[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5920506A - Turbine bypass device of steam turbine plant - Google Patents

Turbine bypass device of steam turbine plant

Info

Publication number
JPS5920506A
JPS5920506A JP12900582A JP12900582A JPS5920506A JP S5920506 A JPS5920506 A JP S5920506A JP 12900582 A JP12900582 A JP 12900582A JP 12900582 A JP12900582 A JP 12900582A JP S5920506 A JPS5920506 A JP S5920506A
Authority
JP
Japan
Prior art keywords
bypass
steam
turbine
reheater
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12900582A
Other languages
Japanese (ja)
Inventor
Katsumi Ura
浦 勝巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12900582A priority Critical patent/JPS5920506A/en
Publication of JPS5920506A publication Critical patent/JPS5920506A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/04Plants characterised by condensers arranged or modified to co-operate with the engines with dump valves to by-pass stages

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)

Abstract

PURPOSE:To simplify turbine bypass system by providing a duct which connects a main steam pipe, bypassing a reheater, to a condenser and also providing said bypass duct with a flow rate control valve and a temperature reducer. CONSTITUTION:In a plant which lets steam generated in a boiler 1 pass from a main stop valve 3 successively through a high pressure turbine 4, reheater 7, reheat check valve 9, medium, low pressure turbine 10 so as to make work and drive a generator 11, a high pressure bypass valve 12 is opened at starting time and the steam bypasses to a low temperature reheat pipe 6 through a temperature reducer 13. The second bypass duct C, making the steam in a main steam pipe 2 to bypass the abovementioned reheater 7 and dump in a condenser 16, is provided and a flow rate control valve 17 and a temperature reducer 18 are interposed in the duct C. At a starting time, the residue of steam generated in the boiler 1 is dumped in a condenser 16 through the second bypass conduit C.

Description

【発明の詳細な説明】 本発明は蒸気タービンプラントのタービンバイパス装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a turbine bypass device for a steam turbine plant.

タービンバイパスシステムは、蒸気タービンプランド起
動時に再熱器を過熱させないように冷却蒸気を供給する
為、及び、蒸気とタービンメタルとの温度差を減少させ
て起動特性を改善する為、並びに、タービン負荷が遮断
されたとき主蒸気系の圧力上昇を所定範囲内に収めて安
全を確保する為に設けられる。
The turbine bypass system is used to supply cooling steam to prevent the reheater from overheating when starting the steam turbine plant, to improve startup characteristics by reducing the temperature difference between the steam and the turbine metal, and to reduce the turbine load. This is provided to ensure safety by keeping the pressure rise in the main steam system within a predetermined range when the main steam system is shut off.

第1図はタービンバイパス系統を備えた蒸気タービンプ
ラントの原理図、第2図は600〜700MW級の石炭
火力プラントにおけるタービンバイパス系統を備えた蒸
気タービンプラントの配管図の一例である。
FIG. 1 is a principle diagram of a steam turbine plant equipped with a turbine bypass system, and FIG. 2 is an example of a piping diagram of a steam turbine plant equipped with a turbine bypass system in a 600 to 700 MW class coal-fired power plant.

通常の運転中はボイラlで発生した蒸気が主蒸気管2及
び主塞止弁3を介して高圧タービン4に導入されて仕事
をし、逆止弁5及び低温再熱管6を経てボイラの再熱器
7を流通して再加熱され、高温再熱蒸気として高温再熱
管8.再熱止弁9を経て中、低圧タービン10に流入し
て仕事をする。
During normal operation, steam generated in the boiler I is introduced into the high-pressure turbine 4 via the main steam pipe 2 and the main stop valve 3 to perform work, and then passes through the check valve 5 and the low-temperature reheat pipe 6 to reheat the boiler. It passes through the heater 7 and is reheated as high-temperature reheat steam into the high-temperature reheat tube 8. It flows into the medium and low pressure turbine 10 through the reheat stop valve 9 and does work.

11は蒸気タービンによって駆動する発電機である。11 is a generator driven by a steam turbine.

この蒸気タービンプラントを起動する際、高圧タービン
4及び中、低圧タービン10に蒸気供給を開始するまで
の間、再熱器7に蒸気が流れない為に再熱器7が過熱し
て焼損することを防止するだめ、高圧バイパス弁12を
開いて主蒸気W2内の蒸気を減温器13を介して低温再
熱g6にバイパスさせ、再熱器7を流通さ亡る。再熱器
7を流通する蒸気は再熱器を冷却して過熱を防ぎ、低温
バイパス弁14及び減温器15を経て復水器16に回収
される。このようにして再熱器7を保護しつつ高圧ター
ビン4及び中、低圧タービン10のメタル部分の昇温を
俟ってこれらのタービンに蒸気を供給して動力発生運転
に移行する。
When starting up this steam turbine plant, the reheater 7 may overheat and burn out because steam does not flow to the reheater 7 until steam supply starts to the high pressure turbine 4 and medium and low pressure turbines 10. To prevent this, the high-pressure bypass valve 12 is opened to bypass the steam in the main steam W2 to the low-temperature reheat g6 via the desuperheater 13, and the reheater 7 is stopped. The steam flowing through the reheater 7 cools the reheater to prevent overheating, and is recovered to the condenser 16 via the low temperature bypass valve 14 and the attemperator 15. In this way, while protecting the reheater 7, the metal parts of the high-pressure turbine 4 and the intermediate and low-pressure turbines 10 are heated, and steam is supplied to these turbines, thereby transitioning to power generation operation.

寸だ、回えば蒸気タービンの負荷である発電機11の外
部負荷が何らかの事情で切り離された時など、蒸気ター
ビンは所内負荷(補機市源)を負って所内単独負荷運転
に切替えられるが、との切替操作の際に主蒸気圧力の過
上昇を防ぐため、前述と同様の経路で主蒸気’Ii?2
内の蒸気が高圧バイパス弁12.減“部器13.再熱器
7.低温バイパス弁14.減温器15を経て復水器16
にダンプされる。
When the external load of the generator 11, which is the load of the steam turbine, is disconnected for some reason, the steam turbine takes on the station load (auxiliary equipment source) and switches to the station independent load operation. In order to prevent an excessive rise in main steam pressure when switching between main steam 'Ii?' and 2
The steam inside the high pressure bypass valve 12. Attemperator 13. Reheater 7. Low temperature bypass valve 14. Condenser 16 via attemperator 15.
dumped into

以上に述べたように、従来形のタービンバイパス系統は
高圧バイパス弁12を含む高圧バイパス回路Aを流通し
だバイパス蒸気の全量が低圧バイパス弁14を含む低圧
バイパス回路Bを流通する構成になっている。従って例
えば第2図に示すととく4系列よりなる高圧バイパス回
路Aを設けると、低圧バイパス回路Bも4系列の構成と
しなければならないこと1だなる。詳しくは、必ずしも
系列の数に縛られるものではないが同じ流量に設定しな
ければフ’xらないので、同容量の系列であれば同数設
置しなければならない。
As described above, the conventional turbine bypass system is configured such that the entire amount of bypass steam flows through the high-pressure bypass circuit A including the high-pressure bypass valve 12 and the entire amount flows through the low-pressure bypass circuit B including the low-pressure bypass valve 14. There is. Therefore, for example, as shown in FIG. 2, if a high voltage bypass circuit A consisting of four lines is provided, the low voltage bypass circuit B must also have a configuration of four lines. Specifically, it is not necessarily limited to the number of series, but it will not work unless the flow rate is set to the same, so if the series have the same capacity, the same number must be installed.

このため、従来形のタービンバイパス系統は低圧バイパ
ス回路Bの系列数が多く、その設置所要スペースが大き
く従って建屋面積も大きくなり、これらは総て直接2間
接に設備コストを増加させる要因となっている。
For this reason, the conventional turbine bypass system has a large number of low-pressure bypass circuits B, and the space required for installation is large, resulting in a large building area, all of which are factors that increase equipment costs both directly and indirectly. There is.

本発明は上記の事情に鑑みて為され、蒸気タービンプラ
ントのタービンバイパス系統の構成を簡素化し、設置所
要面積及び設備コストを低減し得るタービンバイパス系
統を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a turbine bypass system that can simplify the configuration of a turbine bypass system of a steam turbine plant and reduce the required installation area and equipment cost.

本拮明の基本的原理は、蒸気タービンプラントの起動時
において再熱器を保護するだめに流通させるに必要な蒸
気流量は、従来形のタービンバイパス装置において再熱
器7に流通させていた蒸気流−fitの約50%で足り
ることに層目し、起動時において再熱器7を冷却して保
護するに必要な程度の蒸気流量は従来装置と同様に再熱
器7.低温バイパス弁14および減温器15を介して復
水器16にダンプさす、残余の蒸気は再熱器7.低温バ
イパス弁14および減温器15を通らずに僕水器16に
バイパスせしめるものである。これにょシ低温バイパス
弁14の蒸気r+Lntが約半減し、その容量、設置所
要面積、設備コストが低減される。
The basic principle of this arrangement is that the flow rate of steam required to flow through the reheater to protect it at the time of startup of a steam turbine plant is the same as that of the steam that flows through the reheater 7 in a conventional turbine bypass system. Considering that approximately 50% of the flow-fit is sufficient, the steam flow rate required to cool and protect the reheater 7 at startup is the same as in the conventional system. The remaining steam is dumped into the condenser 16 via the low temperature bypass valve 14 and the attemperator 15, and the remaining steam is transferred to the reheater 7. The water is bypassed to the water dispenser 16 without passing through the low temperature bypass valve 14 and the desuperheater 15. This reduces the steam r+Lnt of the low-temperature bypass valve 14 by about half, reducing its capacity, required installation area, and equipment cost.

上記の原理に基づいて前記の目的を達成するため、本発
明は、タービンバイパス系統を備えた蒸気タービンプラ
ントにおいて、再熱器をバイパスさせて主蒸気管を覆水
器に接続する管路を設け、かつ、上記のバイパス管路に
流量制御弁および減温器を設けることを特徴とする。
In order to achieve the above object based on the above principle, the present invention provides, in a steam turbine plant equipped with a turbine bypass system, a pipe line that bypasses the reheater and connects the main steam pipe to the water coverer, Further, the above-mentioned bypass line is provided with a flow control valve and a desuperheater.

次に、本発明の一友通例を第3図及び第4図について説
明する。
Next, a typical example of the present invention will be explained with reference to FIGS. 3 and 4.

第3図は本発明のタービンバイパス装置の一実施例を備
えた蒸気ターピングラットの原理図を示し、従来形のタ
ービンバイパス装置における第1図に対応する図である
。原理図について比較した場合、本発明装置(第3図)
が従来形装置(第1図)に比して異なる点は、主蒸気管
2内の蒸気を再熱器7をバイパスさせて復水器16にダ
ンプさせる第2バイパス管路Cを設け、この第2バイパ
ス管路C内に流量制御弁17及び減温器18を設けた事
である。第4図は本発明を600〜700MW級の石炭
火力発電プラントの蒸気タービンプラントに適用してタ
ービンバイパス装置を構成した一実施例を示し、従来装
置における第2図に対応する図である。
FIG. 3 shows a principle diagram of a steam tarping rat equipped with an embodiment of the turbine bypass device of the present invention, and is a diagram corresponding to FIG. 1 of the conventional turbine bypass device. When comparing the principle diagram, the device of the present invention (Figure 3)
is different from the conventional system (Fig. 1) in that a second bypass pipe C is provided to bypass the reheater 7 and dump the steam in the main steam pipe 2 to the condenser 16. This is because a flow control valve 17 and a desuperheater 18 are provided in the second bypass pipe line C. FIG. 4 shows an embodiment in which a turbine bypass device is constructed by applying the present invention to a steam turbine plant of a 600 to 700 MW class coal-fired power plant, and is a diagram corresponding to FIG. 2 of the conventional device.

本発明装置(第4図)が従来形の装置(第2図)に比し
て異なっている点は、原理図について述べたごとく流量
制御弁17及び減温器18を有するfJ2バイパス管路
Cを設けたことであるが、これに伴って高圧バイパス弁
12及び減温器13を有する高圧バイパス回路A′の系
列数を減じ、ot未来形半分の2系列構成としている。
The difference between the device of the present invention (FIG. 4) and the conventional device (FIG. 2) is that, as described in the principle diagram, the fJ2 bypass pipe C has a flow control valve 17 and a desuperheater 18. However, in conjunction with this, the number of series of the high-pressure bypass circuit A' having the high-pressure bypass valve 12 and the desuperheater 13 is reduced, resulting in a two-line configuration, half of the OT future type.

低圧バイパス回路B′もこれに対応して系列数を減じて
2系列購成にしである。
Correspondingly, the number of low-voltage bypass circuits B' is also reduced to two.

通常運転時は高圧バイパス弁12、流量制御弁17、及
び低圧バイパス弁14を閉じて従来形の蒸気タービンプ
ラントと同様に作動ぜしめる。
During normal operation, the high-pressure bypass valve 12, flow control valve 17, and low-pressure bypass valve 14 are closed to operate in the same manner as a conventional steam turbine plant.

起動時、タービンのメタルが昇温して運転を開始できる
までの間、ボイラ1で発生した蒸気の約50%を高圧バ
イパス弁12及び減温器13を介して再熱器7に流通さ
せ、再熱器7を出た蒸気は低圧バイパス弁14及び減温
器15を経で一復水器16に回収する。これにより再熱
器7は過熱を防止される。ボイラ1で発生した蒸気の残
余(約50%)は流量制御弁17および減温器18を介
して復水器16にダンプさ亡る。この場合、流量制御弁
17によって適宜に流斌配分を調節することができ、復
水器16には減温器18によって減温された蒸気を流入
亡しめ得る。
At startup, approximately 50% of the steam generated in the boiler 1 is passed through the high-pressure bypass valve 12 and the desuperheater 13 to the reheater 7 until the metal of the turbine rises in temperature and can start operation. The steam exiting the reheater 7 passes through a low pressure bypass valve 14 and an attemperator 15 and is recovered to a condenser 16. This prevents the reheater 7 from overheating. The remainder (approximately 50%) of the steam generated in the boiler 1 is dumped into the condenser 16 via the flow control valve 17 and the attemperator 18. In this case, the flow rate distribution can be appropriately adjusted by the flow rate control valve 17, and the steam whose temperature has been reduced by the attemperator 18 can be allowed to flow into the condenser 16.

このようにして、発生蒸気の約50%は高圧バイパス回
路A′、再熱器7、及び低圧バイパス回路B′を順次に
経由して復水器16に流入させ、残余の約50%は第2
バイパス′i#路Cを経て直接的に腹水416に流入さ
せるので、ボイラ1で発生した蒸気の全量は高圧ボイラ
4及び中、低圧ボイラ10をバイパスして復水器16に
流入せしめられる。従って、発電機の負荷が遮断された
場合も上記の経路によって主蒸気管2内の余剰蒸気を排
出して圧力上昇を抑制し、安全に所内単独負荷運転に切
替えることができる。
In this way, about 50% of the generated steam passes sequentially through the high-pressure bypass circuit A', the reheater 7, and the low-pressure bypass circuit B' and flows into the condenser 16, and the remaining about 50% flows into the condenser 16. 2
Since it flows directly into the ascites 416 via the bypass 'i# path C, the entire amount of steam generated in the boiler 1 bypasses the high pressure boiler 4 and the medium and low pressure boilers 10 and flows into the condenser 16. Therefore, even when the load on the generator is cut off, excess steam in the main steam pipe 2 is discharged through the above-mentioned route to suppress the pressure increase and it is possible to safely switch to in-house single load operation.

以上説明したように本発明のタービンバイパス装置を作
動せしめる際、発生蒸気の約50%が第2バイパス管路
Cにバイパスさせることができるので、高圧バイパス管
n% A ’及び低圧バイパス管路B′の容量は従来装
置^1における高圧バイパス管路A及び低圧バイパスa
路Bに比して約半分で済む。
As explained above, when operating the turbine bypass device of the present invention, about 50% of the generated steam can be bypassed to the second bypass line C, so that the high pressure bypass line n% A' and the low pressure bypass line B ' is the capacity of the high pressure bypass line A and the low pressure bypass line a in the conventional device ^1.
It costs about half that of route B.

第4図(本発明装置t )は第2図(従来装置t )に
比べて高圧バイパス弁12を2個省略して流量制jig
l弁17を2個細膜しであるので、この置換に伴なう設
備コストの増減は差し引きして無視し得るが、4系列構
成の低圧バイパス回路Bを2系列構成の低圧バイパス回
路B′に簡略化することができるので低圧バイパス系統
に関する設置膚コスト及び設置所要スペースが著しく減
少する。
Compared to FIG. 2 (conventional device t), FIG. 4 (device t of the present invention) omits two high-pressure bypass valves 12 and uses a flow rate control jig.
1 valves 17 are replaced with two thin membranes, the increase or decrease in equipment costs associated with this replacement can be ignored. As a result, the installation cost and space required for the low-pressure bypass system are significantly reduced.

本発明を実地に適用する・場合、高圧バイパス回路A′
の容量と第2バイパス回路Cの容量との比率は第4図の
実施例のように各約50%に限るもので(・」、なく、
当該蒸気タービンプラントの全体的バランスに見合って
適宜に設定することができる。
When the present invention is actually applied, the high voltage bypass circuit A'
The ratio between the capacitance of C and the capacitance of the second bypass circuit C is limited to approximately 50% each as in the embodiment shown in FIG.
It can be set appropriately depending on the overall balance of the steam turbine plant.

以上説明したように、本発明のタービンバイパス装置は
、タービンバイパス系統を備えた蒸気タービンプラント
において、再熱器をバイパスさせて主蒸気管を復水器に
接続する管路を設け、かつ、上記のバイパス管路に流h
t′flilJ御井および減温器を設けることによシ、
蒸気タービンプラントのタービンバイパス系統、特に低
圧バイパス回路の構成を簡素化し、その設備所要面積及
び設備コストを低減することができる。
As explained above, the turbine bypass device of the present invention is provided in a steam turbine plant equipped with a turbine bypass system, in which a reheater is bypassed and a pipe line is provided to connect a main steam pipe to a condenser, and the above-mentioned flow into the bypass pipe of
By providing a t'flil J Mii and a desuperheater,
The configuration of a turbine bypass system of a steam turbine plant, particularly a low-pressure bypass circuit, can be simplified, and the required area and equipment cost can be reduced.

前述の本発明の基本的原理に基づいて前記と同様の目的
を達成する為、即ち、低圧バイパス回路の構成を簡素化
してその設置所要面積及び設備コストを低減するため、
第3図に示した前記の発明を改良して、再熱器をバイパ
スさせて低温丙熱管を復水器に接続するa路を設け、か
つ上記のバイパス管路に流il′l1lI呻弁および威
鍋器を設けることも有効である。
In order to achieve the same object as above based on the basic principle of the present invention described above, namely, to simplify the configuration of the low voltage bypass circuit and reduce the required installation area and equipment cost,
The invention shown in FIG. 3 is improved by providing a passage a which connects the low-temperature heat pipe to the condenser by bypassing the reheater, and includes a flow valve and a flow valve in the bypass pipe. It is also effective to provide a cooking pot.

第5図にその原理図を示す。この改良発明の原理図を従
来装置の4原理図(第1図)に比較すると、異なるとこ
ろは低温再熱v6と復水器16とを接続する第3バイパ
ス回路りを設け、上記の第3バイパス庁路り内に流1毅
制御弁19及び減温器2゜を設けたことであるっまた、
この改良発明の原理図(第5図)を前述のl特定発明の
原理図(第3図)に比較すると、異なるところの主要な
点は、特定発明(第3図)における第2バイパス回路C
の始点が主蒸気管2から分岐しているのに対して、改良
発明(第5図)における第3バイパス管路りの始点は低
温再熱管6から分岐させたことである。
Fig. 5 shows the principle diagram. Comparing the principle diagram of this improved invention with the four-principle diagram of the conventional device (Fig. 1), the difference is that a third bypass circuit connecting the low-temperature reheat v6 and the condenser 16 is provided, and the above-mentioned third In addition, a flow control valve 19 and a desuperheater 2° were installed in the bypass channel.
Comparing the principle diagram of this improved invention (Fig. 5) with the principle diagram of the specified invention described above (Fig. 3), the main difference is that the second bypass circuit C in the specified invention (Fig. 3)
The starting point of the third bypass line is branched from the main steam pipe 2, whereas the starting point of the third bypass line in the improved invention (FIG. 5) is branched from the low temperature reheat pipe 6.

第6図は上記の改良発明を600〜700MW級の石炭
火力プラントに適用して構成した蒸気タービンプラント
のタービンバイパス装置面の一実施IZIJを示す配管
図である。この改良発明の実施例(第6図)においては
高圧バイパス回路Aを従来装置(第2図)と同様に4系
列構)反とするが、この高圧バイパス回路Aを流通した
蒸気流量の約50%を直接的に復水器16にダンプする
ために流献制御liu弁19及び減温器20金有する第
3・くイパス回路りをlj=えであるにめ、再熱ごJ7
を通った蒸気を溪水416にダンプさせる低圧ノ(47
57回路B′は前述の特定発明(第4図)におけると同
様に2系列溝成にすれば足りる。
FIG. 6 is a piping diagram showing an implementation IZIJ of a turbine bypass device of a steam turbine plant constructed by applying the above improved invention to a 600 to 700 MW class coal-fired power plant. In the embodiment of this improved invention (FIG. 6), the high-pressure bypass circuit A has a 4-line structure similar to the conventional device (FIG. 2), but approximately 50% of the steam flow rate flowing through this high-pressure bypass circuit A is % directly to the condenser 16, the third pipe pass circuit with the condensation control valve 19 and the desuperheater 20 is connected to the reheating J7
A low pressure nozzle (47
It is sufficient that the 57 circuit B' has a two-channel structure as in the above-mentioned specific invention (FIG. 4).

以上のように構成した改良発明(第6図)のター ヒン
バイパス装置Nにおいて、通常運転中fd 高圧バイパ
ス弁12.流t 匍1 ffi+1弁19及び低圧ノ(
イノくス弁14を閉じて従来装置(第2図)におけると
同様に作動ぜしめることができる。起動時においては高
圧バイパス弁12、及び低圧・(イパス弁14を開き、
かつ、流量制御弁19を調節して第3バイパス庁路りの
流量を調節し、高圧バイパス回路Aを流通した蒸気のう
ち再熱器7の冷却のために必要な、A気流畦のみを再熱
器7.低圧バイパス弁14.減温器15を経由して復水
器16に流入せしめ、残余の蒸気流量は第3バイパス管
路りを、趙で復水器16に流入せしめる。
In the Tahin bypass device N of the improved invention (FIG. 6) configured as described above, during normal operation fd high pressure bypass valve 12. Flow t 匍1 ffi+1 valve 19 and low pressure (
The inox valve 14 can be closed and operated as in the prior art system (FIG. 2). At startup, the high pressure bypass valve 12 and the low pressure bypass valve 14 are opened,
In addition, the flow rate control valve 19 is adjusted to adjust the flow rate of the third bypass channel, and only the A airflow ridge, which is necessary for cooling the reheater 7, of the steam flowing through the high-pressure bypass circuit A is regenerated. Heater7. Low pressure bypass valve 14. It flows into the condenser 16 via the attemperator 15, and the remaining steam flow flows into the condenser 16 through the third bypass line.

また、上記と同様の操作により、所内単独負荷・軍転に
リノり替える際の主蒸気管2内の圧力上昇を抑制するこ
ともできる。
Further, by the same operation as described above, it is also possible to suppress the pressure increase in the main steam pipe 2 when changing over to in-house single load/military transfer.

以上に述べた改良発明の実施例(第6図)において、高
温再熱管8内の蒸気条件は50 atg・566Cであ
るのに比して低温再熱管6内の蒸気条件は50 atg
・300Cである。蛇って本改良発明を適用して付設す
る流量制徊1弁19は、本改良発明の適用によって一部
省略し得た低圧バイパス弁14に比して耐熱性の低い材
料で構成することができ、設備コストを低減せしめ得る
In the embodiment of the improved invention described above (FIG. 6), the steam condition in the high temperature reheat tube 8 is 50 atg.566C, while the steam condition in the low temperature reheat tube 6 is 50 atg.
・It is 300C. Accordingly, the flow rate control valve 19 provided by applying the present improved invention can be made of a material with lower heat resistance than the low-pressure bypass valve 14, which can be partially omitted by applying the present improved invention. It is possible to reduce equipment costs.

以上詳述したように、本改良発明のタービンバイパス装
置は、タービンバイパス系統を備えた蒸気タービンプラ
ントにおいて、低温再熱管を、再熱器をバイパスさせて
復水器に接続する管路を設け、かつ、上記のバイパス管
路に流量制御弁および減温器を設けることにより、蒸気
タービンプラントのタービンバイパス系統の構成を簡素
化し、設置所要面積及び設置コストを低減し得るという
優れた実用的効果を生じる。
As described in detail above, the turbine bypass device of the present improved invention is provided in a steam turbine plant equipped with a turbine bypass system, by providing a pipe line that connects the low-temperature reheat pipe to the condenser by bypassing the reheater, In addition, by providing a flow control valve and a desuperheater in the bypass pipeline, the structure of the turbine bypass system of a steam turbine plant can be simplified and the required installation area and installation cost can be reduced, which is an excellent practical effect. arise.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は?jt来形タービンバイパス装置6を備えた蒸
気タービンプラントの原理図、第2図は600〜700
MW級の従来形タービンバイパス装置を備えたmAメタ
−ンプラントの蒸気系統構成図、第3図は本発明のター
ビンバイパス装置の一実施例を備えた蒸気タービンプラ
ントの原理図、第4図は600〜700MW級蒸気ター
ビンプラントに本発明のタービンバイパス装置の一実施
例を設けた蒸気系、統構成図、第5図は上記発明を改良
したタービンバイパス装置の一実施例を備えた蒸気ター
ビンプラントの原理図、第6図は上記改良発W4のター
ビンバイパス装置の一実施例を備えた600〜700M
W級蒸気タービングラ/トの蒸気系統構成図である。 1・・・ボイラ、2・・・主蒸気管、3・・・主塞止弁
、4・・・高圧タービン、5・・・逆止弁、6・・・低
tM N熱a17・・・再熱器、8・・・高温再熱α、
10・・・中、低圧タービン、12・・・高圧バイパス
弁、13,15,18゜20・・・減温器、14・・・
低圧バイパス弁、16・・・復水器、17.19・・・
流量制]卸弁。 代理人 弁理士 秋本正実
What about figure 1? jt Principle diagram of a steam turbine plant equipped with a turbine bypass device 6, Fig. 2 is 600-700
A steam system configuration diagram of a mA methane plant equipped with a conventional MW-class turbine bypass device, FIG. 3 is a principle diagram of a steam turbine plant equipped with an embodiment of the turbine bypass device of the present invention, and FIG. Figure 5 shows a steam system and system configuration diagram of a ~700 MW class steam turbine plant equipped with an embodiment of the turbine bypass device of the present invention. The principle diagram, Figure 6, shows a 600-700M turbine equipped with an example of the turbine bypass device of the above-mentioned improved engine W4.
It is a steam system configuration diagram of a W-class steam turbine grater. 1... Boiler, 2... Main steam pipe, 3... Main blocking valve, 4... High pressure turbine, 5... Check valve, 6... Low tM N heat a17... Reheater, 8...high temperature reheat α,
10... Medium, low pressure turbine, 12... High pressure bypass valve, 13, 15, 18° 20... Desuperheater, 14...
Low pressure bypass valve, 16... Condenser, 17.19...
Flow rate control] Wholesale valve. Agent Patent Attorney Masami Akimoto

Claims (1)

【特許請求の範囲】 1、タービンバイパス系統を備えた蒸気タービンプラン
トにおいて、再熱器をバイパスさせて主蒸気管を復水器
に接続する管路を設け、かつ、上記のバイパス管路に流
量制御片お上び減温器を設けたことを特徴とする蒸気タ
ービンプラントのタービンバイパス装置。 2、タービンバイパス系統を備えた蒸メ(タービンプラ
ントにおいて、再熱器をバイパスさせて低温再熱管を復
水器に接続する管路を設け、かつ、上記のバイパス管路
に流量制御弁および減温器を設けたことを特徴とする蒸
気タービンプラントのタービンバイパス装置。
[Claims] 1. In a steam turbine plant equipped with a turbine bypass system, a pipe line is provided that connects the main steam pipe to the condenser by bypassing the reheater, and a flow rate is provided in the bypass pipe. A turbine bypass device for a steam turbine plant, characterized by being provided with a control piece and a desuperheater. 2. A steam plant equipped with a turbine bypass system (in a turbine plant, a pipe is provided to bypass the reheater and connect the low-temperature reheat pipe to the condenser, and a flow control valve and a reducer are installed in the bypass pipe). A turbine bypass device for a steam turbine plant, characterized by being equipped with a warmer.
JP12900582A 1982-07-26 1982-07-26 Turbine bypass device of steam turbine plant Pending JPS5920506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12900582A JPS5920506A (en) 1982-07-26 1982-07-26 Turbine bypass device of steam turbine plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12900582A JPS5920506A (en) 1982-07-26 1982-07-26 Turbine bypass device of steam turbine plant

Publications (1)

Publication Number Publication Date
JPS5920506A true JPS5920506A (en) 1984-02-02

Family

ID=14998792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12900582A Pending JPS5920506A (en) 1982-07-26 1982-07-26 Turbine bypass device of steam turbine plant

Country Status (1)

Country Link
JP (1) JPS5920506A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177964A (en) * 1989-01-27 1993-01-12 Hitachi Construction Machinery Co., Ltd. Hydraulic drive traveling system
JP2003083501A (en) * 2001-09-12 2003-03-19 Babcock Hitachi Kk Fluidized bed boiler
JP2018063063A (en) * 2016-10-11 2018-04-19 住友重機械工業株式会社 Boiler system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177964A (en) * 1989-01-27 1993-01-12 Hitachi Construction Machinery Co., Ltd. Hydraulic drive traveling system
JP2003083501A (en) * 2001-09-12 2003-03-19 Babcock Hitachi Kk Fluidized bed boiler
JP2018063063A (en) * 2016-10-11 2018-04-19 住友重機械工業株式会社 Boiler system
WO2018070181A1 (en) * 2016-10-11 2018-04-19 住友重機械工業株式会社 Boiler system

Similar Documents

Publication Publication Date Title
KR890002916B1 (en) Steam turbine plant having a turbine bypass system
JP2000161014A5 (en)
JP2000161014A (en) Combined power generator facility
JP2010014114A (en) Steam turbine overload valve and method associated with the same
JPH09112215A (en) Gas turbine power plant and method of operating thereof
JP3774487B2 (en) Combined cycle power plant
JPS5920506A (en) Turbine bypass device of steam turbine plant
JP3919966B2 (en) Operation method of combined cycle power plant
JP3660727B2 (en) Operation method of single-shaft combined cycle plant
JPH04148035A (en) Vapor cooled gas turbine system
JP3994547B2 (en) Waste heat recovery system
JP3641030B2 (en) Safety valve operation test method for combined cycle power plant
JPH062806A (en) Water supplying and heating device
JP4090584B2 (en) Combined cycle power plant
JP4434513B2 (en) Combined cycle power plant
US2175874A (en) Turbine protective arrangement
JPS5926765B2 (en) Control method and device for a turbine plant having a turbine bypass line
JPH06330706A (en) Back pressure steam turbine system
JPH04298602A (en) Steam turbine starting equipment
JPH03115707A (en) Combined power plant
JPH0356723Y2 (en)
JPH0399101A (en) Controller of exhaust heat recovering heat exchanger
JPH02163402A (en) Compound electric power plant and its operation
JPS5982506A (en) Steam turbine plant
JPS6013904A (en) Steam turbine system