JPS59205445A - Aluminium alloy clad material for heat exchanger - Google Patents
Aluminium alloy clad material for heat exchangerInfo
- Publication number
- JPS59205445A JPS59205445A JP7808883A JP7808883A JPS59205445A JP S59205445 A JPS59205445 A JP S59205445A JP 7808883 A JP7808883 A JP 7808883A JP 7808883 A JP7808883 A JP 7808883A JP S59205445 A JPS59205445 A JP S59205445A
- Authority
- JP
- Japan
- Prior art keywords
- core material
- skin
- skin material
- heat exchanger
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Laminated Bodies (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は耐孔食性の優れた熱交換器用アルミニウム合金
クラツド材に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an aluminum alloy cladding material for heat exchangers having excellent pitting corrosion resistance.
一般に自動車用ラジェーター及びヒーターの如き熱交換
器すなわち、温度か常温(0〜25℃)から高温(沸騰
)に著しく変化し、腐食性物質を不可避に含まれる水溶
液を作動液体とする熱交換器にはアルミニウムが用いら
れることは少なかった。In general, heat exchangers such as automobile radiators and heaters, that is, heat exchangers whose working fluid is an aqueous solution whose temperature changes significantly from room temperature (0 to 25°C) to high temperature (boiling) and which inevitably contain corrosive substances. Aluminum was rarely used.
その理由は上記のような条件下では、アルミニウムの耐
食性、特に耐孔食性が不十分で、従来から用いられてい
る真ちゅうと比較すると寿命が1/3以下となってしま
うからである。アルミニウムは特に孔食と称する特有の
腐食形態を示し、短時間でも一部が貫通してしま(・作
動液体が漏れ、熱交換器としての機能を失ってしまい、
その補修はほとんど不可能とり・われて(・る。The reason for this is that under the above conditions, aluminum has insufficient corrosion resistance, particularly pitting corrosion resistance, and its lifespan is reduced to one-third or less compared to conventionally used brass. Aluminum exhibits a unique form of corrosion called pitting corrosion, in which a portion of aluminum can penetrate even for a short period of time (working fluid leaks and the aluminum loses its function as a heat exchanger).
It is almost impossible to repair it.
その対策として、従来はAA−Zn系材料(例えばA7
072 )を皮材とするクラットゞ材を用(・、皮材の
犠牲陽極効果により芯材を保護する方法が広(採用され
てきた。この方法は腐食環境力1塩分を含む場合とか、
中性水溶液中でも室温以下の温度環境では有効である。As a countermeasure, conventionally AA-Zn materials (e.g. A7
A method of protecting the core material by using the sacrificial anode effect of the skin material has been widely adopted.
It is effective even in neutral aqueous solutions at temperatures below room temperature.
しかし自動車用ラジェーターのように、腐食媒体が中性
の水溶液で、しかも温度が100℃・近辺まで上昇する
ような場合には、アルミニウム表面に形成された酸化皮
膜によってAl−Zn合金層の電位が責な方向へ変化し
て、皮材の犠牲陽極効果が失われてしまう。そればかり
でな(、芯材との電位が逆転し、露出部分の芯材の方が
犠牲陽極となって芯材の腐食が進行1−でしまう場合も
ある。However, when the corrosive medium is a neutral aqueous solution and the temperature rises to around 100°C, such as in an automobile radiator, the potential of the Al-Zn alloy layer is reduced by the oxide film formed on the aluminum surface. The sacrificial anode effect of the skin material is lost. Not only that, but there are also cases where the potential with the core material is reversed, and the exposed portion of the core material becomes a sacrificial anode, causing further corrosion of the core material.
この対策として、純度99.7%以上の高純度アルミニ
ウムを皮材とするクラツド材が開示されている(特開昭
56−44742)。As a countermeasure against this problem, a cladding material whose skin material is made of high-purity aluminum with a purity of 99.7% or more has been disclosed (Japanese Patent Laid-Open No. 56-44742).
しかし高純度アルミニウムを皮材とするクラツド材は、
実際に腐食テストを行なうと、データーにバラツキが生
じ、犠牲陽極層で孔食が止まり、明らかにその効果があ
る場合と芯材にまで孔食が進行し、全く効果が認められ
ない場合も見られる。これらの事について種々調査した
結果、効果が認められる場合には、芯材と皮材との電位
差が50mV以上あり、しかも5 % NaC4溶液(
25°C)で皮材の電位を測定すると一750mV(対
SCE )以下の自然電極電位を示すことか判明した。However, clad materials made of high-purity aluminum are
When we actually conduct corrosion tests, there are variations in the data, and there are cases where pitting corrosion stops at the sacrificial anode layer and there is a clear effect, and cases where pitting corrosion progresses to the core material and there is no effect at all. It will be done. As a result of various investigations into these matters, if an effect is recognized, the potential difference between the core material and the skin material is 50 mV or more, and 5% NaC4 solution (
When the potential of the skin material was measured at 25°C, it was found that the natural electrode potential was less than -750 mV (vs. SCE).
なお芯材にまで孔食が進行し、クラツド材としての効果
が認められないものは、芯材と皮材との電位差が50m
V以下で、皮材の自然電極電位か−750〜−700m
Vの範囲であった。In addition, if pitting corrosion has progressed to the core material and the effect as a cladding material is not recognized, the potential difference between the core material and the skin material is 50 m.
V or less, the natural electrode potential of the leather material is -750 to -700m
It was in the range of V.
更に99.5%程度の純アルミニウムでも、 −750
mV 以下の自然電極を示すものがあり、犠牲陽極効果
が十分認められるものもあった。Furthermore, even with about 99.5% pure aluminum, -750
Some showed natural electrodes below mV, and some showed sufficient sacrificial anode effects.
即ち従来の純AA又はA7!−Zn合金を皮材とするア
ルミニウム合金クラツド材は、電解製錬によって得られ
たAl地金を一旦インゴットに鋳造したものを使用に当
って再溶解してそのまま鋳塊とするか又は合金成分を調
整した後、鋳塊に鋳造(リメルト鋳造法)し、との鋳塊
に普通一般の方法により熱間圧延を施こし、皮材用板と
し、この皮材を芯材にかさね合せ、加熱後熱間圧延を施
こし、更に冷間圧延を施こしてクラツド材としたもので
ある。That is, conventional pure AA or A7! - Aluminum alloy clad materials with Zn alloy as a skin material are produced by casting Al ingot obtained by electrolytic smelting and then re-melting it into an ingot before use, or by removing alloy components. After adjustment, it is cast into an ingot (remelt casting method), and the ingot is hot-rolled using a common method to form a skin plate. This skin material is placed over the core material, and after heating. It is made into a clad material by hot rolling and then cold rolling.
このように製造したクラツド材は、前述の如(皮材のA
Aの純度が99.7%以上であっても芯材と皮材との電
位差が50mV以下で、皮材自身の自然電極電位が−7
50〜−700mVの場合があり皮材の犠牲陽極効果が
不充分でクラツド材としての耐食性が良好ではないこと
があるのである。The cladding material produced in this way was prepared as described above (A of the cladding material).
Even if the purity of A is 99.7% or more, the potential difference between the core material and the skin material is 50 mV or less, and the natural electrode potential of the skin material itself is -7
In some cases, the sacrificial anode effect of the skin material is insufficient, and the corrosion resistance as a cladding material may not be good.
本発明はこのような状況に鑑み、いがなる場合にも芯拐
と皮材との電位差が50mV以上あり皮材自身の自然電
極電位が−750mV 以下となる耐孔食性に優れた熱
交換器用アルミニウム合金クラツド材を開発したもので
Cu0.2〜0.8wt%、Mn 0.1〜0.8 w
t%とこれにMg 0.1〜0.6 wt%、Si0.
1〜0.6 wt%、 Cr O,01〜0.3 wt
%、Zr O,01〜0.3 wt%、TIo、o I
〜0.3wt%の内の1種又は2種以上を含有し、残部
がAlと不可避の不純物とからなるA1合金を芯材とし
、スメルト鋳造法にょる鋳塊より得た純度99.5%以
上の純A7を皮材としたことを特徴とする熱交換器用ア
ルミニウム合金クラツド材である。In view of this situation, the present invention provides a heat exchanger with excellent pitting corrosion resistance, in which the potential difference between the core material and the skin material is 50 mV or more and the natural electrode potential of the skin material itself is -750 mV or less even when charring occurs. Developed aluminum alloy clad material with Cu0.2~0.8wt%, Mn 0.1~0.8w
t%, Mg 0.1-0.6 wt%, Si0.
1 to 0.6 wt%, CrO, 01 to 0.3 wt%
%, Zr O, 01-0.3 wt%, TIo, o I
99.5% purity obtained from an ingot using the smelt casting method, with an A1 alloy containing one or more of ~0.3wt% and the remainder consisting of Al and unavoidable impurities as a core material. This is an aluminum alloy clad material for a heat exchanger, characterized in that the above pure A7 is used as a skin material.
スメルト鋳造法とは電解製錬によって得られるアルミニ
ウムを電解炉からそのまま圧延用、押出用鋳塊に鋳造す
る方法であり、極めて特殊な場合にしか使用されていな
い。The smelt casting method is a method in which aluminum obtained by electrolytic smelting is directly cast from an electrolytic furnace into an ingot for rolling or extrusion, and is only used in very special cases.
本発明における純アルミニウム皮材は、スメルト鋳造法
により得られた鋳塊から作られたもので、水溶液からな
るいがなる腐食環境においても、また室温以下の低温で
も、100℃近辺の高温でも自然電極電位を卑に維持す
るから、犠牲陽極効果を常に有し、芯材を防食するのに
役立つ。The pure aluminum skin material of the present invention is made from an ingot obtained by the smelt casting method, and can be used in corrosive environments such as aqueous solutions, at low temperatures below room temperature, and at high temperatures around 100 degrees Celsius. Since the electrode potential is maintained at a low level, it always has a sacrificial anode effect and is useful for preventing corrosion of the core material.
アルミニウム純度を99.5%以−ヒに限定したのは純
度がそれ未満となると不純物、特にFe、Siが多くな
り、自然電極電位を−750mV 以下に維持すること
が不可能となるからである。The aluminum purity is limited to 99.5% or higher because if the purity is less than that, impurities, especially Fe and Si, will increase, making it impossible to maintain the natural electrode potential below -750 mV. .
また純アルミニウム皮材を製造するための鋳塊の鋳造方
法をスメルト鋳造法に限定したのは、リメルト鋳造法に
よる鋳塊から作られた皮材は自然電極電位のバラツキが
太き(、該電極電位が一750mV以下の卑な状態に安
定して維持されないことがあるからである。In addition, the reason why we limited the ingot casting method for producing pure aluminum skin material to the smelt casting method is because skin materials made from ingots produced by the remelt casting method have large variations in natural electrode potential (the This is because the potential may not be stably maintained at a base state of 1750 mV or less.
芯材に添加するCLIは芯材の自然電極電位を責にし、
しかも安定な電位の値を維持するのに役立つもので、C
uが0.2%未満では該電位を責にすることにより、皮
材との電位差を50mV以上に保つことが困難となる。CLI added to the core material is responsible for the natural electrode potential of the core material,
Moreover, it is useful for maintaining a stable potential value, and C
When u is less than 0.2%, it becomes difficult to maintain the potential difference with the skin material at 50 mV or more due to the potential.
また0、8%を越えて添加すると芯材単体としての耐食
性を低下させるばかりでな(、塑性加工性を著しく低下
させてしま5゜
Mnは加工性を損なうことがな(強度を向上させるのに
役立つもので、0.1%未満では強度向上ことかあり好
ましくない。Moreover, if it is added in excess of 0.8%, it will not only reduce the corrosion resistance of the core material alone (and significantly reduce the plastic workability), but 5°Mn will not impair the workability (it will improve the strength). If it is less than 0.1%, the strength may be improved, which is not preferable.
MgとSiはMg、、Siを形成し芯材の強度向上に役
立つもので、両者とも0.1%未満では強度向上の効果
はなく、0.6%を越えて添加すると、 Mg2Siか
粒界に多量に析出し、粒界腐食感受性が高くなる。Mg and Si form Mg and Si and are useful for improving the strength of the core material.If both are less than 0.1%, there is no strength improvement effect, and if more than 0.6% is added, Mg2Si or grain boundaries It precipitates in large quantities, increasing susceptibility to intergranular corrosion.
CrとZrは芯材の耐食性向上と強度向上に役立つもの
で0.01%未満では、これらの効果がなく、0.3係
を越えて添加すると巨大な粒径の金−間化合物を形成し
て塑性加工性を低下させるなど実用上の材料として適さ
ない。Cr and Zr are useful for improving the corrosion resistance and strength of the core material, but if they are less than 0.01%, they will not have these effects, and if they are added in excess of 0.3%, they will form intermetallic compounds with huge particle sizes. This makes it unsuitable as a practical material as it reduces plastic workability.
Tlは素材組織の微細化に効果があり、成形加工性を向
上させる。01吋φ未満では、微細化の動量様、巨大な
粒径の金属間化合物を形成して塑性加工性を低下させて
しまう。Tl is effective in refining the material structure and improves moldability. If the diameter is less than 0.01 inch (0.01 in.), intermetallic compounds with a huge grain size will be formed due to the movement of refining, resulting in a decrease in plastic workability.
Mg、 Si、 Cr、Zr、 Tiは芯材は要求され
る性質に応じて適宜選択して添加すればよい。Mg, Si, Cr, Zr, and Ti may be appropriately selected and added to the core material depending on the required properties.
かかる本発明クラツド材は、皮材を芯材の両面につけて
、コルゲートフィンとし、これをチューブにブレージン
グ接合する構造の熱交換器用クラツド材として用いる場
合でも、該クラツド材の皮材がフィンの芯材よりは勿論
ろう付フィレットおよびチューブ材、管板等の他の熱交
換器構成材(Al−Mg系、A7−Mg−8i系、Al
−IVIn −Mg系などの耐食アルミニウム合金)よ
り卑な電極電位となるため犠牲陽極材として作用し芯材
その他、熱交換器構成材に生ずる孔食を防止する。Even when the cladding material of the present invention is used as a cladding material for a heat exchanger having a structure in which the skin material is attached to both sides of the core material to form a corrugated fin and this is brazed to a tube, the skin material of the cladding material is attached to the core of the fin. Of course, other heat exchanger constituent materials such as brazed fillets, tube materials, and tube sheets (Al-Mg series, A7-Mg-8i series, Al
- IVIn - Corrosion-resistant aluminum alloys such as Mg series) Since the electrode potential is more base, it acts as a sacrificial anode material and prevents pitting corrosion that occurs in the core material and other components of the heat exchanger.
なお、一般には皮材の反対面はA7−8iあるいはA4
−81−Mg系ろう材をクラッドしたプレージングシー
トの状態で用いるのが好ましく、自動車用ラジェーター
およびヒーターを例にとれば、水管(チューブ)と管板
(ヘッダープレート)に多(採用され得る。Generally, the opposite side of the skin material is A7-8i or A4.
It is preferable to use the -81-Mg brazing material in the form of a clad plating sheet, and it can be widely used in water pipes (tubes) and tube plates (header plates), for example in automobile radiators and heaters.
以下本発明を実施例により説明する。The present invention will be explained below with reference to Examples.
実施例
第1表に示す各種の素材を熱交換器用アルミニウム合金
クラツド材の皮材として選んだ。Examples Various materials shown in Table 1 were selected as skin materials for aluminum alloy cladding materials for heat exchangers.
第 1 表
第1表において皮材の自然電極電位は、次の一3種類の
処理を行ったのち25℃の5 % NaC11溶液中で
測定したものである。Table 1 In Table 1, the natural electrode potential of the skin material was measured in a 5% NaCl solution at 25° C. after the following 13 types of treatments were performed.
■ 素板のまま
■ 真空プレージング工程に相当する6 00 ℃10
分間真空中加熱
■ ろう何工程に相当する610℃10分間大気中加熱
第1表から明らかな如く、本発明に用いる皮材L1〜L
5は素材のままでは勿論真空加熱後も、大気中加熱後も
いずれもその自然電極電位が−770mV以下であり芯
材の自然電極電位は−710〜−680mVであるので
本発明用皮材を使用すれば芯材との電位差はどのような
工程を経ても50 mV以上あることになり、安定した
犠牲陽極効果を期待できることがわかる。■ As is as a raw plate ■ 600℃10 equivalent to vacuum plating process
Heating in vacuum for 1 minute Heating in air at 610°C for 10 minutes, which corresponds to the waxing process As is clear from Table 1, skin materials L1 to L used in the present invention
No. 5 has a natural electrode potential of -770 mV or less not only as a material but also after heating in vacuum and after heating in the air, and the natural electrode potential of the core material is -710 to -680 mV, so the skin material of the present invention was used. If used, the potential difference with the core material will be 50 mV or more regardless of the process, indicating that a stable sacrificial anode effect can be expected.
これに対し、スメルト鋳造により鋳塊から得たAA純度
99.4%の比較皮材L6は自然電極電位が740 m
Vで芯材との電位差は50mVに満たない場合もあり、
犠牲陽極効果を示さないことがあることがわかる。又リ
メルト鋳造によった皮材L7、L8 は純度が99.7
%以上であってもその自然電極電位は−730mVであ
り、L1〜L5よりも貴であり、犠牲陽極効果は期待で
きない。On the other hand, comparative skin material L6 with AA purity of 99.4% obtained from an ingot by smelt casting has a natural electrode potential of 740 m
V and the potential difference with the core material may be less than 50 mV,
It can be seen that the sacrificial anode effect may not be exhibited. Also, the purity of skin materials L7 and L8 made by remelt casting is 99.7.
% or more, its natural electrode potential is -730 mV, which is nobler than L1 to L5, and no sacrificial anode effect can be expected.
さらに純度99.7%のアルミニウムにznt、1.%
を添加した従来皮材L9は素材ではかなり卑であるが真
空加熱するとZnが蒸発してしまい自然電極電位が高く
貴となり、犠牲陽極効果が失われることがわかる。Furthermore, znt, 1. %
It can be seen that the conventional skin material L9 containing Zn is quite base in material, but when heated under vacuum, Zn evaporates, the natural electrode potential becomes high and noble, and the sacrificial anode effect is lost.
次に第2表に示す各種組成の合金を芯材とし、第1表に
示す皮材と組合せて第3表に示すクラツド材を製造した
。Next, alloys having various compositions shown in Table 2 were used as core materials, and were combined with skin materials shown in Table 1 to produce clad materials shown in Table 3.
第 2 表
第 3 表
このクラツド材(板厚0.35mm、うち皮材0.C1
35關)について、真空加熱後(600’Cf1O分、
5 ×10 Torr) ASTM人工水(100p
pmcrt−1so4−1Hc6.、− )に101)
I)mのCu”+を添加し90°CX8時間二25°c
×16時間の温度ザイクルで、浸漬腐食テストを2ケ月
間行った。またこの贋食液の25℃と90℃の溶液にお
いて自然電極電位を測定した。これらの結果を第3表に
併記した。腐食試験の結果は最大孔食深さで表わした。Table 2 Table 3 This cladding material (plate thickness 0.35mm, including skin material 0.C1
35), after vacuum heating (600'Cf1O min,
5 × 10 Torr) ASTM artificial water (100p
pmcrt-1so4-1Hc6. , - ) to 101)
I) Add m Cu”+ and heat at 90°C for 8 hours at 25°C.
An immersion corrosion test was conducted for 2 months with a temperature cycle of 16 hours. In addition, the natural electrode potential of this counterfeit food solution at 25°C and 90°C was measured. These results are also listed in Table 3. The results of the corrosion test were expressed as the maximum pitting depth.
第3表より明らかな如く本発明の実施例[魁1〜15で
は、皮材と芯材の電位差が50mV以上あり、腐食試験
後の最大孔食深さは、35μm以下、皮材の層で止まり
、犠牲陽極効果が明らかである。As is clear from Table 3, in Examples 1 to 15 of the present invention, the potential difference between the skin material and the core material was 50 mV or more, and the maximum pitting depth after the corrosion test was 35 μm or less, in the skin layer. The sacrificial anode effect is obvious.
それに比較し比較例Nn 16〜21 、 Nu 26
.27は皮材の層を通って芯材まで孔食が進んで七まい
、N123とNχ24は芯材と皮材の電位差が50mV
以上あり孔食深さも40μと比較的汗いが、陥23はM
nが?灸uためまた%24はMg2Siか多いため芯材
に粒界腐食がみられクラツド材としての効果は期待でき
ない。Nα22と25は最大孔食深さが35μm以下で
、耐孔食性は優れていたが、この組成のクラツド材は塑
性加工性が劣り実際の量産は不可能であった。Comparative examples Nn 16-21, Nu 26
.. In 27, pitting corrosion progressed through the skin layer to the core material, and in N123 and Nχ24, the potential difference between the core material and the skin material was 50 mV.
The depth of pitting corrosion is 40μ, which is relatively hot, but the pit 23 is M
n? Due to moxibustion, %24 contains a large amount of Mg2Si, so intergranular corrosion is observed in the core material, and its effectiveness as a cladding material cannot be expected. Nα22 and Nα25 had a maximum pitting depth of 35 μm or less and had excellent pitting corrosion resistance, but the clad materials with this composition had poor plastic workability and were impossible to mass produce.
以上述べた如く本発明クラット材は、従来の材料では不
充分であった高温腐食性液体中での耐孔食性か優れてい
るので、自動車用ラジェーター、ヒーターなど、特に水
溶系のクーラントを用いる熱交換器材料として極めて有
益なものであり工業上顕著な効果を奏するものである。As mentioned above, the inventive crat material has excellent pitting corrosion resistance in high-temperature corrosive liquids, which was insufficient with conventional materials. It is extremely useful as an exchanger material and has significant industrial effects.
255−255-
Claims (1)
w t%とこれにMg0.1〜0.6 wt%、Si
O,1〜0,5 wt%、Cr O,01〜0.3
wt%、 Zr O,01〜0.3 wt%、 Ti
O,01〜0.3 wt% の内の1種又は2種以上を
含有し、残部がAIと不可避の不純物とからなるA6合
金を芯材とし、スメルト鋳造法による鋳塊から得た純度
99.5%以上の純Alを皮材としたことを特徴とする
熱交換器用アルミニウム合金クラツド材。Cu 0.2-0.8 wt%, Mn 0.1-0.8
wt% and Mg0.1-0.6 wt%, Si
O, 1-0.5 wt%, Cr O, 01-0.3
wt%, Zr O, 01-0.3 wt%, Ti
Purity 99 obtained from an ingot using the smelt casting method, with the core material being an A6 alloy containing one or more of O. An aluminum alloy clad material for a heat exchanger, characterized in that the skin material is made of .5% or more pure Al.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7808883A JPS59205445A (en) | 1983-05-02 | 1983-05-02 | Aluminium alloy clad material for heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7808883A JPS59205445A (en) | 1983-05-02 | 1983-05-02 | Aluminium alloy clad material for heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59205445A true JPS59205445A (en) | 1984-11-21 |
Family
ID=13652088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7808883A Pending JPS59205445A (en) | 1983-05-02 | 1983-05-02 | Aluminium alloy clad material for heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59205445A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61194144A (en) * | 1984-10-23 | 1986-08-28 | Furukawa Alum Co Ltd | Pitting resistance aluminum alloy |
JPS62196349A (en) * | 1986-02-22 | 1987-08-29 | Kobe Steel Ltd | Aluminum alloy for can cover having superior pitting corrosion resistance |
US4761267A (en) * | 1986-03-31 | 1988-08-02 | Sky Aluminium Co., Ltd. | Aluminum alloy for use as core of clad material |
JPS63195239A (en) * | 1987-02-10 | 1988-08-12 | Furukawa Alum Co Ltd | Aluminum-alloy brazing sheet |
JPS63293137A (en) * | 1987-05-27 | 1988-11-30 | Furukawa Alum Co Ltd | Aluminum alloy and aluminum alloy clad material for heat exchanger member |
JPS63303027A (en) * | 1987-06-01 | 1988-12-09 | Mitsubishi Alum Co Ltd | Aluminum brazing sheet for heat exchanger |
JPH0250935A (en) * | 1988-08-12 | 1990-02-20 | Furukawa Alum Co Ltd | Brazing sheet made of aluminum for heat exchanger member |
JPH0254735A (en) * | 1988-08-18 | 1990-02-23 | Showa Alum Corp | Aluminum brazing sheet |
JPH02129333A (en) * | 1988-11-10 | 1990-05-17 | Mitsubishi Alum Co Ltd | Aluminum brazing sheet for heat exchanger |
JPH02258945A (en) * | 1989-03-30 | 1990-10-19 | Sumitomo Light Metal Ind Ltd | Aluminium alloy clad material for core plate of drawn-cup-type heat exchanger |
JPH02258942A (en) * | 1989-03-30 | 1990-10-19 | Sumitomo Light Metal Ind Ltd | Aluminum alloy material for heat exchanger |
JPH06172905A (en) * | 1987-10-13 | 1994-06-21 | Sumitomo Light Metal Ind Ltd | Aluminum alloy material for heat exchanger excellent in pitting corrosion resistance |
JP2011063841A (en) * | 2009-09-16 | 2011-03-31 | Furukawa-Sky Aluminum Corp | Al ALLOY CLAD MATERIAL HAVING EXCELLENT CORROSION RESISTANCE IN ACID ENVIRONMENT |
-
1983
- 1983-05-02 JP JP7808883A patent/JPS59205445A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0360896B2 (en) * | 1984-10-23 | 1991-09-18 | Furukawa Aruminiumu Kogyo Kk | |
JPS61194144A (en) * | 1984-10-23 | 1986-08-28 | Furukawa Alum Co Ltd | Pitting resistance aluminum alloy |
JPS62196349A (en) * | 1986-02-22 | 1987-08-29 | Kobe Steel Ltd | Aluminum alloy for can cover having superior pitting corrosion resistance |
US4761267A (en) * | 1986-03-31 | 1988-08-02 | Sky Aluminium Co., Ltd. | Aluminum alloy for use as core of clad material |
JPS63195239A (en) * | 1987-02-10 | 1988-08-12 | Furukawa Alum Co Ltd | Aluminum-alloy brazing sheet |
JPS63293137A (en) * | 1987-05-27 | 1988-11-30 | Furukawa Alum Co Ltd | Aluminum alloy and aluminum alloy clad material for heat exchanger member |
JPS63303027A (en) * | 1987-06-01 | 1988-12-09 | Mitsubishi Alum Co Ltd | Aluminum brazing sheet for heat exchanger |
JPH06172905A (en) * | 1987-10-13 | 1994-06-21 | Sumitomo Light Metal Ind Ltd | Aluminum alloy material for heat exchanger excellent in pitting corrosion resistance |
JPH0250935A (en) * | 1988-08-12 | 1990-02-20 | Furukawa Alum Co Ltd | Brazing sheet made of aluminum for heat exchanger member |
JPH0254735A (en) * | 1988-08-18 | 1990-02-23 | Showa Alum Corp | Aluminum brazing sheet |
JPH02129333A (en) * | 1988-11-10 | 1990-05-17 | Mitsubishi Alum Co Ltd | Aluminum brazing sheet for heat exchanger |
JPH02258945A (en) * | 1989-03-30 | 1990-10-19 | Sumitomo Light Metal Ind Ltd | Aluminium alloy clad material for core plate of drawn-cup-type heat exchanger |
JPH02258942A (en) * | 1989-03-30 | 1990-10-19 | Sumitomo Light Metal Ind Ltd | Aluminum alloy material for heat exchanger |
JP2011063841A (en) * | 2009-09-16 | 2011-03-31 | Furukawa-Sky Aluminum Corp | Al ALLOY CLAD MATERIAL HAVING EXCELLENT CORROSION RESISTANCE IN ACID ENVIRONMENT |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6248742B2 (en) | ||
JPS62230494A (en) | Aluminum alloy core material for brazing | |
JPS59205445A (en) | Aluminium alloy clad material for heat exchanger | |
JP7262477B2 (en) | Aluminum alloy brazing sheet and manufacturing method thereof | |
JP2685927B2 (en) | A Blazing sheet for refrigerant passage of heat exchanger manufactured by A | |
JP7262476B2 (en) | Aluminum alloy brazing sheet and manufacturing method thereof | |
US4093782A (en) | Brazed aluminum composite | |
JP5192718B2 (en) | Fin material and heat exchanger with excellent strength, sacrificial anode effect, and corrosion resistance | |
JPS6245301B2 (en) | ||
JP5743642B2 (en) | Aluminum alloy brazing sheet | |
JPH01195257A (en) | Aluminum alloy cladded material having excellent corrosion resistance | |
JP4019775B2 (en) | Aluminum alloy brazing sheet for heat exchangers with excellent corrosion resistance | |
JPS5989999A (en) | Heat exchanger made of aluminum alloy | |
EP0582235B1 (en) | Aluminum alloy fin material for heat-exchanger | |
JPH0261536B2 (en) | ||
JPS6050867B2 (en) | Manufacturing method of brazeable aluminum alloy | |
JPH0250934A (en) | Brazing sheet made of aluminum for heat exchanger member | |
JPS6211062B2 (en) | ||
JPH03124393A (en) | Brazing sheet for refrigerant passage for heat exchanger made of al | |
JPS60138037A (en) | Al alloy composite fin material for heat exchanger having excellent high-temperature strength and sacrificial anode effect | |
JPS60138033A (en) | Copper alloy having excellent corrosion resistance | |
JP2685925B2 (en) | A Blazing sheet for refrigerant passage of heat exchanger manufactured by A | |
JPH03134128A (en) | Aluminum alloy-clad material for heat exchanger member | |
JPS58164749A (en) | Composite al alloy material with superior pitting corrosion resistance | |
JPS6127679B2 (en) |