[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5919852A - Method for measuring ultasonic characteristic of bio-tissue - Google Patents

Method for measuring ultasonic characteristic of bio-tissue

Info

Publication number
JPS5919852A
JPS5919852A JP57129902A JP12990282A JPS5919852A JP S5919852 A JPS5919852 A JP S5919852A JP 57129902 A JP57129902 A JP 57129902A JP 12990282 A JP12990282 A JP 12990282A JP S5919852 A JPS5919852 A JP S5919852A
Authority
JP
Japan
Prior art keywords
frequency
tissue
value
biological tissue
spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57129902A
Other languages
Japanese (ja)
Inventor
Hirohide Miwa
三輪 博秀
Mitsuhiro Ueda
光宏 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57129902A priority Critical patent/JPS5919852A/en
Priority to US06/516,555 priority patent/US4512195A/en
Priority to DE8383304306T priority patent/DE3376880D1/en
Priority to EP83304306A priority patent/EP0100234B1/en
Publication of JPS5919852A publication Critical patent/JPS5919852A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0858Detecting organic movements or changes, e.g. tumours, cysts, swellings involving measuring tissue layers, e.g. skin, interfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/341Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics
    • G01N29/343Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics pulse waves, e.g. particular sequence of pulses, bursts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/348Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with frequency characteristics, e.g. single frequency signals, chirp signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/895Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques characterised by the transmitted frequency spectrum
    • G01S15/8954Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques characterised by the transmitted frequency spectrum using a broad-band spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To make regression calculation easy and to determine the characteristic value of bio-tissue from the parameter obtd. by the calculation by normalizing the characteristic function of the bio-tissue that is unaffected by a measurement system and further normalizing the same again by the value of a certain frequency thereby eliminating the influence of the discontinuous transmission at the boundary of the tissue region and taking logarithm by dividing the estimation function by a non-exponential function term. CONSTITUTION:The collected data is fed to a frequency analysis part 7, and the result of the frequency analysis is fed to a data memory 8. The reflection wave spectrum from the bio-tissue as shown by, for example, A and the reflection wave spectrum from a standard reflector as shown by B are obtd. as the result of the frequency analysis. The spectrum A is normalized by the spectrum B in an operation processor 9, by which a spectrum C is obtd. and the frequency corresponding to the coefft. of reflection is determined. The frequency is further regressed by the measurement value obtd. by dividing the same by a non-exponential function term to take logarithm, whereby the parameter associated to the characteristic value of the bio-tissue included in the exponential part of the exponential function is determined.

Description

【発明の詳細な説明】 (発明の技術分野〕 本発明は超音波の反射波を用いて生体組織の如く減衰定
数が周波数に比例(比例定数β)シ、且つ反射係数が各
種生体組織特性値により定まる周波数の関数である媒体
において、β等の各種特性値を測定する方式にかかわり
、特にパワー・スペクトル測定値から理論式・実験式に
回帰することによって、各種特性値を求める方式に関す
る。
Detailed Description of the Invention (Technical Field of the Invention) The present invention uses reflected waves of ultrasonic waves, and the attenuation constant is proportional to the frequency (proportionality constant β), such as in living tissue, and the reflection coefficient is different from various living tissue characteristic values. This invention relates to a method for measuring various characteristic values such as β in a medium that is a function of frequency determined by , and particularly relates to a method for determining various characteristic values by regression from power spectrum measurement values to theoretical and experimental formulas.

〔発明の従来技術〕[Prior art to the invention]

従来、fl音波の透過における減衰定数が周波数fに比
例し、その比例定数βは組織特性を示す一つの量である
こと、又反射係数は周波数fのn乗に比例し、この墓指
数nは組織特性を示すもう一つの量であることが、実験
的に知られている。
Conventionally, the attenuation constant in the transmission of the fl sound wave is proportional to the frequency f, and the proportionality constant β is a quantity indicating tissue characteristics, and the reflection coefficient is proportional to the n-th power of the frequency f, and this grave index n is It is experimentally known that this is another quantity that indicates tissue properties.

又9本発明者の上田等は反射係数が。In addition, Ueda et al., the inventor of the present invention, found that the reflection coefficient was

6.己。−cd1′ノ2 の形であることを理論的に示している。ここに。6. Myself. -cd1'no2 It is theoretically shown that the form is Here.

b、dは組織特性と関連を持つ量である。b and d are quantities related to tissue characteristics.

このように反射係数がfの関数である場合について、パ
ワー・スペクトルの形状から生体組織特性値を求める方
式は一般的なものはなく9本発明者の三輪等によるエネ
ルギー・レシオ法により。
In this case, where the reflection coefficient is a function of f, there is no general method for determining biological tissue characteristic values from the shape of the power spectrum, but the energy ratio method by Miwa et al., the inventor of the present invention, is used.

該関数形がrのn乗である場合についてn、βを求める
方式が特許出願されている。
A patent application has been filed for a method for determining n and β when the functional form is r raised to the nth power.

この方法は有効であるが、少なくとも3つの狭帯域のエ
ネルギー成分に着目するため、所謂スカロソピングとし
て知られているスペクトルの局所的凸凹による誤差を招
き易い。このため、有効帯域内で多数の3周波数の組に
ついて計算し、得られたn、βの集合について統計処理
を施す必要があり、計算量が多い欠点があった。
Although this method is effective, since it focuses on at least three narrow band energy components, it tends to cause errors due to local irregularities in the spectrum, known as so-called scalosoping. Therefore, it is necessary to perform calculations on many sets of three frequencies within the effective band and perform statistical processing on the obtained set of n and β, which has the drawback of requiring a large amount of calculation.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、超音波反射波の受信信号から生体の伝
達関数を求め、生体組織特性値を求めるに当って。
An object of the present invention is to obtain a transfer function of a living body from a received signal of an ultrasound reflected wave, and to obtain biological tissue characteristic values.

■組織領域端界の不連続変化を避けたスペクトルの形状
を求める方法と。
■A method for determining the shape of a spectrum that avoids discontinuous changes in tissue region edges.

■その形状の理論・実験から推定される関数形が指数関
数項と非指数関数項との積で表わされるのに対し、実測
値からの回帰が容易な方式を与え。
■While the functional form estimated from theory and experiments is expressed as the product of an exponential function term and a non-exponential function term, a method is provided that allows easy regression from actual measured values.

■その回帰によって該関数形に含まれるパラメータを決
定し、更に生体組織特性値を求める方式を提供すること
にある。
(2) To provide a method for determining the parameters included in the functional form by the regression, and further determining biological tissue characteristic values.

〔発明の構成〕[Structure of the invention]

本発明は、生体組織伝達関数の周波数応答スペクトルを
正規化して、その絶対値には関係なく。
The present invention normalizes the frequency response spectrum of a biological tissue transfer function, regardless of its absolute value.

その形状のみに着目するとともに、理論または実験より
推定される関数形が指数関数項と非指数関数項との積で
与えられる場合、非指数関数項で除して対数をとること
によって得られる測定値から回帰することにより、指数
関数項の指数部に含まれる生体組織特性値に関連するパ
ラメータを求めるようにしたものである。
In addition to focusing only on its shape, if the functional form estimated from theory or experiment is given by the product of an exponential function term and a non-exponential function term, the measurement obtained by dividing by the non-exponential function term and taking the logarithm. Parameters related to biological tissue characteristic values included in the exponent part of the exponential function term are obtained by regression from the values.

〔発明の実施例〕[Embodiments of the invention]

生体組織に第1図に示す如く生体表面から生体深部へ(
方向Zに)トランスデユーサ−〇によって超音波パルス
(中心周波数fo、帯域2Ω)を送信し、そのパルス波
形が生体内容部位に音速Cの速さで順次到達し、夫々か
ら逐次反射波が音速Cで逆方向に伝播し、再びトランス
デユーサ−■によって受(言されるものとする。
As shown in Figure 1, the biological tissues are distributed from the surface of the body to the deep part of the body (
Ultrasonic pulses (center frequency fo, band 2Ω) are transmitted by the transducer (in direction Z), and the pulse waveforms sequentially reach the internal parts of the body at the speed of sound C, and the reflected waves from each one successively reach the speed of sound C. It propagates in the reverse direction at C and is again received by transducer -2.

今、深さ2における組織の特性を測定するものとす−る
。生体は2の深さまでにi種の組織領域から構成されて
いるとする。又、音速Cはほぼ一定と仮定する。
Now, suppose that the characteristics of the tissue at depth 2 are to be measured. It is assumed that the living body is composed of i kinds of tissue regions up to a depth of 2. Further, it is assumed that the sound speed C is approximately constant.

体表■、即ち2=0から送信された音圧パルスは、各領
域iの中では周波数fに比例した減衰定数αiの減衰を
受ける。この比例定数をaiとすると。
The sound pressure pulse transmitted from the body surface (2), ie, 2=0, is attenuated by an attenuation constant αi proportional to the frequency f in each region i. Let this constant of proportionality be ai.

αi=a++βr*f   (aiは定数)となり、a
iは組織iに対応した特性を示すパラメータで減衰傾斜
と略称される。
αi=a++βr*f (ai is a constant), and a
i is a parameter indicating characteristics corresponding to tissue i and is abbreviated as attenuation slope.

又、各領域の中では周波数fの関数であるパワー反射係
数r(f)を示す。
Furthermore, within each region, a power reflection coefficient r(f) which is a function of frequency f is shown.

又、各領域相互の境界では大きく音響インピーダンスが
変化し、且つその表面が略滑らかである場合が多く、こ
の境界1例えば領域i−1から領域iに通過するときは
1段階的な若干の透過1員失を生じる。この透過率をτ
jとする。
In addition, the acoustic impedance changes greatly at the boundaries between each region, and the surface is often approximately smooth, and when passing from this boundary 1, for example, from region i-1 to region i, there is a slight transmission in one step. This results in the loss of one member. Let this transmittance be τ
Let it be j.

深さ2からの反射波が逆方向に領域iからi−1に通過
するときも同様で、この透過率をτ′iとする。τiと
τ′iは周波数特性を持たないと考えてよい。
The same is true when the reflected wave from depth 2 passes from region i to i-1 in the opposite direction, and this transmittance is defined as τ'i. It may be considered that τi and τ'i have no frequency characteristics.

さて、トランスデユーサ■は送信後、順次深い所からの
反射波を連続的に受信するが1その中。
Now, after transmitting, the transducer ■ successively receives reflected waves from deeper places.

深さ2に対応する反射波が送信後t = 2 z / 
Cの時刻に受信されるので、その時点付近のある微小時
間幅τ内の反射波形を分析することで、深さ2における
組織特性を求めることができる。
After the reflected wave corresponding to depth 2 is transmitted, t = 2 z /
Since it is received at time C, tissue characteristics at depth 2 can be determined by analyzing the reflected waveform within a certain minute time width τ around that time.

深さ2からの反射波受信信号のパワー・スペクトルE 
r ff)を求めることは、よく知られたFFT等の周
波数分析装置で容易に実現される。
Power spectrum E of the reflected wave received signal from depth 2
r ff) can be easily realized using a well-known frequency analyzer such as FFT.

このE r (f)はトランスデユーサの周波数特性。This E r (f) is the frequency characteristic of the transducer.

深さ2におりるビームの収束の周波数特性、その他計測
系等に起因する伝達関数と、生体中の透過・反射等に起
因する生体組織の伝達関数との積の自乗で与えられる。
It is given by the square of the product of the frequency characteristic of the convergence of the beam at depth 2, a transfer function caused by other measurement systems, and a transfer function of living tissue caused by transmission/reflection in the living body.

今、水中などで深さ2の位置に標準反射体をおいて、そ
の受信波のパワー・スペクトルE o [flを求める
と、Eo(f)は計測系の伝達関数の自乗を示すと考え
られる。ここで、Er(f)をE o fflで除して
正規化すると、生体組織固有の伝達関数の自乗が得られ
る。この実測された生体組織伝達関数のパワー・スペク
トルをR(flで示す。
Now, if we place a standard reflector underwater at a depth of 2 and find the power spectrum E o [fl of the received wave, Eo (f) is considered to represent the square of the transfer function of the measurement system. . Here, when Er(f) is normalized by dividing it by E o ffl, the square of the transfer function specific to the biological tissue is obtained. The power spectrum of this actually measured biological tissue transfer function is denoted by R (fl).

一方において、R(flは上述の説明から1次式で表わ
されるはずである。
On the other hand, R(fl should be expressed by a linear equation from the above explanation.

k:fに依存しない定数 11:領域i内の通過長 以下、R(flと(1)式の行とを比較することによっ
て9組織特性を求める方式を詳細に説明する。
k: a constant that does not depend on f 11: Passage length in region i Below, a method for determining nine tissue characteristics by comparing R(fl with the row of equation (1)) will be described in detail.

一つのトランスデユーサではその有効帯域幅内のfにつ
いてのみしかR([1を求めることができないので、十
分広いfの範囲でR(f)を求めるためには複数のトラ
ンスデユーサで夫々の帯域幅について夫々のR(f)を
求めてつなげればよい。
One transducer can only calculate R([1) for f within its effective bandwidth, so in order to calculate R(f) over a sufficiently wide range of f, multiple transducers must each It is sufficient to find each R(f) for the bandwidth and connect them.

又、実際の測定に当っては、近接する反射体からの反射
波の干渉、その他によってスペクトルの形状は局所的な
凸凹を示し、所謂スペクトル・スカロソピングの現象を
呈し、゛著しくスペクトル形状の測定に誤差をもたらす
。この防止のためにはその測定点の前後・左右・上下環
を測定したり。
Furthermore, in actual measurements, the shape of the spectrum exhibits local unevenness due to interference of reflected waves from nearby reflectors and other factors, resulting in the phenomenon of so-called spectral scalosoping, which significantly impairs the measurement of the spectrum shape. lead to errors. To prevent this, measure the front, back, left, right, and upper and lower rings of the measurement point.

複数回測定したりして、それらを時間的・空間的に平均
する等の統計的処理が必要になる。
Statistical processing such as measuring multiple times and averaging them temporally and spatially is required.

さて、(1)式においである特定周波数fo(例えば(
1)式の最大値を与える周波数fm等)におけるR(f
o)で(1)式を規格化すると。
Now, in equation (1), a certain frequency fo (for example, (
1) R(f
When formula (1) is normalized by o).

となり、に、τi、τ′iの因子を除去することができ
る。未知数であるτi、τ′iが消去されることの効果
は大きい。
Then, the factors of τi and τ'i can be removed. Eliminating the unknowns τi and τ′i has a great effect.

実測値でもfo及びfoにおけるR(fo)を求めるこ
とができるので、同様にR(fo)で規格化するを求め
ることができる。即ち、τi、τ′iの影響を受けるこ
となく、P(f)とQ If)が等しいとしてQ (f
)に含まれるパラメータを回帰により決定することがで
きる。
Since fo and R(fo) at fo can be found using actually measured values, it is also possible to find the value normalized by R(fo). That is, without being influenced by τi and τ′i, assuming that P(f) and Q If) are equal, Q (f
) can be determined by regression.

次にr([1の関数形としてはその近似度により種々の
ものがあり得るが1次の実験式 %式% (4) (a:定数、n:組織により定まる定数)及び、上田等
による理論式 bニドランスデューサ寸法1曲率に関係するfの関数(
既知) b=組織の平均的微細構造に依存する定数σに:組織の
値送受方向における空間的自己相関距離 C:音速 の場合について説明する。
Next, r ([There may be various functional forms depending on the degree of approximation of Theoretical formula b Function of f related to transducer dimension 1 curvature (
(known) b = constant σ depending on the average microstructure of the tissue: value of the tissue Spatial autocorrelation distance in the transmission/reception direction C: speed of sound will be explained.

(4)式、(5)式は一見著しく異なった形をしている
が、実用されるある周波数範囲では両者はほぼ一致する
Although equations (4) and (5) have significantly different forms at first glance, they almost match in a certain practical frequency range.

(4)式、又は(5)式を(2)式に代入すると、  
Q4.Q5が得られる。
Substituting equation (4) or equation (5) into equation (2), we get
Q4. Q5 is obtained.

Q 4 = A4・fηexp[(−4,gρdJf]
    (61Q5−)\、、b’・f’:exp[ニ
ー4(2ゴpdt)f−Cし乙2)ぜ4シ=fr”ノ 
(7)(6)式、(7)式から判るように、Qは指数関
数の項と非指数関数の項との積で与えられることが特徴
的である。両式を夫々非指数関数項で除し、対数をとる
と。
Q 4 = A4・fηexp[(-4, gρdJf]
(61Q5-)\,,b'・f':exp[nee4(2gopdt)f-Cshiot2)ze4shi=fr”ノ
(7) As can be seen from equations (6) and (7), Q is characteristically given by the product of an exponential function term and a non-exponential function term. Divide both equations by their respective non-exponential terms and take the logarithm.

A Q4/ A4− ’7?−Jnf = −4(Σβ
i Ji ) ・f    (81J!5QrJ/Ar
、−、lnl;r”=  −4(Zβ;lb) ・ f
 −(?)白9)ここでQ4.Q5の代りに実測値Pを
代入した(8)式(9)式の左辺を計算し、(8)式又
は(9)式が最も精度良く成立するように回帰計算する
ことにより、パラメータn、’Eo;、ii、  、y
、等を求めることができる。
A Q4/ A4- '7? −Jnf = −4(Σβ
i Ji) ・f (81J!5QrJ/Ar
,−,lnl;r”=−4(Zβ;lb)・f
-(?) White 9) Here Q4. The parameters n, 'Eo;, ii, ,y
, etc. can be obtained.

(8)式は左辺に未知数nがあるが、nを種々に変えて
右辺が一次式となるnを決定すればよい。
Equation (8) has an unknown number n on the left side, but it is sufficient to change n variously to determine n for which the right side is a linear equation.

夫々の深さZにおけるΣβ77tを求めることによって
、差分によって各lにおけるβiを求めることができる
。βが深さ2の連続関数の時は、この線積分は Iβd
zとなるので、微分によりβfZlを求めたり、X線C
Tのアルゴリスムで各方向での線積分から計算すること
ができる。
By determining Σβ77t at each depth Z, βi at each l can be determined by the difference. When β is a continuous function with depth 2, this line integral is Iβd
z, so we can find βfZl by differentiation, or find the X-ray C
It can be calculated from line integrals in each direction using the T algorithm.

このようにして、n、β、lを一つの測定方向走査線上
で求めることができる。この走査線をある面内で走査す
ることにより、その面上のn、βtの分布像をもとめる
こともできる。
In this way, n, β, and l can be determined on one measurement direction scanning line. By scanning this scanning line within a certain plane, it is also possible to obtain a distribution image of n and βt on that plane.

以上原理を述べたが、実際に装置化するに当っては、あ
る深さ2でのサンプル点からのパラメータを抽出する技
術はドツプラー測定等で広く行われており、その抽出波
形をフーリエ分析し、パワー・スペクトルを求める装置
は、DFT (デジタル・フーリエ変換装置)等で広く
知られているものが容易に利用できる。その出力は計算
機に容易に入力され、それ以降のすべての計算はプログ
ラムによって遂行できる。以下システムの概略につき、
第2図で説明する。
The principle has been described above, but in order to actually implement the device, the technique of extracting parameters from a sample point at a certain depth 2 is widely used in Doppler measurements, etc., and the extracted waveform is subjected to Fourier analysis. As a device for determining the power spectrum, a widely known device such as a DFT (digital Fourier transform device) can be easily used. Its output can be easily input into a calculator and all subsequent calculations can be accomplished by the program. Below is an overview of the system.
This will be explained with reference to FIG.

タイミング制御部1からは(イ)に示す超音波送信同期
信号Pdが送信回路2に送られ、超音波送信に必要なだ
けの電力を持ったパルスで超音波振動子3が駆動され、
超音波が生体組織内(または標準反射体を入れた媒質内
)に送出される。
The timing control unit 1 sends the ultrasound transmission synchronization signal Pd shown in (a) to the transmission circuit 2, and the ultrasound transducer 3 is driven with a pulse having enough power to transmit ultrasound.
Ultrasonic waves are transmitted into living tissue (or into a medium containing a standard reflector).

生体組織(または標準反射体)4がらの反射波は再び振
動子3によって受信され、受信回路5によって適当なレ
ベルまで増幅されて(ロ)に示す受信信号Vrとなって
データ収集部6に送られる。
The reflected wave from the living tissue (or standard reflector) 4 is received by the transducer 3 again, amplified to an appropriate level by the receiving circuit 5, and sent to the data collection unit 6 as the received signal Vr shown in (b). It will be done.

タイミング制御部1がらは、振動子表面から測定したい
反射部位までの距離に対応した時間TIだけPdから遅
れたタイミングで、データ収集部6に対して(ハ)に示
すゲートパルスpgを送り。
The timing control unit 1 sends the gate pulse pg shown in (c) to the data collection unit 6 at a timing delayed from Pd by a time TI corresponding to the distance from the vibrator surface to the reflection site to be measured.

希望する部位の反射信号をデータとして取り込む。Capture the reflected signal from the desired area as data.

なお、Pgの幅τは測定したい範囲に対応して定められ
る。収集されたデータは例えば(ニ)に示す如き波形に
対応している。
Note that the width τ of Pg is determined depending on the range to be measured. The collected data corresponds to a waveform as shown in (d), for example.

収集されたデータは周波数解析部7に送られ。The collected data is sent to the frequency analysis section 7.

周波数解析結果がデータ・メモリ8に送られる。The frequency analysis results are sent to data memory 8.

周波数解析結果としては5例えば(A)に示すような生
体組織からの反射波スペクトルや1 (B)に示すよう
な標準反射体からの反射波スペクトルが得られる。
As a frequency analysis result, for example, a reflected wave spectrum from a living tissue as shown in 5 (A) and a reflected wave spectrum from a standard reflector as shown in 1 (B) are obtained.

演算処理部9は、データ・メモリ8に保持されている周
波数解析結果に対して前記のごとき種々の計算を行い、
希望する結果を得る。
The arithmetic processing unit 9 performs various calculations as described above on the frequency analysis results held in the data memory 8.
Get the desired result.

具体的には、 (A)で示されるスペクトルを(B)で
示されるスペクトルで正規化し、 (C)で示される如
きスペクトル((1)式に対応する)を得て(3)式の
rmを求め、更に(8)式、(9)式の左辺を計算すれ
ばよい。しかる後に回帰計算を行い、nβ 、σを決定
すればよい。各深さ2のβ がらβiも求めることがで
きる。
Specifically, the spectrum shown in (A) is normalized by the spectrum shown in (B), the spectrum shown in (C) (corresponding to equation (1)) is obtained, and the rm of equation (3) is , and then calculate the left sides of equations (8) and (9). After that, regression calculation is performed to determine nβ and σ. βi can also be found from β at each depth 2.

■の構成は上記の演算が実現できる構成であればどの様
なものでもよく2例えばマイクロ・プロセッサ、RAM
、ROM、I10ポート等から成るマイクロコンピュー
タでもよい。
The configuration of (2) may be any configuration as long as it can realize the above calculations (2) For example, a microprocessor, RAM, etc.
, ROM, I10 port, etc. may be used.

〔発明の効果〕〔Effect of the invention〕

本発明によれば。 According to the invention.

■正規化によって計測系に影響されない生体組織特性関
数を抽出し、さらにある周波数の値で再正規化すること
によって1組織領域境界の不連続透過の影響を除くこと
ができ。
■By normalizing, a biological tissue characteristic function that is not affected by the measurement system is extracted, and by further normalizing it with a certain frequency value, the influence of discontinuous transmission at the boundary of one tissue region can be removed.

■推定関数を非指数関数項で除して対数を採ることによ
り1回帰計算が容易になり。
■By dividing the estimated function by a non-exponential function term and taking the logarithm, one-regression calculation becomes easier.

■得られたパラメータから組織特性値を求めることが可
能となる効果を有する。
(2) It has the effect of making it possible to obtain tissue characteristic values from the obtained parameters.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は超音波走査方向Z軸におりる生体組織構造の断
面を示す模式図であり、■はトランスデユーサ、■は体
表、iは領域i−1と領域iとの境界を示し、1は夫々
の領域中の超音波行路長を示す。 第2図は本発明の一実施例装置のブロック図であり、1
はタイミング制御部、2は送信回路、3は超音波振動子
、4は標準反射体、5は受信回路。 6はデータ収集部27は周波数解析部、8はデータメモ
リ、9は演算処理部である。 第3図は第2図における各部の波形を示す図。 第4図は周波数特性の関係を示す図である。
Figure 1 is a schematic diagram showing a cross section of a living tissue structure along the Z-axis in the ultrasound scanning direction, where ■ indicates the transducer, ■ indicates the body surface, and i indicates the boundary between area i-1 and area i. , 1 indicates the ultrasound path length in each region. FIG. 2 is a block diagram of a device according to an embodiment of the present invention.
2 is a timing control unit, 2 is a transmitting circuit, 3 is an ultrasonic transducer, 4 is a standard reflector, and 5 is a receiving circuit. The data collection unit 27 is a frequency analysis unit, 8 is a data memory, and 9 is an arithmetic processing unit. FIG. 3 is a diagram showing waveforms at various parts in FIG. 2. FIG. 4 is a diagram showing the relationship of frequency characteristics.

Claims (1)

【特許請求の範囲】 (11超音波パルスを生体中に送信し、その反射波を受
信し2その受信信号を分析することにより生体組織特性
を測定する方式において。 少なくとも次のステップを有することを特徴とする超音
波生体組織特性測定方式。 イ)分析すべき部位からの反射波受信信号を周波数分析
し、そのパワー・スペクトルを求めるステップ。 口)該部位に標準反射体を有する場合の送受測定系のパ
ワー・スペクトルで、上記イのステップで求めたパワー
・スペクトルを正規化し、生体の組織伝達関数Rff)
を求めるステップ。 ハ)特定の周波数foでの値R(fo)でR([1を正
規化したP fflを求めるステップ。 二)一方において、理論及び/又は実験から予測される
生体組織伝達関数を同じ(foでの値で正規化した関数
Q ff)が Q(fl = A ([1*  eβ(チノで表わされ
ることを利用して、上記ハのステップで得られたP(「
)をA (flで除し。 P tfl / A (fl  を求めるステップ。 ホ)上記二のステップで得た値の対数をとるステップ。 へ)上記ホのステップで得られた周波数の関数としての
値を予測式のB fflと等値であるとして。 A (fl 、  B (flに含まれる各種のパラメ
ータの最適値を求める回帰ステップ。 (2)上記二のステップにおけるA (f)が周波数f
の0乗(nは生体組織特性を示す定数)に比例する式で
表わされ、かつB (flがfの1次式で表わされ、f
の1次の係数が減衰定数の周波数傾斜(減衰傾斜)の線
積分と関連した量であることを特徴とする特許請求の範
囲第1項に記載の生体組織特性測定方式。 (311記二のステップにおりるB (flが周波数f
の2次式で表わされ、定数項、1次項の係数、2次項の
係数がそれぞれ、平均的微細構造、減衰(頃斜線積分、
走査方向の自己相関距離に関連した量であることを特徴
とする特許請求の範囲第1項に記載の生体組織特性測定
方式。
[Claims] (11) A method for measuring biological tissue characteristics by transmitting ultrasonic pulses into a living body, receiving the reflected waves, and (2) analyzing the received signals. Characteristic ultrasonic biological tissue characteristic measurement method. 1) A step of frequency-analyzing the reflected wave reception signal from the area to be analyzed and obtaining its power spectrum. (1) Normalize the power spectrum obtained in step A above using the power spectrum of the transmitting/receiving measurement system when a standard reflector is provided at the site, and calculate the biological tissue transfer function Rff)
step to find. C) A step of calculating P ffl which is normalized to R([1) using the value R(fo) at a specific frequency fo.2) On the other hand, the biological tissue transfer function predicted from theory and/or experiment is set to the same value (fo The function Q ff) normalized by the value of Q(fl = A
) is divided by fl. P tfl / A (Step of finding fl. E) Step of taking the logarithm of the value obtained in the second step above. F) As a function of the frequency obtained in step E above. Assuming that the value is equal to B ffl in the prediction formula. A (fl, B (regression step to find the optimal value of various parameters included in fl. (2) A (f) in the above second step is the frequency f
B (where fl is expressed as a linear expression of f, and f
2. The biological tissue characteristic measuring method according to claim 1, wherein the first-order coefficient is a quantity related to a line integral of a frequency slope (attenuation slope) of an attenuation constant. (Go to the second step in 311 B (fl is the frequency f
The constant term, the coefficient of the linear term, and the coefficient of the quadratic term are expressed by the average fine structure, attenuation (oblique integral,
The biological tissue characteristic measuring method according to claim 1, wherein the amount is related to an autocorrelation distance in the scanning direction.
JP57129902A 1982-07-26 1982-07-26 Method for measuring ultasonic characteristic of bio-tissue Pending JPS5919852A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57129902A JPS5919852A (en) 1982-07-26 1982-07-26 Method for measuring ultasonic characteristic of bio-tissue
US06/516,555 US4512195A (en) 1982-07-26 1983-07-25 Ultrasonic living body tissue characterization method
DE8383304306T DE3376880D1 (en) 1982-07-26 1983-07-26 Ultrasonic measurement of characteristic values of a medium
EP83304306A EP0100234B1 (en) 1982-07-26 1983-07-26 Ultrasonic measurement of characteristic values of a medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57129902A JPS5919852A (en) 1982-07-26 1982-07-26 Method for measuring ultasonic characteristic of bio-tissue

Publications (1)

Publication Number Publication Date
JPS5919852A true JPS5919852A (en) 1984-02-01

Family

ID=15021207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57129902A Pending JPS5919852A (en) 1982-07-26 1982-07-26 Method for measuring ultasonic characteristic of bio-tissue

Country Status (4)

Country Link
US (1) US4512195A (en)
EP (1) EP0100234B1 (en)
JP (1) JPS5919852A (en)
DE (1) DE3376880D1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985002682A1 (en) * 1983-12-14 1985-06-20 Fujitsu Limited Apparatus for measuring ultrasonic characteristic values of a medium
JPS61226653A (en) * 1985-03-29 1986-10-08 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Ultrasonic echo graphic method and device
JPS62123355A (en) * 1985-03-29 1987-06-04 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Method and device for scanning body
JPS62123354A (en) * 1985-03-29 1987-06-04 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Method and device for scanning body by ultrasonic echography
WO1993003674A1 (en) * 1991-08-13 1993-03-04 Daikin Industries, Ltd. Inspection apparatus
JP2011505213A (en) * 2007-12-03 2011-02-24 ユッカ・ユルヴェリン Method for measuring material thickness using ultrasonic techniques

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116345A (en) * 1983-11-30 1985-06-22 富士通株式会社 Ultrasonic diagnostic apparatus
FR2556844B1 (en) * 1983-12-14 1987-11-13 Labo Electronique Physique APPARATUS FOR EXAMINING MEDIA BY ULTRASONIC ECHOGRAPHY
DE3504210A1 (en) * 1985-02-07 1986-08-07 Kraftwerk Union AG, 4330 Mülheim DEVICE FOR DETERMINING SURFACE CRACKS
US4817015A (en) * 1985-11-18 1989-03-28 The United States Government As Represented By The Secretary Of The Health And Human Services High speed texture discriminator for ultrasonic imaging
US4982339A (en) * 1985-11-18 1991-01-01 The United States Of America As Represented By Department Of Health And Human Service High speed texture discriminator for ultrasonic imaging
US4836210A (en) * 1987-06-15 1989-06-06 Fujitsu Limited Ultrasonic analyzer
FR2619448B1 (en) * 1987-08-14 1990-01-19 Edap Int METHOD AND DEVICE FOR TISSUE CHARACTERIZATION BY REFLECTION OF ULTRASONIC PULSES WITH BROADBAND FREQUENCIES, TRANSPOSITION OF THE ECHO FREQUENCY SPECTRUM IN AN AUDIBLE RANGE AND LISTENING DIAGNOSIS
US4855911A (en) * 1987-11-16 1989-08-08 Massachusetts Institute Of Technology Ultrasonic tissue characterization
US5417215A (en) * 1994-02-04 1995-05-23 Long Island Jewish Medical Center Method of tissue characterization by ultrasound
CA2309916C (en) 1997-11-14 2007-10-09 Colorado Seminary Ultrasonic system for grading meat
US8600497B1 (en) * 2006-03-31 2013-12-03 Pacesetter, Inc. Systems and methods to monitor and treat heart failure conditions

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4047172A (en) * 1972-05-30 1977-09-06 General Electric Company Signal processor for pulse-echo system providing interference level compensation and feed-forward normalization
US3896411A (en) * 1974-02-19 1975-07-22 Westinghouse Electric Corp Reverberation condition adaptive sonar receiving system and method
JPS57550A (en) * 1980-06-03 1982-01-05 Fujitsu Ltd Identification systm for specimen
JPS57179745A (en) * 1981-04-30 1982-11-05 Fujitsu Ltd Method and device for measuring material property by ultrasonic wave
US4470303A (en) * 1982-09-20 1984-09-11 General Electric Company Quantitative volume backscatter imaging

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985002682A1 (en) * 1983-12-14 1985-06-20 Fujitsu Limited Apparatus for measuring ultrasonic characteristic values of a medium
JPS61226653A (en) * 1985-03-29 1986-10-08 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Ultrasonic echo graphic method and device
JPS62123355A (en) * 1985-03-29 1987-06-04 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Method and device for scanning body
JPS62123354A (en) * 1985-03-29 1987-06-04 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Method and device for scanning body by ultrasonic echography
WO1993003674A1 (en) * 1991-08-13 1993-03-04 Daikin Industries, Ltd. Inspection apparatus
US5450849A (en) * 1991-08-13 1995-09-19 Daikin Industries, Ltd. Location apparatus
JP2011505213A (en) * 2007-12-03 2011-02-24 ユッカ・ユルヴェリン Method for measuring material thickness using ultrasonic techniques

Also Published As

Publication number Publication date
DE3376880D1 (en) 1988-07-07
EP0100234B1 (en) 1988-06-01
EP0100234A3 (en) 1985-05-22
EP0100234A2 (en) 1984-02-08
US4512195A (en) 1985-04-23

Similar Documents

Publication Publication Date Title
EP0123427B1 (en) Ultrasonic medium characterization
JPS5919852A (en) Method for measuring ultasonic characteristic of bio-tissue
Saniie et al. Quantitative grain size evaluation using ultrasonic backscattered echoes
US4754760A (en) Ultrasonic pulse temperature determination method and apparatus
JP2849827B2 (en) Method and apparatus for Fourier processing of pulse Doppler signal
US4257278A (en) Quantitative volume blood flow measurement by an ultrasound imaging system featuring a Doppler modality
EP0008517B1 (en) Duplex ultrasonic imaging system with repetitive excitation of common transducer in doppler modality
US5010885A (en) Ultrasonic echograph with controllable phase coherence
CA1130440A (en) Sonic pulse-echo method and apparatus for determining attenuation coefficients
US20020134159A1 (en) Method for determining the wall thickness and the speed of sound in a tube from reflected and transmitted ultrasound pulses
US5097836A (en) Untrasound diagnostic equipment for calculating and displaying integrated backscatter or scattering coefficients by using scattering power or scattering power spectrum of blood
Jensen et al. Ultrasound fields in an attenuating medium
Wilson et al. Frequency domain processing for ultrasonic attenuation measurement in liver
US4511984A (en) Ultrasound diagnostic apparatus
JP2006506190A (en) Diagnostic signal processing method and system
JPH0713631B2 (en) Ultrasonic echographic inspection method and apparatus for medium
WO2014055410A1 (en) Shear wave attenuation from k-space analysis system
Tortoli et al. A review of experimental transverse Doppler studies
Walker Significance of correlation in ultrasound signal processing
US6142944A (en) Doppler motion detection with automatic angle correction
Hoskins et al. Finite beam-width ray model for geometric spectral broadening
Nowak et al. A comparison of methods for the determination of sound velocity in biological materials: A case study
JP2669204B2 (en) Exploration equipment
Lacefield et al. Spatial coherence analysis applied to aberration correction using a two-dimensional array system
US4546772A (en) Method and means for determining ultrasonic wave attenuation in tissue using phase locked loop