is fl'(
! : Since it is sufficient to reduce the difference δf between fT, it is sufficient to skip the weight of H. On the other hand, the initial f-T characteristic is 5 in Figure 5.
As shown in Figure 2, 5 oscillators with both α and β having positive values are
In order to obtain the f-T characteristic in which both α and β have a value of zero as shown in 1, it is sufficient to increase δf, so it is sufficient to skip the weight in ■. In this way, by skipping either one of the weights ■ and ■, we can obtain an excellent f where both a and β become zero.
-A vibrator with T characteristics can be obtained. This completes the temperature adjustment.
次に、主振動であるfyをねらい値にする周波数調整を
考える。せっかく■あるいは■ジオモリを飛ばすことに
よシ調整したf−T特性を、fFの調整時にくずしては
ならない。αとβが共にゼロとなる良好なf−T特性が
得られる時の(fF−fT)/fFの値は、普通2〜5
%という非常に小さな値である。そのため、オモリの増
減によりfFとfTの変化量がほぼ等しければ、CfF
−fT)/fFの値はほぼ一定の値を保ち、f−1特性
も殆んど変化しない。第3ν1において示した様に、3
3及び34の位置ではfvとfTの変化量は等しい。故
に、第6図に卦けるIとHの中間の位置!である■の位
置にオモリを増減した場合、fyとJTの変化量はほぼ
等しく、それ故に主振動である屈曲振動のf −T I
vj性は殆んど変化しない。故に、■ある因は■のオモ
リの増減にょるf−T特性の調整後、オモIJ [7に
ょシfFの調整を行なえば、優れたf−T特性を持ち、
しかも主振動の周波数fyもねらいの値を持つ音叉型水
晶振動子を多数得ることが可能となる。−
第7図は本発明の他の実施例を示す塙叉型水晶振動子の
平面図を示している。第6図と同様、励振用電極は省略
し、オモリのみを示している。音叉腕先端には71と7
2のオモリが一様に付着されている。オモリは音叉腕先
端に一様についているが、この音叉型水晶振動子のf−
、T特性の調整と、主振動の周波数fyのねらい値への
調整は、第6図に示したi、n、mの位置に対応したオ
モリをレーザーにより飛ばすことにより行なえば良い。Next, consider frequency adjustment in which the main vibration fy is set as the target value. The f-T characteristic, which has been adjusted by flying ■ or ■ geometry, must not be destroyed when adjusting fF. The value of (fF-fT)/fF when good f-T characteristics where α and β are both zero is usually 2 to 5.
This is a very small value of %. Therefore, if the amount of change in fF and fT due to increase or decrease in weight is approximately equal, then CfF
-fT)/fF maintains a substantially constant value, and the f-1 characteristic hardly changes. As shown in the 3rd v1, 3
At positions 3 and 34, the amount of change in fv and fT is equal. Therefore, the position between I and H in Figure 6! When the weight is increased or decreased at the position of
The vj nature hardly changes. Therefore, ■The reason for this is that after adjusting the f-T characteristics due to the increase or decrease of the weight in ■, if you adjust the front IJ [7yoshi fF, it will have excellent f-T characteristics,
Moreover, it becomes possible to obtain a large number of tuning fork type crystal resonators having a desired value for the frequency fy of the main vibration. - FIG. 7 shows a plan view of a fork-shaped crystal resonator showing another embodiment of the present invention. Similar to FIG. 6, the excitation electrodes are omitted and only the weights are shown. 71 and 7 on the tip of the tuning fork arm
2 weights are evenly attached. The weight is uniformly attached to the tip of the tuning fork arm, but the f-
, T characteristics and the main vibration frequency fy to a target value may be performed by using a laser to blow weights corresponding to the positions i, n, and m shown in FIG.
飛ばすべきオモリの位置にレーザービームを設走するこ
とは、自動的かつ容易に行なうことができる。故に、本
発明のオモリは、第6図に示す如く、I 、 n 、
IIIと区切られて付着されて込なくとも良いのである
。Setting the laser beam at the position of the weight to be thrown can be done automatically and easily. Therefore, as shown in FIG. 6, the weight of the present invention has I, n,
It does not have to be attached separately from III.
第8図は本発明の他の実施例を示す音叉型水晶振動子の
平面図である。81.82.83はそれぞれ第6図に示
す1.II、I[[の位置のオモリに対応し、かつf−
T特性の調整あるいは主振動の周波数のねらい値に設定
する場合の粗調整用のオモリである。81’、 82’
、 83’はそれぞれ第6図に示すI、II、IIIの
位置のオモリに対応し、かつf−T特性の調整あるいは
主振動の周波数のねらい値に設定する場合の微調整用の
オモリである。81.82.83のオモリは、81’、
82’、 83’のオモリよりも厚く形成されている
。粗調整用のオモリだけでは、f−T特性や主振動の周
波数を厳密にねらいの特性にすることはできない。特に
、腕時計用高精度振動子にする場合、二種類の調整は厳
密に行なう必要があるため、微調整用オモリは不可欠で
ある。FIG. 8 is a plan view of a tuning fork type crystal resonator showing another embodiment of the present invention. 81, 82, and 83 are respectively 1.81, 82.83 shown in FIG. II, corresponds to the weight in the position of I[[, and f-
This is a weight for rough adjustment when adjusting the T characteristic or setting the target frequency of the main vibration. 81', 82'
, 83' correspond to the weights at positions I, II, and III shown in Fig. 6, respectively, and are weights for fine adjustment when adjusting the f-T characteristic or setting the frequency of the main vibration to a target value. . The weight of 81.82.83 is 81',
It is formed thicker than the weights 82' and 83'. It is not possible to precisely set the f-T characteristics and the frequency of the main vibration to the desired characteristics using only coarse adjustment weights. In particular, when making a high-precision vibrator for a wristwatch, two types of adjustments must be made strictly, so a weight for fine adjustment is essential.
第6図、第7図、第8図の本発明の実施例に卦いて、オ
モリは主面(音叉型水晶振動子の最も広い面)の片面の
みに増減されても、あるいは両面に増減されてもどちら
でも良い。本発明の効果は各々の場合において、全く変
わらない。第9図と第1O図は、第8図の84と85を
結ぶ直線上で切った本発明の音叉型水晶振動子の断面図
を示している。第9図は片面にのみ、第10図は両面に
オモリが付着゛されてbる例をそれぞれ示している。In the embodiments of the present invention shown in FIGS. 6, 7, and 8, the weights can be increased or decreased on only one side of the main surface (the widest surface of the tuning fork type crystal resonator) or on both sides. Either is fine. The effect of the invention remains the same in each case. FIG. 9 and FIG. 1O show cross-sectional views of the tuning fork type crystal resonator of the present invention taken along a straight line connecting 84 and 85 in FIG. 8. FIG. 9 shows an example in which weights are attached only to one side, and FIG. 10 shows an example in which weights are attached to both sides.
91と101は音叉型水晶振動子の音叉腕の断面、92
と102は増減するオモリの下地金属を表わしている。91 and 101 are cross sections of tuning fork arms of a tuning fork crystal resonator, 92
and 102 represent the base metal of the weight which increases and decreases.
下地金属としては普通CγとAuの二層で形成されてい
ることが多い。93と103は第6図に示すIの位Nに
増減するオモリを、94と104は第6図に示すHの位
置に増減するオモリを、95と105は第6図に示すI
IIの位置に増減するオモリをそれぞれ表わしている。The base metal is usually formed of two layers of Cγ and Au. 93 and 103 are weights that increase or decrease in the I position shown in Figure 6.94 and 104 are weights that increase or decrease in the H position shown in Figure 6.95 and 105 are weights that increase or decrease in the I position shown in Figure 6.
They each represent weights that increase or decrease in position II.
又、以上において、主振動は屈曲振動の場合を想定して
説明してきたが、本発明は主振動として捩れ振動を利用
する場合にもその脣まあてはまる。Furthermore, although the above description has been made assuming the case where the main vibration is bending vibration, the present invention also applies to cases where torsional vibration is used as the main vibration.
主振動が捩れ振動であっても、第6図に示すIあるいは
■の位置にオモリを増減することによって主振動のf−
T%性を調整することができ、又第6図の■の位#にオ
モリを増減することによりf−T4?性を変化させずに
主振動の周波数をねらい値に設定することが可能だから
である。Even if the main vibration is torsional vibration, the f-
The T% property can be adjusted, and f-T4? This is because it is possible to set the frequency of the main vibration to a target value without changing the frequency.
以上詳細に説明した様に、本発明の屈曲の基本振動と捩
れの基本振動の弾性結合を利用する音叉型水晶振動子は
、従来の屈曲振動と捩れ振動の弾性結合を利用する音叉
型水晶振動子に比べ小型であり、シかもf−T特性と主
振動の周波数をねらい値にする調整がオモリの増減によ
シ容易に行々える利点がある。その結果、本発明の音叉
型水晶振動子は高精度振動子として容易に量産できる優
れた利点を持っている。As explained in detail above, the tuning fork crystal oscillator of the present invention that utilizes the elastic coupling of the fundamental vibration of bending and the fundamental vibration of torsion is different from the conventional tuning fork crystal oscillator that utilizes the elastic coupling of the fundamental vibration of bending and torsion. It has the advantage that it is smaller than the conventional rotor, and the f-T characteristic and the frequency of the main vibration can be easily adjusted to the desired values by increasing or decreasing the weight. As a result, the tuning fork type crystal resonator of the present invention has the excellent advantage that it can be easily mass-produced as a high-precision resonator.
第1図は音叉型水晶振動子の外形を表わす斜視図。第2
図は増減するオモリの位置を示す音叉型水晶振動子の平
面図。第3図は、第2図に示す位置にオモリを増大した
時の屈曲振動と捩れ振動の周波数変化量を示すグラフ。
第4図は、屈曲振動と捩れ振動の周波数差δfとf−T
特性における一次及び二次周波数温度係数の関係を表わ
すグラフ。第5図は、屈曲振動と捩れ振動の弾性結合を
利用する音叉型水晶振動子の三種のδfにおけるf−T
特性を示すグラフ。第6図、uS7図、第8図は本発明
の増減するオモリの位置を表わした音叉型水晶振動子の
平面図。第9図と第10図は、本発明の増減するオモリ
の位置を表わした音叉型水晶振動子の音叉腕の断面図。
91.101・・音叉型水晶振動子の音叉腕の断面
92.102・・下地金属
93.103・・音叉腕幅方向中央部1[増減するオモ
リ
94.104・・音叉腕幅方向端部■に増減するオモリ
95.105・・IとHの中間の位置■に増減するオモ
リFIG. 1 is a perspective view showing the outer shape of a tuning fork type crystal resonator. Second
The figure is a plan view of a tuning fork crystal resonator showing the positions of the weights as they increase and decrease. FIG. 3 is a graph showing the amount of frequency change of bending vibration and torsional vibration when the weight is increased to the position shown in FIG. 2. Figure 4 shows the frequency difference δf between bending vibration and torsional vibration and f−T.
Graph showing the relationship between primary and secondary frequency temperature coefficients in characteristics. Figure 5 shows f-T at three types of δf of a tuning fork crystal resonator that utilizes elastic coupling between bending vibration and torsional vibration.
Graph showing characteristics. FIG. 6, uS7, and FIG. 8 are plan views of a tuning fork type crystal resonator showing the positions of increasing and decreasing weights according to the present invention. 9 and 10 are cross-sectional views of the tuning fork arm of the tuning fork type crystal resonator, showing the positions of increasing and decreasing weights according to the present invention. 91.101...Cross section of the tuning fork arm of a tuning fork type crystal resonator 92.102...Base metal 93.103...Central part in the width direction of the tuning fork arm 1 [Increase/decrease weight 94.104...End part in the width direction of the tuning fork arm■ A weight that increases or decreases to 95.105...A weight that increases or decreases to a position between I and H.
Claims (1)
弾性結合を利用する音叉型水晶振動子において、音叉腕
先端にオモリを増減することによシ、主振動の周波数及
び周波数温度特性の両方を調整する事を特徴とする音叉
型水晶振動子。 (2)音叉腕先端の幅方向中央部(Iと呼ぶ)あるいは
幅方向端部(■と呼ぶ)にオモリを増減することによシ
主振動の周波数温度特性を、■と■の間の位置(■と呼
ぶ)にオモリを増減することによp主振動の周波数を調
整することを特徴とする特許請求の範囲第1項記載の音
叉型水晶振動子。[Scope of Claims] [1] In a tuning fork crystal resonator that utilizes the elastic coupling of the fundamental vibration of bending vibration and the fundamental vibration of torsional vibration, the frequency of the main vibration can be adjusted by increasing or decreasing the weight at the tip of the tuning fork arm. A tuning fork type crystal resonator characterized by adjusting both frequency and temperature characteristics. (2) By increasing or decreasing weights at the widthwise center (referred to as I) or the widthwise end (referred to as ■) of the tip of the tuning fork arm, the frequency-temperature characteristics of the main vibration can be adjusted to a position between ■ and ■. The tuning fork type crystal resonator according to claim 1, wherein the frequency of the p-main vibration is adjusted by increasing or decreasing the weight (referred to as ■).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7774683A JPS59202720A (en) | 1983-05-02 | 1983-05-02 | Tuning fork type crystal resonator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7774683A JPS59202720A (en) | 1983-05-02 | 1983-05-02 | Tuning fork type crystal resonator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59202720A true JPS59202720A (en) | 1984-11-16 |
Family
ID=13642473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7774683A Pending JPS59202720A (en) | 1983-05-02 | 1983-05-02 | Tuning fork type crystal resonator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59202720A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008054273A (en) * | 2006-03-13 | 2008-03-06 | Daishinku Corp | Piezoelectric vibrating piece, piezoelectric vibrator, and frequency adjusting method of piezoelectric vibrating piece |
JP2008160824A (en) * | 2006-11-30 | 2008-07-10 | Nippon Dempa Kogyo Co Ltd | Piezoelectric vibrator, method for manufacturing piezoelectric vibrator, and electronic component |
JP2012178644A (en) * | 2011-02-25 | 2012-09-13 | Seiko Epson Corp | Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, vibration gyroscope element, vibration gyro sensor and electronic equipment |
JP2013078046A (en) * | 2011-09-30 | 2013-04-25 | Citizen Finetech Miyota Co Ltd | Method of manufacturing piezoelectric vibrator, and piezoelectric vibrator |
JP2013078045A (en) * | 2011-09-30 | 2013-04-25 | Citizen Finetech Miyota Co Ltd | Piezoelectric vibrator and method of manufacturing the same |
US8973440B2 (en) | 2011-02-25 | 2015-03-10 | Seiko Epson Corporation | Piezoelectric resonator element, piezoelectric resonator, piezoelectric oscillator, resonator gyro element, resonator gyro sensor, and electronic apparatus |
-
1983
- 1983-05-02 JP JP7774683A patent/JPS59202720A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008054273A (en) * | 2006-03-13 | 2008-03-06 | Daishinku Corp | Piezoelectric vibrating piece, piezoelectric vibrator, and frequency adjusting method of piezoelectric vibrating piece |
JP2008160824A (en) * | 2006-11-30 | 2008-07-10 | Nippon Dempa Kogyo Co Ltd | Piezoelectric vibrator, method for manufacturing piezoelectric vibrator, and electronic component |
JP2012178644A (en) * | 2011-02-25 | 2012-09-13 | Seiko Epson Corp | Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, vibration gyroscope element, vibration gyro sensor and electronic equipment |
US8973440B2 (en) | 2011-02-25 | 2015-03-10 | Seiko Epson Corporation | Piezoelectric resonator element, piezoelectric resonator, piezoelectric oscillator, resonator gyro element, resonator gyro sensor, and electronic apparatus |
JP2013078046A (en) * | 2011-09-30 | 2013-04-25 | Citizen Finetech Miyota Co Ltd | Method of manufacturing piezoelectric vibrator, and piezoelectric vibrator |
JP2013078045A (en) * | 2011-09-30 | 2013-04-25 | Citizen Finetech Miyota Co Ltd | Piezoelectric vibrator and method of manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4447753A (en) | Miniature GT-cut quartz resonator | |
US4771202A (en) | Tuning fork resonator | |
JPH0150129B2 (en) | ||
US4498025A (en) | Tuning fork | |
JPS6255324B2 (en) | ||
JPH0232807B2 (en) | ||
JP2000295065A (en) | Piezoelectric vibrator and its frequency adjusting method | |
JPS6013608B2 (en) | Thickness sliding piezoelectric vibrator | |
JPS59202720A (en) | Tuning fork type crystal resonator | |
JP2017192032A (en) | Crystal oscillator | |
US4349763A (en) | Tuning fork type quartz resonator | |
JP4379119B2 (en) | Crystal oscillator | |
JP2002118441A (en) | Torsional vibrator | |
JPS586616A (en) | Frequency adjusting method for coupling oscillator | |
JP2022034546A (en) | Acoustic wave element | |
JPS647689B2 (en) | ||
JP2002368573A (en) | Ultra-thin plate piezoelectric vibrator and method of manufacturing the same | |
JPS6217405B2 (en) | ||
JPS644694B2 (en) | ||
JPS625366B2 (en) | ||
US4525646A (en) | Flexural mode vibrator formed of lithium tantalate | |
JPH0810811B2 (en) | Structure of piezoelectric resonator for overtone oscillation | |
JPS63280507A (en) | Coupling crystal resonator | |
JPS644370B2 (en) | ||
JPS5944118A (en) | Tuning fork type vibrator |