JPS59192953A - Oxygen gas concentration analyzer - Google Patents
Oxygen gas concentration analyzerInfo
- Publication number
- JPS59192953A JPS59192953A JP58234473A JP23447383A JPS59192953A JP S59192953 A JPS59192953 A JP S59192953A JP 58234473 A JP58234473 A JP 58234473A JP 23447383 A JP23447383 A JP 23447383A JP S59192953 A JPS59192953 A JP S59192953A
- Authority
- JP
- Japan
- Prior art keywords
- oxygen
- gas
- diffusion
- box
- cathode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 title claims description 20
- 229910001882 dioxygen Inorganic materials 0.000 title claims description 20
- 239000001301 oxygen Substances 0.000 claims abstract description 133
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 133
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 101
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 11
- 238000009792 diffusion process Methods 0.000 claims description 74
- 239000011148 porous material Substances 0.000 claims description 19
- 239000007789 gas Substances 0.000 abstract description 52
- 238000005259 measurement Methods 0.000 abstract description 21
- -1 oxygen ion Chemical class 0.000 description 29
- 239000000463 material Substances 0.000 description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 244000175448 Citrus madurensis Species 0.000 description 1
- 235000017317 Fortunella Nutrition 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- OLBVUFHMDRJKTK-UHFFFAOYSA-N [N].[O] Chemical compound [N].[O] OLBVUFHMDRJKTK-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/406—Cells and probes with solid electrolytes
- G01N27/4065—Circuit arrangements specially adapted therefor
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Measuring Oxygen Concentration In Cells (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、固体電解質体を利用した酸素ガス濃度分析装
置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oxygen gas concentration analyzer using a solid electrolyte body.
従来、気体中の酸素濃度の測定には、主としてジルコニ
ア酸素濃淡電池が一般に用いられている。Conventionally, zirconia oxygen concentration cells have been generally used to measure oxygen concentration in gas.
この測定装置は、固体電解質であるジルコニア板の両面
に白金等の電極面を形成してなるもので。This measuring device consists of electrodes made of platinum or the like formed on both sides of a zirconia plate, which is a solid electrolyte.
本装置により酸素濃度を測定するに当っては、650な
いし900Cという高温において一方の電極に被測定カ
スを、他方の電極には濃度既知の酸素を含有する基準ガ
スを接触させ9両電極間に発生する起電力を測定するこ
とによυ、被測定カス中の酸素濃度を測定するものであ
る。しかしながら。To measure oxygen concentration using this device, one electrode is contacted with the scum to be measured and the other electrode is contacted with a reference gas containing oxygen of known concentration at a high temperature of 650 to 900C, and the 9 electrodes are placed in contact with each other. By measuring the electromotive force generated, the oxygen concentration in the waste to be measured is measured. however.
該装置は二つの酸素系(被測定ガス中の酸素と基準ガス
としての酸素)の酸素分圧比および温度によって定まる
起電力を利用しようとするものであるため、被測定カス
中の酸素分圧が基準カス中の酸素分圧に近い場合には微
少な起電力しか得られず、昼感度の計器を必要とするっ
また。基準ガスが必要であるため装置が複雑である。Since this device attempts to utilize the electromotive force determined by the oxygen partial pressure ratio of two oxygen systems (oxygen in the gas to be measured and oxygen as the reference gas) and temperature, the oxygen partial pressure in the gas to be measured is If the partial pressure of oxygen is close to that of the reference gas, only a small electromotive force can be obtained, and a daytime-sensitive instrument is required. The equipment is complicated because a reference gas is required.
本発明は、かかる欠点のない酸素ガス濃度分析装置を提
供しようとするものである。The present invention aims to provide an oxygen gas concentration analyzer free from such drawbacks.
すなわち1本発明は、第1図に例示するごとく。That is, one aspect of the present invention is as illustrated in FIG.
閉じられた空間を構成する側壁の少なくとも一部分を固
体電解質からなる酸素イオン透過体1により形成した函
体40と、該酸素イオン透過体1の内壁面に設けた陰極
2およびその外壁面において該陰極2と相対向する位置
に設けた陽極6からなる゛電極と、これら両電隠2,6
の間に電圧を印加すべく構成した電源7と9両電極2,
5の間に流れる電流を測定すべく構成した電流計9とよ
りなると共に、上記函体40には上記電圧の酸素送出能
力よりも少量の酸素を拡散によって該函体40の内部の
空間室6へ送入する拡散孔5を設け、かつ、前記陰極の
表面積に対する前記拡散孔の開口部の面積の割合は0.
5以下とし、該孔径を0.05朋φ以上で該孔の長さを
20mm以下としたことを特徴とする酸素ガス濃度分析
装置にある。A box 40 in which at least a portion of the side wall constituting a closed space is formed of an oxygen ion permeable body 1 made of a solid electrolyte, a cathode 2 provided on the inner wall surface of the oxygen ion permeable body 1, and the cathode provided on the outer wall surface thereof. An electrode consisting of an anode 6 provided opposite to the electrode 2, and both of the electrodes 2 and 6
A power source 7 and 9 configured to apply a voltage between the two electrodes 2,
The box 40 has an ammeter 9 configured to measure the current flowing between the voltages 5 and 5, and a space chamber 6 inside the box 40 by diffusion of a smaller amount of oxygen than the oxygen delivery capacity of the voltage. A diffusion hole 5 is provided, and the ratio of the area of the opening of the diffusion hole to the surface area of the cathode is 0.
5 or less, the hole diameter is 0.05 mm or more, and the hole length is 20 mm or less.
本発明の装置を用いて、ガス中の酸素濃度を測定するに
当っては、酸素イオン透過体と拡散孔とを有する函体お
よび酸素イオン透過体の両面に形成した陰陽両電極から
なる検出部(以下、センサーという。第2図に例示する
もの。)を、600ないし1000°Cという高温にあ
る被測定ガス中に入れ、前記電源により前記陰陽両電極
間に印加する電圧を徐々に増加してゆく。しかして、該
電圧の増加に伴って当初は電極間に流れる電流も増加す
るが、ある電圧以上においては電流値は一定の値に維持
される。この一定電流値が限界電流値であり、該限界電
流値を測定することによって被測定ガス中の酸素濃度を
測定することができるのである。When measuring the oxygen concentration in a gas using the device of the present invention, a detection section consisting of a box having an oxygen ion permeable body and a diffusion hole, and negative and negative electrodes formed on both sides of the oxygen ion permeable body (hereinafter referred to as a sensor, as shown in Figure 2) is placed in a gas to be measured at a high temperature of 600 to 1000°C, and the voltage applied between the negative and positive electrodes is gradually increased by the power source. I'm going to go. As the voltage increases, the current flowing between the electrodes initially also increases, but above a certain voltage, the current value is maintained at a constant value. This constant current value is the limiting current value, and by measuring the limiting current value, the oxygen concentration in the gas to be measured can be measured.
この点につき、以下詳説する。先ず、上記測定操作中に
おいては、被測定ガス中の酸素は前記拡散孔を拡散によ
って函体内部の空lI5室へ入り、陰極において酸素イ
オンに還元され、固体電解質からなる酸素イオン透過体
を通過して陽極に送られ。This point will be explained in detail below. First, during the above measurement operation, oxygen in the gas to be measured diffuses through the diffusion hole and enters the empty chamber inside the box, is reduced to oxygen ions at the cathode, and passes through an oxygen ion permeable body made of a solid electrolyte. and sent to the anode.
該陽極において再び酸素に酸化され、函体の外部へ排出
される。すなわち、函体内に入った酸素ガスは陰陽WJ
電妬L−固俸電解質とによる酸素送出作用(酸素ポンプ
作用)によって、外部へ送出される。この作用は流した
電流と逆向きに酸素だけを選択的に排気するものであり
、単位時間当りの排気量は通′醒電流に比例する。本発
明において重要なことは、酸素送出作用において酸素を
酸素イオン還元するための陰極を、有孔函体の内部に設
けたことであり、そのために陰極に供給される酸素は自
体に設けた拡散孔を通って外部より供給されることとな
り、該拡散孔の部分で酸素の流入が抑制されるというこ
とである。その結果、自体内の酸素濃度は外気(被測定
ガス)中のそれよりも減少する。同時に、酸素が陰極を
通過して固体電解質に達するためにもある酸素濃度差を
生ずる。これは電極の濃度分極と呼ばれているものであ
る。It is oxidized to oxygen again at the anode and discharged to the outside of the box. In other words, the oxygen gas that entered the box is yin and yang WJ.
It is sent to the outside by the oxygen sending action (oxygen pumping action) by the electrolyte. This action selectively exhausts only oxygen in the opposite direction to the flowing current, and the amount of exhaust per unit time is proportional to the passed current. What is important in the present invention is that the cathode for reducing oxygen ions in the oxygen delivery action is provided inside the perforated box, so that the oxygen supplied to the cathode is Oxygen is supplied from the outside through the holes, and the inflow of oxygen is suppressed at the diffusion holes. As a result, the oxygen concentration within itself is lower than that in the outside air (measured gas). At the same time, a certain oxygen concentration difference also occurs because oxygen passes through the cathode and reaches the solid electrolyte. This is called concentration polarization of the electrode.
外気から函体の内側の空間室への酸素の供給は。Oxygen is supplied from the outside air to the space chamber inside the box.
拡散孔を通じて気体中の酸素の拡散によって行なわれ、
1秒あたりの供給量Qはほぼ
ここでDは気体中の酸素の拡散係数、Sは拡散孔の開口
部の面積、lは拡散孔の奥行長さ、△Pは外気の酸素分
圧と函体内の空間室内の酸素分圧との差、Nは気体1i
中に含まれる酸素およびその他の気体の分子の総モル数
である。外気から拡散孔を通じて函体内へ流入する酸素
量は、函体内の空間室の酸素分圧が0(零)になるとき
、最大である。そのときのQに対応する電流をIlとす
る4FI)SN
と I β −□・PO2・・・・・・・・
(1)でほぼあられされる。ここで、PO2は外気の酸
素濃度である。また気体の全圧力が一定ならばNは温度
のみの関数である。気体中の酸素の拡散係数りは、温度
および気体中の酸素濃度の関数であり。is carried out by the diffusion of oxygen in the gas through the diffusion pores,
The supply amount Q per second is approximately here, D is the diffusion coefficient of oxygen in the gas, S is the area of the opening of the diffusion hole, l is the depth of the diffusion hole, and △P is the oxygen partial pressure of the outside air and the box. The difference between the partial pressure of oxygen in the space chamber inside the body, N is the gas 1i
It is the total number of moles of oxygen and other gas molecules contained in it. The amount of oxygen flowing into the case from the outside air through the diffusion holes is maximum when the oxygen partial pressure in the space inside the case becomes 0 (zero). Let Il be the current corresponding to Q at that time, 4FI) SN and I β −□・PO2・・・・・・・・・
(1) is almost like a hailstorm. Here, PO2 is the oxygen concentration of outside air. Also, if the total pressure of the gas is constant, N is a function only of temperature. The diffusion coefficient of oxygen in a gas is a function of temperature and oxygen concentration in the gas.
その気体の種類によっても異なる値であるが、これらは
気体系(気体中の成分)が決まれば定まるものである。Although the values differ depending on the type of gas, these values are determined once the gas system (components in the gas) is determined.
また、実際には陰極を通して酸素が固体電解質に達する
ため、陰極の内部においてはある酸素濃度差を必要とし
、このため函体内の空間室の酸素濃度は0にはならない
。t/−1t、前記拡散孔の開口部の面積s−1陰rE
の面積Aに比べ十分小さくするならば、電極の濃度分極
による酸素濃度差を、拡散孔で生ずる函体内と外気との
酸素濃度差よりもはるかに小さくすることができる。こ
の条件を満足する拡散孔の面積と陰極の面積との比の最
大値は、電極の通電能力によって制限される。したがっ
て上記の条件の下では、函体内部の空間室の酸素濃度は
外気の酸素濃度よりきわめて小さくなり、このときに電
極間に流れる限界電流値と酸素濃度との関係はほとんど
前記の(1)式であられされる。したがって限界電流値
(Jl)から未知の被測定ガス中の酸素濃度(Po2)
を求めることができる。Furthermore, since oxygen actually reaches the solid electrolyte through the cathode, a certain oxygen concentration difference is required inside the cathode, and therefore the oxygen concentration in the space inside the box does not become zero. t/-1t, area s-1 of the opening of the diffusion hole rE
If the area A is made sufficiently smaller than the area A, the difference in oxygen concentration due to concentration polarization of the electrodes can be made much smaller than the difference in oxygen concentration between the inside of the box and the outside air caused by the diffusion holes. The maximum value of the ratio between the area of the diffusion hole and the area of the cathode that satisfies this condition is limited by the current carrying capacity of the electrode. Therefore, under the above conditions, the oxygen concentration in the space inside the box is extremely lower than the oxygen concentration in the outside air, and at this time, the relationship between the limiting current flowing between the electrodes and the oxygen concentration is almost the same as described in (1) above. It will be hailed in a ceremony. Therefore, from the limiting current value (Jl), the unknown oxygen concentration in the gas to be measured (Po2)
can be found.
限界電流値(Ig )の大きさは次のようにして測定さ
れる。電極間に加える印加電圧と電極間に流れる電流と
の関係は、第7図に示す曲線のようである。ここで、セ
ンサーはある一冗の温度に保たれている。印加電圧をO
から保々に増加していくと電圧の小さい0からVAO間
では電流は電圧に対し直線的に増加していくが、 VA
以上では傾きがゆるやかになり、 vB以とでは電圧を
増加してもほとんど電流は増加しない。この現象は、前
記拡散孔の効果によって函体内の空間室の酸素濃度がほ
とんどOに近くなって、電極間に流れる電流が制限され
ているために起こるものである。したがって、第7図の
飽和電流値が限界電流値(1β)の大きさとなる。The magnitude of the limiting current value (Ig) is measured as follows. The relationship between the applied voltage applied between the electrodes and the current flowing between the electrodes is as shown in the curve shown in FIG. Here, the sensor is kept at a certain temperature. Apply voltage to O
When the voltage increases steadily from 0 to VAO, the current increases linearly with the voltage, but VA
Above this value, the slope becomes gentle, and below vB, even if the voltage is increased, the current hardly increases. This phenomenon occurs because the oxygen concentration in the space inside the box becomes almost O due to the effect of the diffusion holes, and the current flowing between the electrodes is restricted. Therefore, the saturation current value in FIG. 7 becomes the limit current value (1β).
(1)式からPO□は。From equation (1), PO□ is.
PO4−耐−・Il・・・・・・・・(2)となり、比
例定数174F08Nは、拡散孔の開口部の面積Sおよ
びその奥行き長さlにより変化できるため、測定しよう
とする酸素濃度範囲によってIIの大きさを最適値に選
定できる。この結果非常に小さい酸素濃度から数10%
に至るような高濃度まで測定が容易に行なえるようにな
る。IIは第7図で説明したように、徐々に電極間に加
える電圧を上昇させて求める。また、測定酸素濃度範囲
によって決められるある適当な一定電圧を電極間に加え
、そのとき流れる電流を測定することによって求めても
良い。この場合、電流計の目盛を酸素濃度にほぼ比例的
に目盛ることができる。PO4-resistant-・Il...(2), and the proportionality constant 174F08N can be changed depending on the area S of the opening of the diffusion hole and its depth L, so it depends on the oxygen concentration range to be measured. The size of II can be selected to be the optimal value. As a result, the oxygen concentration ranges from very small to several tens of percent.
It becomes possible to easily measure up to high concentrations. As explained in FIG. 7, II is determined by gradually increasing the voltage applied between the electrodes. Alternatively, it may be determined by applying a certain constant voltage determined by the measured oxygen concentration range between the electrodes and measuring the current flowing at that time. In this case, the scale of the ammeter can be scaled almost proportionally to the oxygen concentration.
上記より知られるごとく1本発明においては。As is known from the above, in one aspect of the present invention.
電極を通過する酸素量を函体に設けた拡散孔による拡赦
酸累世と同量としたこと、換Hすれば電極によって送出
する酸素量を「拡散孔による拡散律速」に依らしめ、も
って函体外にある被測定ガス中の酸素の濃度を測定しよ
うとする点にその特徴がある。The amount of oxygen that passes through the electrode is set to be the same as the amount of oxygen absorbed by the diffusion holes provided in the box, and in other words, the amount of oxygen sent out by the electrode is dependent on ``diffusion rate limiting by the diffusion holes'', thereby reducing the amount of oxygen that passes through the box. Its distinctive feature is that it attempts to measure the concentration of oxygen in a gas to be measured outside the body.
しかして1本発明によれば1本発明の装置は前記電極間
に電圧を印加し1両電極間に流れる限界電流を利用する
ものであるから、前記のごとく電極間に生ずる起電力を
利用する濃淡電池に比して。Therefore, according to the present invention, since the device of the present invention applies a voltage between the electrodes and utilizes the limiting current flowing between the two electrodes, it utilizes the electromotive force generated between the electrodes as described above. Compared to concentration batteries.
容易に測定することができる。このことは、特に被測定
ガス中の酸素濃度が亮い場合に有効である。Can be easily measured. This is particularly effective when the oxygen concentration in the gas to be measured is high.
また1本発明においては、酸素濃度と限界電流値はほぼ
比例関係にあるため測定容易であり、1淡電池のごとく
基準ガスを必要としない。Furthermore, in the present invention, since the oxygen concentration and the limiting current value are in a substantially proportional relationship, measurement is easy, and no reference gas is required as in the case of single-cell batteries.
また、拡散孔を有する函体(以下、有孔函体という)を
用いることによる効果を、かかる函体を用いない場合と
比較して述べると次のようである。Furthermore, the effects of using a box having diffusion holes (hereinafter referred to as a "perforated box") are as follows in comparison with the case where such a box is not used.
すなわち2本発明では有効函体を用いているので。In other words, the present invention uses an effective box.
電極は有孔函体を用いない場合に送出する量販下の酸素
量を送出すれば良いこととなる。このことは、限界電流
特性を得るに必要な電流および印加電圧を、函体を用い
ない場合に比して低くすることができることを意味する
、それ故、上記拡散孔を上記のごとく拡散律速となるよ
うに選ぶことにより、電流および印加電圧を低くするこ
とができ。The electrode only needs to deliver the amount of oxygen that is available in mass quantities when a perforated box is not used. This means that the current and applied voltage required to obtain the limiting current characteristics can be lower than when no box is used. By selecting such a value, the current and applied voltage can be lowered.
被測定ガスが10−゛以上という比較的高い酸素濃度で
あっても、酸素イオン透過体を発熱させることなく、長
期間にわたり高精度で酸素濃度を測定することができる
のである。つまり、有孔函体を用いない場合には、測定
気体中の酸素濃度が品いとさ、限界電流特性を得るため
の゛電流値が過大となり、また電極に大きな電圧を印加
する必要を生ずる。しかして、このような大電流を装置
に通ずる場合には、電極の特性が顕著に変化すると共に
。Even if the gas to be measured has a relatively high oxygen concentration of 10° or more, the oxygen concentration can be measured with high accuracy over a long period of time without causing the oxygen ion transmitter to generate heat. In other words, if a perforated box is not used, the oxygen concentration in the gas to be measured is low, the current value required to obtain the limiting current characteristics becomes excessive, and it becomes necessary to apply a large voltage to the electrodes. However, when such a large current is passed through the device, the characteristics of the electrodes change significantly.
酸素ガスが強制的に通り電極を損傷するおそれかめる。Oxygen gas may be forced through and damage the electrode.
また、大電流、大電圧の印ぷによって酸素イオA透過体
が自己発熱を起し、この温度変化によって装置の電流特
性が変化して、測定上に悪影響を及ぼす。しかしながら
9本発明においてばこ、のようなことがないのである。In addition, the oxygen io-A transmitter generates self-heating due to the application of a large current and voltage, and this temperature change changes the current characteristics of the device, which adversely affects measurements. However, in the present invention, there is no such problem.
また、有孔函体を用いない場合には、メッキ。In addition, if a perforated box is not used, it is plated.
スパッタリング、蒸着など電極を酸素イオン透過体上に
設ける方法や、電極の厚み(ミクロン程度)の差異等に
よって限界電流特性が異なるため、同じ性能の装置を安
定して製造することが困難であるが1本発明では函体に
設けた拡散孔の部分で生ずる酸素ガスの拡散律速を利用
するために、このような電極の形成方法、厚み等の電極
条件に影響されることのない、はぼ同一性能の装置を安
定して製造することができる。It is difficult to stably manufacture devices with the same performance because the limiting current characteristics differ depending on the method of installing the electrode on the oxygen ion permeable material, such as sputtering or vapor deposition, and the difference in electrode thickness (on the order of microns). 1. In the present invention, in order to utilize the rate-limiting diffusion of oxygen gas generated in the diffusion hole portion provided in the case, the method of forming the electrode is not influenced by the electrode conditions such as the thickness, and is almost the same. It is possible to stably manufacture high-performance devices.
さらに、有孔自体を用いない場合には、電極自身による
I−被測定ガス中の酸素濃度に相当する限界電流特性」
を利用するために、電極特性の経時変化が直ちに装置の
特性に影響を及ぼす。しかしながら9本発明では「自体
の拡散孔による酸素ガスの拡散律速」を利用しているた
め、電極に流れる′電流は拡散孔の大きさで定まり、該
電流の大きさは自体のない場合に比してかなり小さい。Furthermore, if the perforated material itself is not used, the electrode itself has a limiting current characteristic corresponding to the oxygen concentration in the measured gas.
To take advantage of this, changes in electrode properties over time immediately affect the properties of the device. However, since the present invention utilizes the "diffusion rate-limiting rate of oxygen gas due to its own diffusion pores," the current flowing through the electrode is determined by the size of the diffusion pores, and the magnitude of the current is compared to the case where there is no oxygen gas. And quite small.
そのため、電極自身の酸素濃度に対する限界゛電流特性
が経時変化しても、電極は上記拡散孔の拡散律速による
酸素を十分に送出する能力を保有している。Therefore, even if the limit current characteristics of the electrode itself with respect to oxygen concentration change over time, the electrode retains the ability to sufficiently send out oxygen due to the diffusion rate control of the diffusion holes.
したがって9本発明の装置では電極の経時変化は装置の
酸素濃度に対する限界通流特性にほとんど影響を及ぼさ
ない。それ故9本発明にかかる装置は優れた耐久性能を
有するのである。上記の点について9図をもって説明す
れば、第8図に横軸に酸素濃度(%)を縦軸に眼界電流
値(mA、)をとって示すごとく、自体を用いない装置
においては当初の特性は直線Cで示すごときものである
が電極の経時変化によって直MC”で示すごとくその特
性が低下する。これに比して1本発明の装置では。Therefore, in the device of the present invention, aging of the electrodes has little effect on the critical flow characteristics of the device with respect to oxygen concentration. Therefore, the device according to the present invention has excellent durability. To explain the above point using Figure 9, as shown in Figure 8, where the horizontal axis shows the oxygen concentration (%) and the vertical axis shows the ocular current value (mA, ), the initial characteristics of the device that does not use the is as shown by straight line C, but as the electrode changes over time, its characteristics deteriorate as shown by direct MC''.In contrast, in the device of the present invention.
電極自身は上記と同様に経時変化しても、眼界電流値は
前記拡散孔の拡散に依存していてかなり低いため、同図
に直KfAD、D’で示すごとく電極の経時変化の前後
における装置の特性には影響が々い。Even if the electrode itself changes over time in the same way as above, the ocular current value depends on the diffusion of the diffusion hole and is quite low. It has a great influence on the characteristics of
本発明において、函体に設ける拡散孔の大きさは、電極
の酸素送出能力よりも少量の酸素を拡散によシ函体内の
空間室へ送り込むことができるものである。それ故、拡
散孔の数、形状には制限がなく、酸素イオン透過体の部
分を除く函体自体を多孔質体とすることもできる。しか
して、実用上通常拡散孔の長さは、センサーの太きさが
らし、てせいぜい2ONLHまでであシ、また電極とし
て通常使用する白金、パラジウム、銀を用いることとす
れば、函体内部に面する部分の陰極の表面積(A)に対
する拡散孔の開口部の面積(8)の割合は05以下とす
ることが望ましい。また、孔径の下限は005朋であり
、これ以下では酸素ガスの通過量が小さくなり過ぎて、
応答性が悪くなる2それがある。なお、上記のごとく自
体自体を多孔質体とする場合には、その空隙部の合計が
上記の拡散孔開口部の相当孔径となれば良い。つまり、
陰極に対応している面における空隙部の合計面積が陰極
表面の0.5以下である1、
自体は陰極を被うものであれば良いが、自体はその側壁
の少なくとも一部分を酸素イオン透過体により構成する
必要があるために、自体の作製は。In the present invention, the size of the diffusion holes provided in the box is such that a smaller amount of oxygen can be sent into the space inside the box by diffusion than the oxygen delivery capacity of the electrode. Therefore, there are no restrictions on the number or shape of the diffusion holes, and the box itself, excluding the oxygen ion permeable portion, may be made porous. However, in practice, the length of the diffusion hole is at most 2ONLH, depending on the thickness of the sensor, and if platinum, palladium, or silver, which is usually used as an electrode, is used, the length of the diffusion hole is It is desirable that the ratio of the area (8) of the opening of the diffusion hole to the surface area (A) of the facing portion of the cathode is 0.05 or less. In addition, the lower limit of the pore diameter is 005 mm, and below this the amount of oxygen gas passing through becomes too small.
There are 2 things that make the responsiveness worse. In addition, when the porous body itself is used as described above, it is sufficient that the total of the voids becomes the equivalent pore diameter of the above-mentioned diffusion hole openings. In other words,
The total area of the voids on the surface corresponding to the cathode is 0.5 or less of the surface of the cathode1.The material itself may cover the cathode; Due to the need to configure it, its own fabrication.
実施例に示すごとく酸素イオン透過体の両面に陰極、陽
極を形成した後、陰極形成面の酸素イオン透過体上に断
面コの字状等の蓋を被冠し、接着する方法が実際的であ
る。函体内に形成される空間室は、応答性の面より成町
く小さい方が良い。したがって、上記の如く自体自体を
多孔質体とする場合には、その多孔質体を陰極表面に被
覆する状態であってもよい。酸素イオン透過体を除く自
体の材質はアルミナ、ンルコニア、マグネシアなど気密
性のあるセラミックスが、その耐熱性の点より好ましい
。また、酸素イオン透過体と他の自体部分との熱膨張係
数は互に近似していることが好ましい。な2.函体の材
質は全て酸素イオン透過体と同一のものとなし、その一
部分に陰陽両極を設けることもできる。A practical method is to form a cathode and an anode on both sides of the oxygen ion permeable material as shown in the example, and then cover the oxygen ion permeable material on the cathode forming surface with a lid having a U-shaped cross section and adhere it. be. In terms of responsiveness, it is better for the space chamber formed inside the box to be as small as possible. Therefore, when the cathode itself is made of a porous material as described above, the porous material may be coated on the surface of the cathode. As for the material of the material other than the oxygen ion permeable material, airtight ceramics such as alumina, luconia, and magnesia are preferable from the viewpoint of heat resistance. Further, it is preferable that the thermal expansion coefficients of the oxygen ion permeable body and other parts thereof are similar to each other. 2. The material of the box is entirely the same as that of the oxygen ion permeable body, and a portion thereof can be provided with negative and positive poles.
酸素イオン透過体としては、゛ジルコニウム、ハフニウ
ム、セリウム、トリウムの酸化物等に、カルシウム、マ
グネシウムの酸化物、あるいはイツトリウム、イッテル
ビウム、ガドリニウム等の希土類の酸化物を固溶させた
緻密な焼結体なと金柑いる。また、電極としてはセンサ
ーの動作温度において十分な・4電性を有する耐熱材料
を用いる。The oxygen ion permeable body is a dense sintered body made by dissolving oxides of calcium, magnesium, or rare earths such as yttrium, ytterbium, and gadolinium in oxides of zirconium, hafnium, cerium, and thorium. There are kumquats. Further, as the electrode, a heat-resistant material having sufficient tetraelectricity at the operating temperature of the sensor is used.
これには2例えば白金、パラジウム、銀がある。These include platinum, palladium, and silver.
しかして、酸素イオン透過体への電極の形成は。Therefore, the formation of an electrode on an oxygen ion permeable body.
これら電極材料の粉末をペースト状にして酸素イオン透
過体上へ塗布し、焼付けること、あるいはこれら材料を
スパッタリング、真空蒸着、化学メッキ等により付着さ
せることにより行なう。This is accomplished by applying powder of these electrode materials in the form of a paste onto the oxygen ion permeable body and baking it, or by attaching these materials by sputtering, vacuum evaporation, chemical plating, or the like.
なお9本発明にかかる装置は600ないし1000°C
という高温において作動させるものであり、内燃機関の
排気ガス中の酸素濃度、燃焼ガス中の酸素濃度の測定な
どに使用されるものである。また。9 The temperature of the device according to the present invention is 600 to 1000°C.
It operates at such high temperatures that it is used to measure the oxygen concentration in the exhaust gas of internal combustion engines and the oxygen concentration in combustion gas. Also.
低温にある被測定ガスは、60口ないし1000’Cに
予熱して本装置のセンサ一部分に供給し、測定する。The gas to be measured at a low temperature is preheated to 60 to 1000'C and then supplied to a part of the sensor of this apparatus for measurement.
実施例
次に9本発明にかかる実施例を第1図ないし第5図によ
り説明する。Embodiments Next, nine embodiments according to the present invention will be explained with reference to FIGS. 1 to 5.
本例にがかる酸素ガス分析装置は、第2図に示すごとき
円筒形状のセンサーBを、第1図に示すごとく電源回路
に接続してなるもので、酸素ガス濃度を測定するに当っ
ては第3図に示すごとく加熱、保温可能な測定セル10
内に装着する。The oxygen gas analyzer according to this example has a cylindrical sensor B as shown in Fig. 2 connected to a power supply circuit as shown in Fig. 1. Measurement cell 10 that can be heated and kept warm as shown in Figure 3
Attach it inside.
上記のセンサーBは、第1図、第2図に示すごとく1円
板状の酸素イオン透過体1の上面にスパッタリング法に
よシ円板状の陰極2を形成すると共に、その下面におい
て上記陰極2に対向する部分に同様に陽極3を形成して
なり、かつ上記陰極2を設けた側の上記酸素イオン透過
体1上には。As shown in FIGS. 1 and 2, the sensor B has a disk-shaped cathode 2 formed on the upper surface of a disk-shaped oxygen ion permeable body 1 by sputtering, and the cathode 2 is formed on the lower surface of the disk-shaped cathode 2. Similarly, an anode 3 is formed on a portion facing the oxygen ion permeable body 1 on the side where the cathode 2 is provided.
上部に酸素ガス拡散用の拡散孔5を設けた断面逆U字状
の円筒状の蓋体4を、上記陰極2が覆われるように固着
し、自体40を構成してなるものである。しかして、蓋
体4の内壁と酸素イオン透過体1および陰極2とにより
函体40の空間室6が形成される。また、上記陰極2は
リード線8により電源7の陰極に、陽極6はリード線8
により電源7の陽極にそれぞれ接続すると共にとの゛亀
気回路中には上記電極間に流れる限界電流を測定するた
めの電流計9と電圧計10とを接続する。A cylindrical lid 4 having an inverted U-shaped cross section and having a diffusion hole 5 for oxygen gas diffusion in its upper part is fixed so as to cover the cathode 2, thereby constituting itself 40. Thus, the space chamber 6 of the box 40 is formed by the inner wall of the lid 4, the oxygen ion permeable body 1, and the cathode 2. Further, the cathode 2 is connected to the cathode of a power source 7 through a lead wire 8, and the anode 6 is connected to a power source 7 through a lead wire 8.
An ammeter 9 and a voltmeter 10 for measuring the limiting current flowing between the electrodes are connected to the anodes of the power source 7, respectively, and the two electrodes are connected to the anode of the power source 7, respectively.
上記において、酸素イオン透過体1には固体電解質とし
て、酸化ジルコニウムに酸化イツトリウムを固溶させた
もC7) ((ZrOz ) o、t−(Y20m )
oy+ )を用い、陰陽両電極2,3には白金を、リ
ード線8゜8′には白金線を用いた。蓋体4としてはジ
ルコニアセラミック材を用い、蓋体4と酸素イオン透過
体1とはガラスにより1000″Cにて接着した。In the above, the oxygen ion permeable body 1 contains yttrium oxide dissolved in zirconium oxide as a solid electrolyte.
oy+), platinum was used for both the negative and negative electrodes 2 and 3, and a platinum wire was used for the lead wire 8°8'. A zirconia ceramic material was used as the lid 4, and the lid 4 and the oxygen ion permeable body 1 were bonded together with glass at 1000''C.
また、酸素イオン透過体1は厚み0.5 mm、直径2
0o+、′vt極2,6はともに厚み1 /7 、直径
1゜mii、蓋体4は外径20朋、長さ2.1 am
、壁厚み4朋、拡散孔5は直径0.5 mm 、長さ1
.7mmであった。In addition, the oxygen ion permeable body 1 has a thickness of 0.5 mm and a diameter of 2
Both the 0o+ and 'vt poles 2 and 6 have a thickness of 1/7 and a diameter of 1 mm, and the lid body 4 has an outer diameter of 20 mm and a length of 2.1 am.
, wall thickness 4 mm, diffusion hole 5 diameter 0.5 mm, length 1
.. It was 7 mm.
ここに、陰極2の上面の面積は0.785crA、拡散
孔5の開口面積は0196朋′である。それ故、前記陰
極の面積(A)に対する拡散孔の面積(S)の割合8/
Aは1/400 ”?’ある。Here, the area of the upper surface of the cathode 2 is 0.785 crA, and the opening area of the diffusion hole 5 is 0196 mm. Therefore, the ratio of the area (S) of the diffusion hole to the area (A) of the cathode is 8/
A is 1/400"?'
前記測定セ)vloは、第3図に示すごとく、軸方向の
両端に被測定ガスの入口ノズル14と出口ノズル15と
を有する円筒状箱体11と、該箱体11の円周方向外側
面に設けた加熱保温用ヒーター16とよりなり、その内
部には前記センサーBを装着するための固定枠13およ
び緩衝板12とを有する。該固定枠16には、センサー
Bをその拡散孔5がガス入ロノズ/l/14の方向に位
置するように固定する。該固定枠13には被測定ガスを
容易にガス出ロノズ/l/15の方向へ流出させるため
の開口部161が設けである。同様に、上記緩衝板12
はセンサーBの拡散孔5に対向する部分以外の部分にお
いて、上記と同様に仮測定ガスの流lLを容易にするた
めの開口部121を有する。As shown in FIG. 3, the measurement cell 11 includes a cylindrical box 11 having an inlet nozzle 14 and an outlet nozzle 15 for the gas to be measured at both ends in the axial direction, and an outer surface of the box 11 in the circumferential direction. It consists of a heater 16 for heating and keeping warm, and has a fixing frame 13 and a buffer plate 12 for mounting the sensor B therein. The sensor B is fixed to the fixing frame 16 so that its diffusion hole 5 is positioned in the direction of the gas-filled cylinder/l/14. The fixed frame 13 is provided with an opening 161 for easily causing the gas to be measured to flow out in the direction of the gas outlet nozzle /l/15. Similarly, the buffer plate 12
has an opening 121 in a portion other than the portion facing the diffusion hole 5 of the sensor B to facilitate the flow of the temporary measurement gas 1L in the same way as described above.
また、上記センサーBからのリード線8.8’は該測定
セ/L/10に設けたターミナルイアに接続し。Further, the lead wire 8.8' from the sensor B is connected to the terminal ear provided in the measurement cell/L/10.
該ターミナ71/17′f:介して、前記゛亀諒7に接
続する。また、測定セル10内には、その内部の温度を
測定するための熱電対18を設置し、温度制御装@(図
示せず)とヒーター16とによりセンサーBおよび被測
定ガスを適切な測定温度に加熱し。The terminal 71/17'f: is connected to the terminal 7 through the terminal 71/17'f. A thermocouple 18 is installed in the measurement cell 10 to measure the internal temperature, and a temperature control device @ (not shown) and a heater 16 control the sensor B and the gas to be measured to an appropriate measurement temperature. Heat to.
保温するようにする。なお、161はヒーター16のリ
ード線である。Make sure to keep warm. Note that 161 is a lead wire of the heater 16.
次に、上記装置を用いて種々の酸素濃度を有する被測定
ガスを測定した結果を示す。この測定に当っては、測定
セ/L/円の温度を約700’Cに保持しつつ、この中
ヘガス人ロノズ)v14より、仮測定ガフ−を送入した
。被測定ガスには2種々の酸素濃度に調整した酸素と窒
素とからなるガスを用いた。送入されたガスは緩衝板1
2の1ボロ部121および固定枠13の開口部161を
通って、出口ガス/し15より排出される。この際セン
サーBにおいては、酸素ガスの拡散によって拡散孔5よ
りセンサーBの空間室6内に酸素ガスが流入する。Next, the results of measuring gases to be measured having various oxygen concentrations using the above device will be shown. For this measurement, a temporary measuring gaff was introduced from the Hegasian Ronoz)v14 while maintaining the temperature of the measuring cell/L/circle at approximately 700'C. A gas consisting of oxygen and nitrogen adjusted to two different oxygen concentrations was used as the gas to be measured. The injected gas is sent to the buffer plate 1
The gas is discharged from the outlet gas/shield 15 through the first part 121 of No. 2 and the opening 161 of the fixed frame 13 . At this time, in sensor B, oxygen gas flows into the space chamber 6 of sensor B from the diffusion hole 5 due to the diffusion of oxygen gas.
このようにして流入した酸素ガスは、電極2,3により
、酸素イオン透過体1を通じてセンサーBの外部に排出
され、前記の被測定ガスと共に出口ノズル15より排出
される。それ故、センサーBの孔5よりセンサー内に流
入する酸素量は、測定セ/l/10内に送入される被測
定ガス中の酸素量に比して極く僅かである。このように
して、被測定ガスを送入しつつ、電極2.3の間に印加
する電圧を変え、各電圧における電流値を測定した。こ
の測定は、酸素濃度の異なる被測定ガスそれぞれについ
て行なった。その結果を、第4図に、横軸に電圧(Vo
I t )を、縦軸に電流(mA)をとり。The oxygen gas that has flowed in this way is discharged to the outside of the sensor B by the electrodes 2 and 3 through the oxygen ion permeable body 1, and is discharged from the outlet nozzle 15 together with the gas to be measured. Therefore, the amount of oxygen flowing into the sensor through the hole 5 of sensor B is extremely small compared to the amount of oxygen in the gas to be measured that is introduced into the measurement cell/l/10. In this way, while supplying the gas to be measured, the voltage applied between the electrodes 2 and 3 was changed, and the current value at each voltage was measured. This measurement was performed for each gas to be measured having a different oxygen concentration. The results are shown in Figure 4, where the horizontal axis is the voltage (Vo
I t ) and current (mA) is plotted on the vertical axis.
各酸素濃度についてそれぞれ曲線で示した。第4図にお
いて、横軸にほぼ平行な測定線の示す値が各酸素濃度に
おける限界電流値である。第5図には、上記の測定によ
って得た酸素濃度(%)と限界電流値(mA)との関係
を示した。この第5図は。Each oxygen concentration is shown as a curve. In FIG. 4, the values indicated by the measurement lines substantially parallel to the horizontal axis are the limiting current values at each oxygen concentration. FIG. 5 shows the relationship between the oxygen concentration (%) and the limiting current value (mA) obtained by the above measurements. This figure 5.
本例に示す酸素分析装置の検量線となるものである。従
って、未知の被測定ガス中の酸素濃度を測定するに当っ
ては、上記装置によりそのガスについての限界電流値を
求め、第5図によりそのガスの酸素濃度を知る。This serves as a calibration curve for the oxygen analyzer shown in this example. Therefore, when measuring the oxygen concentration in an unknown gas to be measured, the limiting current value for the gas is determined using the above device, and the oxygen concentration of the gas is determined from FIG.
なお、上記した装置は種々の測定に使用したが。Note that the above-mentioned apparatus was used for various measurements.
長期間の使用にも拘らず検量線(第5図)の値はほとん
ど反らず、比較的高い酸素濃度の測定を長期間材なって
も、優れた測定性能と安定性を示した。Despite long-term use, the values of the calibration curve (Figure 5) hardly curved, and even when measuring relatively high oxygen concentrations for a long period of time, it showed excellent measurement performance and stability.
実施例 函体の拡散孔の孔径と長さとを種々に変えて。Example The diameter and length of the diffusion holes in the box were varied.
限界電流値の変化を測定した。Changes in limiting current values were measured.
すなわち、前記実施例に示したものと同様の酸素ガス濃
度分析装置において、自体40の拡散孔5の孔径と孔の
長さのみが異なる種々の装置を作製し、酸素濃度1%の
酸素窒素混合ガスについて。That is, in the oxygen gas concentration analyzer similar to the one shown in the above example, various apparatuses were fabricated that differed only in the diameter and length of the diffusion holes 5 of the device 40, and an oxygen-nitrogen mixture with an oxygen concentration of 1% was prepared. About gas.
825”Cにおいて限界電流値を測定した。その結果を
第6図に、横軸に拡散孔の直径(朋)を、縦軸に限界電
流値(mA)をとって、拡散孔の長さごとに曲線で示し
た。図中9曲線1..1.およびl。The limiting current value was measured at 825"C. The results are shown in Figure 6, with the horizontal axis representing the diameter of the diffusion hole and the vertical axis representing the limiting current value (mA). 9 curves 1..1. and l in the figure.
は、それぞれ孔の長さ2.5.5および10mmの場合
を示す。なお、同図の横軸には、陰極の面積(A)に対
する拡散孔の開口部の面積(S)の割合(S/A)も表
示しだ。show the case of hole lengths of 2.5.5 and 10 mm, respectively. The horizontal axis of the figure also shows the ratio (S/A) of the area (S) of the opening of the diffusion hole to the area (A) of the cathode.
第6図より知られるごとく、孔径が小さくなるにつれて
限界電流値が小なくなり、孔径がある値以下になると急
速に限界電流値が降下し始める。As can be seen from FIG. 6, the limiting current value decreases as the pore diameter becomes smaller, and when the pore diameter becomes less than a certain value, the limiting current value begins to drop rapidly.
しかして、この孔径の変化に対する限界電流値の変化の
割合が大きい領域は孔の長さによって異なる。この変化
割合が大きい領域は、限界電流値が。Therefore, the region in which the rate of change in limiting current value with respect to change in hole diameter is large varies depending on the length of the hole. In areas where this rate of change is large, the limiting current value is.
拡散孔から拡散によって電極へ到達してくる酸素量に依
存していること、つまり本発明にいうところの拡散孔に
よる拡散律速のみの状態にあることを示すものである。This shows that it depends on the amount of oxygen reaching the electrode by diffusion from the diffusion holes, that is, it is in a state where the rate of diffusion is limited only by the diffusion holes as defined in the present invention.
例えば拡散孔の長さが2.5羽(4I)の場合には、孔
径2羽以下が拡散律速となることを示している。同時に
、拡散孔の長さが5朋Cl2)、 10朋(ls)の
場合には、それぞれ孔径が約4ym、7mm以下である
。しかして、同図には示さなかったが、孔径が十分に大
きいとき(例えば11朋以上)には限界電流値は約60
1IIAという一定の値を示す。すなわち、このような
一定の値を示す状態は、も早や拡散孔による律速状態が
存在しない状憩を示すものであり、′電極に高い電流が
流れて前記のごとき問題を生ずることになるっまた。同
図におい−C1拡散律速を示す孔径よりも大きい孔径の
領域(例えば拡散孔長さ2.5朋では孔径2朋以上)は
、孔径の増加に対する限界電流値の増加の割合がほぼ一
定した低い値を示しており、この領域では拡散孔による
拡散律速の影響と電極の酸素送出能力の影響とが混合し
た状態にあるものと思われる。つまり、拡散律速のみの
状態から拡散律速の全くない状態への過渡状態を示すも
のである。For example, when the length of the diffusion hole is 2.5 wings (4I), this indicates that the pore diameter of 2 wings or less becomes diffusion rate-limiting. At the same time, when the length of the diffusion hole is 5 mm (Cl2) and 10 mm (ls), the hole diameter is approximately 4 ym or less than 7 mm, respectively. Although not shown in the figure, when the hole diameter is sufficiently large (for example, 11 mm or more), the limiting current value is approximately 60 mm.
It shows a constant value of 1IIA. In other words, a state where such a constant value is exhibited indicates that the rate-limiting state due to the diffusion holes no longer exists, and a high current will flow through the electrode, causing the problems described above. Also. In the same figure, in the region where the pore diameter is larger than the pore diameter that shows C1 diffusion rate limiting (for example, when the diffusion pore length is 2.5 mm, the pore diameter is 2 mm or more), the rate of increase in the limiting current value with respect to the increase in the pore diameter is almost constant and low. It seems that in this region, there is a mixture of the diffusion-limiting influence due to the diffusion pores and the influence of the oxygen delivery ability of the electrode. In other words, it shows a transitional state from a state where only diffusion is controlled to a state where there is no diffusion limited at all.
以上要するに1本発明は、固体電解質からなる酸素イオ
ン透過体をその側壁として有する自体と。In summary, the present invention has an oxygen ion permeable body made of a solid electrolyte as its side wall.
該酸素イオン透過体において該函体の内側に形成した陰
極およびその外側に形成した陽極と、これら両電極間に
電圧を印加するだめの電源および両電極間に流れる限界
電流を測定するだめの電流計とからなると共に上記函体
には電極の酸素送出能力よりも少量の酸素を拡散によっ
て該函体の内部の空間室へ送入する拡散孔を設けたこと
を特徴とする酸素ガス濃度分析装置にあり9本発明によ
れば前記affz電池を利用した装置に比して容易に。In the oxygen ion permeable body, a cathode formed inside the box and an anode formed outside the box, a power source for applying a voltage between these two electrodes, and a current for measuring the limiting current flowing between the two electrodes. an oxygen gas concentration analyzer, characterized in that the box is provided with a diffusion hole that sends a smaller amount of oxygen than the oxygen delivery capacity of the electrode to the space chamber inside the box by diffusion. According to the present invention, compared to the device using the AFZ battery, it is easier.
精度よく酸素ガス濃度の測定をすることができる。Oxygen gas concentration can be measured with high accuracy.
また本発明によれば電極によって送出する酸素量を拡散
孔による拡散律速に依らしめ、限界電流特性を得るに必
要な印加電圧および電流を低くすることができるので、
有孔函体を用いない装置に比して、 10’−3以上
という比較的高い酸素濃度の測定におい−Cも、長期間
にわたり高精度で酸素濃度を測定することができる。ま
た、拡散孔による拡散律速を利用しているので、電極自
体の製造条件や経時変化による限界電流特性の変化が生
じても。Furthermore, according to the present invention, the amount of oxygen delivered by the electrode is controlled by diffusion by the diffusion holes, and the applied voltage and current required to obtain the limiting current characteristics can be lowered.
Compared to devices that do not use a perforated box, -C can also measure oxygen concentrations with high accuracy over a long period of time when measuring relatively high oxygen concentrations of 10'-3 or more. In addition, since the diffusion rate is controlled by diffusion holes, it can be used even if the limiting current characteristics change due to the manufacturing conditions of the electrode itself or changes over time.
装置の限界電流特性に影響を及ぼさず、したがって耐久
性のある酸素ガス濃度分析装置を提供することができる
。It is possible to provide a durable oxygen gas concentration analyzer without affecting the limiting current characteristics of the device.
第1図ないし第5図は9本発明の実施例を示し。
第1図は酸素ガス濃度分析装置の説明図でセンサーの断
面図と本装置の回路図を示し、第2図はセンサーの一部
欠截斜視図、第3図はセンサーを配設した測定セルの断
面図、第4図は限界電流値を示す電圧と電流の関係線図
、第5図は酸素濃度と限界電流随の関係を示す線図、第
6図は実験例における拡散孔の孔径と限界電流値の関係
を示す線図、第7図は本発明の詳細な説明するだめの印
加電圧と電流との関係を示す線図、第8図は有孔函体を
用いない装置と本発明装置における。電極の経時変化に
基つく性能の差異を示す。酸素濃度と限界電流値との関
係を示す線図である。
1・・・酸素イオン透過体、2・・・陰極、6・・・陽
極、40・・・函体、5・・・拡散孔、10・・・測定
セ)v、12・拳・a衝板、16・・・ヒーター、18
・・・熱電対 0 、 OH・・・有孔函体を用いない
装置における一電極の経時変化の前と後、D、IJ’・
・・本発明装置における電極の経時変化の前と後。
特許出願人
株式会社 豊田中央研究所
代表取締役 小 松 登
第4図
酢對慶度
Fn 知 画 f工
第8図
百焚 鷹 漫 康 t%ノ1 to 5 show nine embodiments of the present invention. Figure 1 is an explanatory diagram of the oxygen gas concentration analyzer, showing a cross-sectional view of the sensor and a circuit diagram of the device, Figure 2 is a partially cutaway perspective view of the sensor, and Figure 3 is a measurement cell in which the sensor is installed. Figure 4 is a diagram showing the relationship between voltage and current, which shows the limiting current value, Figure 5 is a diagram showing the relationship between oxygen concentration and limiting current value, and Figure 6 shows the pore diameter of the diffusion hole in the experimental example. A diagram showing the relationship between the limiting current value, FIG. 7 is a diagram showing the relationship between applied voltage and current for detailed explanation of the present invention, and FIG. In the device. This shows the difference in performance based on the aging of the electrode. FIG. 3 is a diagram showing the relationship between oxygen concentration and limiting current value. DESCRIPTION OF SYMBOLS 1... Oxygen ion permeable body, 2... Cathode, 6... Anode, 40... Box, 5... Diffusion hole, 10... Measurement cell) v, 12. Fist/a punch Plate, 16... Heater, 18
...Thermocouple 0, OH... Before and after the change over time of one electrode in a device that does not use a perforated box, D, IJ'・
...Before and after the electrode changes over time in the device of the present invention. Patent Applicant Toyota Central Research Institute Representative Director Noboru Komatsu Noboru Komatsu Noboru Noboru Taka Man Yasushi t%ノ
Claims (1)
分を固体電解質からなる酸素イオン透過体によシ形成し
だ函体と該酸素イオン透過体の内壁面に設けた陰極およ
びその外壁面において該陰極と相対向する位置に設けた
陽極からなる電極とこれら両電極の間に電圧を印加すべ
く構成した電源と両電極の間に流れる電流を測定すべく
構成した”醒流計よりなると共に、上記函体には上記電
極の酸素送出能力よシも少量の酸素を拡散によって該函
体の内部空間へ送入する拡散孔を設け、かつ前記陰極の
表面積に対する前記拡散孔の開口部の面積の割合は05
以下とし、該孔径を0.05 mynφ以上で該孔の長
さを20zm以下あることを特徴とする酸素ガス濃度分
析装置。1) A box in which at least a part of the side wall constituting a closed space is formed of an oxygen ion permeable body made of a solid electrolyte, a cathode provided on the inner wall surface of the oxygen ion permeable body, and a cathode provided on the outer wall surface of the box. It consists of an electrode consisting of an anode placed opposite to the electrode, a power source configured to apply a voltage between these two electrodes, and a "flow meter configured to measure the current flowing between the two electrodes," and the above-mentioned The box is provided with a diffusion hole that sends a small amount of oxygen into the internal space of the box by diffusion compared to the oxygen delivery capacity of the electrode, and the ratio of the area of the opening of the diffusion hole to the surface area of the cathode is provided. is 05
An oxygen gas concentration analyzer characterized in that the pore diameter is 0.05 mynφ or more and the pore length is 20 zm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58234473A JPS59192953A (en) | 1983-12-12 | 1983-12-12 | Oxygen gas concentration analyzer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58234473A JPS59192953A (en) | 1983-12-12 | 1983-12-12 | Oxygen gas concentration analyzer |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP50149002A Division JPS5272286A (en) | 1975-12-12 | 1975-12-12 | Oxygen concentration analyzer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59192953A true JPS59192953A (en) | 1984-11-01 |
Family
ID=16971560
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58234473A Pending JPS59192953A (en) | 1983-12-12 | 1983-12-12 | Oxygen gas concentration analyzer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59192953A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60252254A (en) * | 1984-05-29 | 1985-12-12 | Fujikura Ltd | Oxygen sensor element |
JPH02269948A (en) * | 1989-04-11 | 1990-11-05 | Matsushita Electric Ind Co Ltd | Sensor for combustion control |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5269690A (en) * | 1975-12-05 | 1977-06-09 | Westinghouse Electric Corp | Partil pressure measuring apparatus for specified gages in sighted environments |
-
1983
- 1983-12-12 JP JP58234473A patent/JPS59192953A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5269690A (en) * | 1975-12-05 | 1977-06-09 | Westinghouse Electric Corp | Partil pressure measuring apparatus for specified gages in sighted environments |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60252254A (en) * | 1984-05-29 | 1985-12-12 | Fujikura Ltd | Oxygen sensor element |
JPH02269948A (en) * | 1989-04-11 | 1990-11-05 | Matsushita Electric Ind Co Ltd | Sensor for combustion control |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4207159A (en) | Apparatus for measurement of oxygen concentration | |
EP2107365B1 (en) | NOx sensor | |
JPH1038845A (en) | Nitrogen oxides measuring method | |
JPS6310781B2 (en) | ||
JPH01277751A (en) | Measuring device of concentration of nox | |
US4950380A (en) | Limiting current-type oxygen sensor | |
JPS61138156A (en) | Air-fuel ratio detector | |
JPH11183434A (en) | Nox concentration measuring device | |
JPS63738B2 (en) | ||
US4938861A (en) | Limiting current-type oxygen sensor | |
JP2020003284A (en) | Gas sensor | |
JPS6064243A (en) | Method and apparatus for measuring humidity | |
JPS62150156A (en) | Adjustment of gas sensor | |
JP2020159881A (en) | Gas sensor and sensor element | |
JPS59192953A (en) | Oxygen gas concentration analyzer | |
US4832818A (en) | Air/fuel ratio sensor | |
JPS58109846A (en) | Element for oxygen detection and its preparation | |
JP3327335B2 (en) | Highly active electrode for exhaust gas sensor | |
KR100347580B1 (en) | Manufacturing method of oxygen sensor element | |
JPH0353578B2 (en) | ||
JP2004536307A (en) | Oxygen / nitrogen oxide composite sensor | |
EP0150182A4 (en) | Measuring an extended range of air fuel ratio. | |
JPH065220B2 (en) | Oxygen concentration detector | |
JPS62145161A (en) | Oxygen sensor | |
JPH05852Y2 (en) |