[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS59193022A - Heating of thin film - Google Patents

Heating of thin film

Info

Publication number
JPS59193022A
JPS59193022A JP6660183A JP6660183A JPS59193022A JP S59193022 A JPS59193022 A JP S59193022A JP 6660183 A JP6660183 A JP 6660183A JP 6660183 A JP6660183 A JP 6660183A JP S59193022 A JPS59193022 A JP S59193022A
Authority
JP
Japan
Prior art keywords
heating
thin film
layer
film
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6660183A
Other languages
Japanese (ja)
Other versions
JPH0611035B2 (en
Inventor
Takashi Tomita
尚 富田
Yasuo Kano
狩野 靖夫
Setsuo Usui
碓井 節夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP58066601A priority Critical patent/JPH0611035B2/en
Publication of JPS59193022A publication Critical patent/JPS59193022A/en
Publication of JPH0611035B2 publication Critical patent/JPH0611035B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To enable to heat selectively only the desired part of a thin film formed on a substrate by obtaining intense absorption of a laser beam according to the interference effect by a method wherein film thickness of the heating necessitating part of the thin film is so selected as to make light volume of the laser beam to irradiate therein large, and the laser beam is made to irradiate thereto. CONSTITUTION:A thin film 2 having the refractive index of n2 and having film thickness of (d) is interposed between layers 1, 3 having respectively the refractive indexes of n1, n3, and monochromatic light 4 having the wavelength of lambda is irradiated from the layer 1 side. When relation n1, n3<n2 exists between the refractive indexes, and the expression 1 of 2d=Nlambda/n2 (N is a natural number) is satisfied, light volume made to enter in the film 2 becomes to the maximum according to the interference effect. Moreover when the expression 2 of 2d= (N+1/2)lambda/n2 is satisfied, light volume to transmit in the film 2 becomes to the maximum. When the interference effect of a small absorption coefficient can be obtained according to the expressions 1, 2 thereof, by controlling film thickness (d) of the thin film 2, ON, OFF control of heating to the same incident light volume of the laser beam can be attained. Namely, it is favorable to satisfy the expression 1 when heating is necessary, and to satisfy the expression 2 when heating is unnecessary.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は基板上に形成された薄Mをレーザ光を用いて加
熱する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of heating a thin M formed on a substrate using laser light.

背量技術とその問題点 例えば基板上にポリシリコンを形成して熱処理を行うこ
とKよp1結晶シリコンを形成する場合等のように、基
板上に堆積された薄膜を加熱して、その薄膜の結晶化、
再結晶化、アニール等を行う場合がある。このような場
合に用いられる加熱方法として、従来よジヒータ加熱、
ランプ照射加熱、電子線照射加熱、レーザ光照射加熱等
が知られている。
Backlighting technology and its problems For example, forming polysilicon on a substrate and performing heat treatment.As in the case of forming Kyop1 crystalline silicon, heating a thin film deposited on a substrate and crystallization,
Recrystallization, annealing, etc. may be performed. Conventional heating methods used in such cases include di-heater heating,
Lamp irradiation heating, electron beam irradiation heating, laser beam irradiation heating, etc. are known.

しかしながらヒータ加熱、ランプ照射加熱は、薄膜だけ
でなく、それを堆積させている基板までも含めて加熱さ
れるために、熱に弱い材料を基板に用いたり、あるいは
上記材料を基板に付着させることができない。まfc電
子線照射加熱、レーザ光照射加熱は薄膜のみの加熱が可
能であるが、薄膜の成層部のみが加熱され、膜厚方向に
全体的に加熱することが困難である。また複数のR膜が
積層されている場合、電子線照射加熱で所望の中間層の
みを加熱することは不可能である。レーザ光照射加熱で
は、レーザ光の波長を被加熱薄膜に対して大きな光学吸
収の得られるfii!に選ぶようにしているが、上記の
ように中間層のみを加熱する場合は、その中間層よシ照
射側(上側)にある各層の光吸収が小さいものでなくて
はならない。
However, in heater heating and lamp irradiation heating, not only the thin film but also the substrate on which it is deposited are heated, so it is difficult to use a heat-sensitive material for the substrate or to attach the above-mentioned material to the substrate. I can't. Although electron beam irradiation heating and laser beam irradiation heating can heat only a thin film, only the layered portion of the thin film is heated, and it is difficult to heat the entire film in the thickness direction. Further, when a plurality of R films are stacked, it is impossible to heat only a desired intermediate layer by electron beam irradiation heating. In laser light irradiation heating, the wavelength of the laser light can be used to obtain large optical absorption in the thin film being heated. However, when heating only the intermediate layer as described above, the light absorption of each layer on the irradiation side (upper side) of the intermediate layer must be small.

発明の目的 本発明は単層の薄膜の場合は、所望部分のみを選択的に
加熱することかで@、しかも膜厚全体に均一に加熱する
ことかで@1また複数層の薄膜の場合は、所望の中間層
の所望部分のみを選択的に加熱することのできるレーザ
光を用いた薄膜加熱方法を提供するものである。
Purpose of the Invention The present invention is capable of selectively heating only a desired portion in the case of a single-layer thin film, and uniformly heating the entire thickness of the film, and in the case of a multi-layer thin film. The present invention provides a thin film heating method using laser light that can selectively heat only a desired portion of a desired intermediate layer.

発明の概装 本発明は薄膜の加熱部分の膜厚を選定して、干加 渉効果を利用することにより、レーザ光照好蔦を行うよ
うにしたものである。
Summary of the Invention The present invention is designed to perform laser beam illumination by selecting the thickness of the heated portion of the thin film and utilizing the interference effect.

実施例 第1図に示すように夫々屈折率n1.n3  そ有する
層(1) (3+の間に配された膜厚d1屈折率n2を
有するIN膜(2)に、波長λの単色光(4)を層(1
)側から照射しfc場合、n1+ n3< n2である
と@に、そ満足するとき、薄膜(2)に注入される光量
が干渉効果により最大になる。また を満足するとき、薄膜(2)を透過する光量が最大にな
る。
Example As shown in FIG. 1, the refractive index n1. Monochromatic light (4) with a wavelength λ is applied to the IN film (2) having a film thickness d1 and a refractive index n2 disposed between the layer (1) (3+)
) side fc, when n1+n3<n2 is satisfied, the amount of light injected into the thin film (2) becomes maximum due to the interference effect. When satisfying also, the amount of light transmitted through the thin film (2) becomes maximum.

上記■、■式よシ、吸光係数が比較的小さく干渉効果が
得られる場合、薄膜(2)の膜厚dを制御することによ
り、レーザ光の等しい入射光量に対して加熱の0N−O
FF制御かTiI能なことが判る。
According to the above formulas ① and ②, if the extinction coefficient is relatively small and an interference effect is obtained, by controlling the film thickness d of the thin film (2), the heating will be 0N-O for the same amount of incident laser light.
It can be seen that FF control or TiI function is possible.

即ち、加熱を必要とする場合は0式を満足するようにd
を選び、加熱を不要とする場合は■式を満足するように
dそ選べはよい。また膜厚の選択が自由に行えない場合
は、波長λを選択することで、0式又は■式を満足させ
るようにしてよい。
In other words, if heating is required, d
If you choose d and do not require heating, it is good to choose d so as to satisfy formula (■). Furthermore, if the film thickness cannot be freely selected, the wavelength λ may be selected to satisfy the equation 0 or the equation (2).

以下に上記方法を適用した励々の薄膜加熱方法について
述べる。
An exciting thin film heating method applying the above method will be described below.

実施例1 第2図に示すように基板(5)に一層の薄膜(6)が堆
積されている単層構造において、rN長λのレーザ光(
7)を薄膜(6)に均一に照射する場合、前記0式を満
足するように膜厚dそ選ぶことKよシ、薄膜(6)の全
体を加熱することができる。
Example 1 In a single layer structure in which a single layer of thin film (6) is deposited on a substrate (5) as shown in FIG.
When the thin film (6) is uniformly irradiated with 7), the entire thin film (6) can be heated by selecting the film thickness d so as to satisfy the above equation 0.

この方法は従来の゛1子ビーム照射加熱、レーザ光照射
加熱と大差がないが、それらが衆鳩部のみの加熱が行わ
れるのに対して、本発明方法の場8・は、膜厚方向に全
体的に加熱することができる点で有利である。
This method is not much different from conventional single-beam irradiation heating and laser beam irradiation heating, but in contrast to these, heating is performed only in the central area, in case 8 of the method of the present invention, heating is performed in the film thickness direction. It is advantageous in that it can be heated as a whole.

実施例2 第3図に示すように基板(5)に薄膜(8)が単層で堆
積場れている場合、この薄膜(8)の斜線で示す部分(
8a)のみを選択的に加熱する場合は、上記部分(8a
)の膜厚d1を0式を満足するように選び、他の部分(
8b)の膜厚d2を■式を満足するように選べばλ よい。またdlは■式の条件の他にdl< 2.  (
n’屈折率)を満足する値であってもよい。dlがこの
値のとき干渉効果の制限がはずれて、■式と同様に最大
透過光量が得られる。尚、一つの薄膜(8)に対するd
l、dlの選定は、エツチング等により行うことができ
る。
Example 2 When a thin film (8) is deposited in a single layer on a substrate (5) as shown in FIG.
When selectively heating only part 8a), the above part (8a)
) is selected so as to satisfy equation 0, and the other parts (
The film thickness d2 in 8b) should be selected to satisfy the formula (2). In addition to the condition of formula (■), dl is dl<2. (
n' refractive index). When dl is this value, the interference effect is no longer limited, and the maximum amount of transmitted light can be obtained as in equation (2). In addition, d for one thin film (8)
Selection of l and dl can be performed by etching or the like.

このように単層構造の薄膜(8)を選択的に加熱するこ
とは、従来の方法でも、光、電子ビームを0N−OF’
F制御することによシ可能であるが、加熱を必要とする
部分(8a)が細かいノくターンの場合は装置が大がか
りなものとなる。本発明方法によれば、従来公知のフォ
トリングラフ技術等を併用することにより、細かいノく
ターンの加熱も容易に行うことができる。
In this way, selective heating of the single-layer thin film (8) can be achieved by using light or electron beams 0N-OF' even with conventional methods.
This can be done by F control, but if the part (8a) that requires heating is a fine turn, the device will be large-scale. According to the method of the present invention, heating of fine nodules can be easily performed by using a conventionally known photoringraph technique or the like.

実施例6 第4図に示すように薄膜が上層(9)、中間層H)、下
層Uから成る多層構造である場合中間層(lO)のみを
加熱する方法である。この場合は中間層(10)よジも
レーザ光(7)の照射側にある層、即ち上層(9)での
吸光係数が比較的小さく干渉効果が得られる場合λ には、上層(9)の膜厚d1を■式を満足又は(h<−
Σiを満足するように選ぶと共に、中間層α0)のj膜
厚d2を0式を満足するように選べはよい。尚、第4図
は6層構造の場合であるが、2層又は4層以上の場合も
同様の考え方に基いて任意の中間層のみを加熱すること
ができる。また第4図で上層(9)のみを加熱する場合
は実、m?l11で述べた方法に従う。
Example 6 As shown in FIG. 4, when the thin film has a multilayer structure consisting of an upper layer (9), an intermediate layer H), and a lower layer U, this is a method in which only the intermediate layer (lO) is heated. In this case, when the absorption coefficient of the intermediate layer (10) and the layer on the irradiation side of the laser beam (7), that is, the upper layer (9), is relatively small and an interference effect is obtained, the upper layer (9) The film thickness d1 satisfies the formula ■ or (h<-
The film thickness j of the intermediate layer α0) can be selected so as to satisfy Σi, and the film thickness d2 of the intermediate layer α0) can be selected so as to satisfy the equation 0. Although FIG. 4 shows the case of a six-layer structure, in the case of two layers or four or more layers, only an arbitrary intermediate layer can be heated based on the same idea. Also, in Figure 4, if only the upper layer (9) is heated, m? Follow the method described in l11.

さらに下層(Lυのみを加熱する場合は、dll a2
が■式又はdl(−1d2 (2,、を満足するように
、d3n1 が■式を満足するように成せばよい。
Furthermore, if heating only the lower layer (Lυ, dll a2
It is sufficient to make it such that d3n1 satisfies the equation (2) or dl(-1d2 (2,), and the equation (2).

上記方法によれは、従来技術では困難であつ7+多層構
造の中間層の加熱が可能になる。
The method described above makes it possible to heat the intermediate layer of a 7+ multilayer structure, which is difficult to do with the prior art.

上述した多層構造における最上Nを除く任意の層の所望
部分のみを加熱する場合は、以下に述べる実施例4.5
.6の6つの方法が行われる。
When heating only a desired portion of any layer other than the top layer N in the multilayer structure described above, Example 4.5 described below can be used.
.. 6 methods are performed.

実施例4 第5図は下層(1υの斜線で示す部分(11a)のみを
加熱する場合を示し、第6図は中間層叫の斜線で示す部
分(10a)のみを加熱する場合を示す。
Embodiment 4 FIG. 5 shows a case where only the shaded portion (11a) of the lower layer (1υ) is heated, and FIG. 6 shows a case where only the shaded portion (10a) of the middle layer is heated.

本実施例は上層(9)の膜厚そ部分的にd、 、 d、
に変えることにより、この上層(9)を透過する光量を
・制御して、この上層(9)より下方の層の所望部分(
Ila)(10a)のみを加熱するようにしたものであ
る。即ち、上層(9)の、加熱すべき部分(11a)(
10a)と対応する部分(9a)の膜厚d7を0式を満
足する値に選ぶと共に、他の部分(9b)の膜厚d1そ
■を満足する値に選んでいる。尚・dl、dlを上記の
値に選ぶことにより、dlの部分(9b)が加熱される
が、本実施例による方法は、上記部分(9b)が加熱さ
れても支障がない場合に用いられる。
In this example, the film thickness of the upper layer (9) is partially d, , d,
By changing to
Ila) (10a) only is heated. That is, the portion (11a) of the upper layer (9) to be heated (
The film thickness d7 of the portion (9a) corresponding to 10a) is selected to a value that satisfies Equation 0, and the film thickness d1 of the other portion (9b) is selected to a value that satisfies Equation 0. Note that by selecting dl and dl to the above values, the dl portion (9b) is heated, but the method according to this embodiment is used when there is no problem even if the above portion (9b) is heated. .

実施例5 この方法は前述した第6図の実施例と基本的に共通する
もので、第7図及び第8図において、加熱すべき部分(
11a)(10a)が存在する層(11)(101の膜
厚を上記部分(11a)(10a)に応じて部分的に変
えると共に、この層(11)uoJより上側の層〔第7
図では中間層叫と上層(9)、第8図では上層(9)〕
の膜厚そ上記部分(11a)(10a)に応じて変える
ようにしたものである。尚、図中d1.d2.d5は0
式を満足するように選ばれ、dl、 d2.d3は0式
を満足するように選ばれるものとする。
Embodiment 5 This method is basically the same as the embodiment shown in FIG. 6 described above, and in FIGS.
The film thickness of the layer (11) (101) in which 11a) (10a) exists is partially changed according to the above-mentioned portions (11a) (10a), and the layer above this layer (11) uoJ [7th
In the figure, the middle layer and upper layer (9), in Figure 8, the upper layer (9)]
The film thickness is changed depending on the portions (11a) and (10a). In addition, in the figure, d1. d2. d5 is 0
dl, d2. It is assumed that d3 is selected so as to satisfy the formula 0.

実施例6 上述しfC笑実施4.5を組み合わせた方法で、第2図
及び第10図に示すように、加熱すべき部分(11a)
(10a)が存在する層圓[0)と、それより上の層と
の膜厚を部分的に変化させるものである。
Example 6 The part to be heated (11a) as shown in FIG. 2 and FIG.
This is to partially change the thickness of the layer circle [0] where (10a) exists and the layer above it.

実施例7 実施例4.5.6を全て組み合わせた方法で、第11図
に示すように各層(9) uO)αυの膜厚を選ぶこと
により、部分(9a)(10a)(11a)−i加熱す
ることができる。この方法によれば、多層構造における
複数層を1回の照射で同時に加熱しながら且つ各層を部
分的に加熱することができる。
Example 7 Using a method that combines all of Examples 4.5.6, by selecting the film thickness of each layer (9) uO)αυ as shown in FIG. i can be heated. According to this method, multiple layers in a multilayer structure can be simultaneously heated with one irradiation, and each layer can be partially heated.

実施例 ガラス基板に堆積させた非晶質シリコン(a−8i)を
YAGレーザを用いて加熱(活性化、多結晶化)を行っ
た。装置器具等は後述する2つの実験例にも同じものを
用いている。基板は、光学研摩を施した無ソーダガラス
基板(21nchφxO,5s+s+t )を用いft
o薄膜a−8i 、 5in2はGD、OVD法[ヨり
堆積させた。それぞれの作製条件は下衣の辿りである。
Example Amorphous silicon (a-8i) deposited on a glass substrate was heated (activated, polycrystallized) using a YAG laser. The same equipment and equipment were used in the two experimental examples described below. The substrate is a soda-free glass substrate (21nchφxO, 5s+s+t) that has been optically polished.
The thin film A-8i, 5in2 was deposited by GD and OVD methods. Each production condition is the same as the lower garment.

レーザ発振器としてはYAGレーザを用い、波長1.0
6 μ、ビーム径I 008m、パルス12KHz 、
照射エネルギー1J/cyt2以下である。基板ホルダ
ーは真空チャックにより基板を固定でき。
A YAG laser is used as the laser oscillator, and the wavelength is 1.0.
6μ, beam diameter I 008m, pulse 12KHz,
The irradiation energy is 1 J/cyt2 or less. The substrate holder can hold the substrate in place using a vacuum chuck.

パルスモータ−によ5X−Y方向に運動可能なものであ
る。レーザ光は基板に対し垂直に入射するように固定し
、基板を運動させることで、全面に照射した。またa 
−Si層は堆積石せただけのものだけでなく、光学吸収
を助けるようPイオンをイオン注入法により注入したも
のも用いた。ここでイオン注入の条件は、加速電圧10
0〜250KeV、ドーズft2x1015/硼2゜こ
のような装置器具を用いて次に示す単層構造及び積層構
造の2例について行った。
It is movable in 5X-Y directions by a pulse motor. The laser beam was fixed so that it was incident perpendicularly to the substrate, and the substrate was moved to irradiate the entire surface. Also a
The -Si layer used was not only one made of deposited stone, but also one in which P ions were implanted by ion implantation to aid optical absorption. Here, the conditions for ion implantation are that the acceleration voltage is 10
0 to 250 KeV, dose ft 2 x 10 15 / 2 degrees. Using such equipment, the following two examples of a single layer structure and a laminated structure were tested.

(1)、単層構造の場合 第12図に示すようにガラス基板(1511Ca−Si
層(■6)だけを堆積させたものを用いた。このとき、
j戻厚dに一様な勾配を与え、d = 400 n m
〜800nmに分布させた。この試料に一定のエネルギ
ー(0,6J/crrL2) テレーサ光f全面Vc照
射すると、d中450nm及びdキロ[、JOr+mの
膜厚付近の斜縁部分だけが加熱されているのが確認され
た。この加熱された部分は多結晶化しているようであり
、他の部分と斜縁部分とでは、可視光での透過率が変化
してお9%また比抵抗も小さくなっている。ここで、一
様に基板全面に照射したにも拘らず一部だけが加熱され
、且つその部分が450nm、60Or+m、i度の膜
厚に取られておシ、その他の部分は全く変化していない
ことから、さらにそれぞれ0式でN=3.4に対応する
膜厚であることから明らかにこれは干渉効果によるもの
である。
(1) In the case of a single layer structure, as shown in Figure 12, a glass substrate (1511Ca-Si
A layer in which only layer (■6) was deposited was used. At this time,
j Give a uniform gradient to the return thickness d, d = 400 nm
~800 nm. When this sample was irradiated with a constant energy (0.6 J/crrL2) teleser light f over the entire surface Vc, it was confirmed that only the beveled edge portion near the film thickness of 450 nm in d and d km[, JOr+m] was heated. This heated portion appears to be polycrystalline, and the visible light transmittance changes by 9% and the specific resistance decreases between the other portions and the beveled edge portion. Here, even though the entire surface of the substrate was irradiated, only a part was heated, and that part was made to have a film thickness of 450 nm, 60 Or+m, and i degrees, and the other parts did not change at all. It is clear that this is due to an interference effect since there is no difference in the film thickness, and the film thickness corresponds to N=3.4 in each equation 0.

(2)、積層構造の場合 第16図に示すように基板uつに、a−3i  層(L
6)を堆積させ、その上にSiO2層(L7)を積層し
たものを用いた。ここで5102層(17)もa −S
i層霞と同様に膜厚に勾配を与えて%100〜2001
1 mに分布させた。この状態で一様な照射を行うと、
やはp単層構造の場合と同様にdキ45Dnyr+及び
d中600nmo膜厚のa −Si層(16)の部分が
加熱されていることが確認された。これまでは薄膜側か
らの照射であったが、ガラス基板(15)側からの照射
に対しても同様な結果が得られた。(ここで積層したS
iO2層(17)は膜厚が100〜2LJDnmTあり
、5in2(7)屈折率が1.45であることから、と
の膜厚は2d(λ/n+s*すもので、殆んど吸収のな
いものとなっている。) 発明の効果 (1)  従来のレーザ光加熱では光吸収の弱い波長を
用いることができなかったが、本発明では膜厚を制御す
ることで、干渉効果により強い吸収が得られ加熱が可能
となった。
(2) In the case of a laminated structure, as shown in FIG.
6) was deposited, and a SiO2 layer (L7) was laminated thereon. Here, the 5102 layer (17) is also a −S
Similar to the i-layer haze, the film thickness is given a gradient from %100 to 2001.
Distributed over 1 m. If uniform irradiation is performed in this state,
Similarly to the case of the p-single layer structure, it was confirmed that the a-Si layer (16) with a thickness of 600 nm in d-45Dnyr+ and d-d was heated. Until now, irradiation was performed from the thin film side, but similar results were obtained when irradiation was performed from the glass substrate (15) side. (S stacked here
The iO2 layer (17) has a thickness of 100 to 2LJDnmT, and the refractive index of 5in2(7) is 1.45, so the thickness of the iO2 layer (17) is 2d(λ/n+s*), and there is almost no absorption. ) Effects of the invention (1) Conventional laser beam heating could not use wavelengths with weak optical absorption, but in the present invention, by controlling the film thickness, strong absorption can be achieved due to interference effects. It became possible to heat the product.

(2)  ヒーター加熱、ランプ加熱のように基板全体
を加熱するのではなく、加熱を必要とする部分だけを優
先的に加熱することができる。
(2) Rather than heating the entire substrate as in heater heating or lamp heating, only the parts that require heating can be heated preferentially.

(3)従来のレーザ光加熱、電子ビーム加熱では表面層
のみの加熱であったが、本発明では狭面よシ下部の中間
層各層の加熱も0.1能である。
(3) Conventional laser beam heating and electron beam heating heat only the surface layer, but in the present invention, each layer of the intermediate layer below the narrow surface can also be heated by 0.1.

(4)2次元的に分布する加熱必要部を前もってエツチ
ングを施すだけで、一様に全体をレーザ光照射した場合
でも可能であり、従来のレーザ加熱や、電子ビーム加熱
のようにビーム遮蔽膜を設ける必要がない。またビーム
の0N−01;’Fの必要もない。
(4) It is possible to uniformly irradiate the entire area with a laser beam by simply etching the two-dimensionally distributed areas that require heating in advance, and it is possible to use a beam shielding film like conventional laser heating or electron beam heating. There is no need to provide Also, there is no need for the beam 0N-01;'F.

(5)積層した薄膜の6次元的加熱必要部の分布に対し
ても、均一に全面照射するだけで可能であシこれは他の
方法では不可能である。
(5) The six-dimensional distribution of the parts of the laminated thin film that require heating can be achieved simply by uniformly irradiating the entire surface, which is impossible with other methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明するための薄膜の側面図、
第2〜11図は本発明の実施例を示す基板に堆積された
薄膜の構造を示す側面図で・第2〜4図は第1〜6の叉
施例を、第5.6図は第4の実施列を、第7.8図は第
5の実施例を、第9゜10図は第6の実施fuを、第1
1図は第7の実施例を夫々示す。第12図及び@16図
は実験に用いた薄膜の構造を示す側面図である。 なお図面に用いられた符号において、 (7)・・・・・・・・・・・・レーザ光(8)・・・
・・・・・・・・・薄膜 (1:Ia )・・・・・・・・・加熱される部分(9
)・・・・・・・・・・上層 (9a)・・・・・・・・・加熱される部分(10)・
・・・・・・・・・・・中間層(10a)・・・・・・
加熱される部分(11)・・・・・・・・・・・・下層
(11a)・・・・・・加熱される部分である。 代理人 土産 勝 〃       常  包  芳  男杉  浦  俊
  貴
FIG. 1 is a side view of a thin film for detailed explanation of the present invention;
2 to 11 are side views showing the structure of a thin film deposited on a substrate showing an embodiment of the invention. Figure 7.8 shows the fifth example, Figures 9 and 10 show the sixth example, and Figure 7.8 shows the fifth example.
FIG. 1 shows the seventh embodiment. FIGS. 12 and 16 are side views showing the structure of the thin film used in the experiment. In addition, in the symbols used in the drawings, (7)...... Laser light (8)...
・・・・・・Thin film (1:Ia)・・・・・・Part to be heated (9
)...... Upper layer (9a)... Part to be heated (10).
・・・・・・・・・Middle class (10a)・・・・・・
Part to be heated (11): Lower layer (11a): Part to be heated. Agent Souvenir Katsu Tsune Kao Yoshi Otosugi Ura Toshiki

Claims (1)

【特許請求の範囲】[Claims] 薄膜の加熱を必要とする部分の膜厚を、上記部分に注入
されるレーザ光の光量が犬となるように選び、上記薄膜
にレーザ光を照射するようにした薄膜の加熱方法。
A method for heating a thin film, in which the thickness of a portion of the thin film that requires heating is selected so that the amount of laser light injected into the portion is equal to that of the thin film, and the thin film is irradiated with laser light.
JP58066601A 1983-04-15 1983-04-15 Thin film heating method Expired - Lifetime JPH0611035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58066601A JPH0611035B2 (en) 1983-04-15 1983-04-15 Thin film heating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58066601A JPH0611035B2 (en) 1983-04-15 1983-04-15 Thin film heating method

Publications (2)

Publication Number Publication Date
JPS59193022A true JPS59193022A (en) 1984-11-01
JPH0611035B2 JPH0611035B2 (en) 1994-02-09

Family

ID=13320596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58066601A Expired - Lifetime JPH0611035B2 (en) 1983-04-15 1983-04-15 Thin film heating method

Country Status (1)

Country Link
JP (1) JPH0611035B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61131413A (en) * 1984-11-30 1986-06-19 Sony Corp Formation of semiconductor thin film
JPS61145819A (en) * 1984-12-20 1986-07-03 Sony Corp Heat processing method for semiconductor thin film
EP0620586A1 (en) * 1993-04-05 1994-10-19 Nippondenso Co., Ltd. Semiconductor device having thin film resistor
JPH0963984A (en) * 1995-08-18 1997-03-07 Semiconductor Energy Lab Co Ltd Laser annealing method and laser annealing device
US6242792B1 (en) 1996-07-02 2001-06-05 Denso Corporation Semiconductor device having oblique portion as reflection
US7513949B2 (en) 1995-07-19 2009-04-07 Semiconductor Energy Laboratory Co., Ltd. Method and apparatus for producing semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853823A (en) * 1981-09-26 1983-03-30 Fujitsu Ltd Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853823A (en) * 1981-09-26 1983-03-30 Fujitsu Ltd Manufacture of semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61131413A (en) * 1984-11-30 1986-06-19 Sony Corp Formation of semiconductor thin film
JPS61145819A (en) * 1984-12-20 1986-07-03 Sony Corp Heat processing method for semiconductor thin film
EP0620586A1 (en) * 1993-04-05 1994-10-19 Nippondenso Co., Ltd. Semiconductor device having thin film resistor
US5525831A (en) * 1993-04-05 1996-06-11 Nippondenso Co., Ltd. Semiconductor device with thin film resistor having reduced film thickness sensitivity during trimming process
US7513949B2 (en) 1995-07-19 2009-04-07 Semiconductor Energy Laboratory Co., Ltd. Method and apparatus for producing semiconductor device
JPH0963984A (en) * 1995-08-18 1997-03-07 Semiconductor Energy Lab Co Ltd Laser annealing method and laser annealing device
US6242792B1 (en) 1996-07-02 2001-06-05 Denso Corporation Semiconductor device having oblique portion as reflection

Also Published As

Publication number Publication date
JPH0611035B2 (en) 1994-02-09

Similar Documents

Publication Publication Date Title
CN105068166B (en) A kind of preparation method of high linear density multiplayer films in EUV balzed grating,
US9340446B1 (en) Optical apparatus and method of forming a gradient index device
US6925216B2 (en) Direct-patterned optical waveguides on amorphous silicon films
JPS59193022A (en) Heating of thin film
Chandramohan et al. Swift heavy ion beam irradiation induced modifications in structural, morphological and optical properties of CdS thin films
EP0207528B1 (en) Process of producing a photomask
GB1485334A (en) Multi-layer monochromator
Sultan et al. Efficacy of annealing and fabrication parameters on photo-response of SiGe in TiO2 matrix
Rathika et al. Recrystallization effects in spray-pyrolyzed Nb2O5 thin films induced by 100 MeV O7+ swift heavy ion beam irradiation
JP2832340B2 (en) Method for producing light-induced refractive index changing glass material, light-induced refractive index changing glass material, and method for changing refractive index of glass material
Jiang et al. Improvement of the thermal stability of W/C multilayers
Veiko et al. Laser-induced modification of glass–ceramics microstructure and applications
Zaitsu et al. Laser damage properties of optical coatings with nanoscale layers grown by atomic layer deposition
Tsvetkova et al. Optical contrast formation in a-Si1− xCx: H films by ion implantation
Pivac et al. Self‐Ordered Voids Formation in SiO2 Matrix by Ge Outdiffusion
Rosen et al. Thermal stability of Mo/Si multilayers
Kumar et al. Influence of swift ions and proton implantation on the formation of optical waveguides in lithium niobate
Tripathi et al. Irradiation effects on the optical properties of a-Ge-Se-Ag thin films
Vitali et al. Defect migration and temperature gradient effects in low-power laser annealing of α–Ge
Diana et al. Interfacial mixing In Te/Bi thin film system
JPH06100333A (en) Surface-modified glass containing metallic ion implanted thereinto
Borghesi et al. Optical study of self‐annealing in high‐current arsenic‐implanted silicon
Järrendahl et al. Growth of Ge/Si amorphous superlattices by dual-target dc magnetron sputtering
Watanabe et al. Visible coloration in oxide glasses induced by two-photon absorption
Shul’pina et al. Heat effect of pulsed laser radiation on the real structure of CdTe single crystals