JPS591965B2 - Area flow metering device - Google Patents
Area flow metering deviceInfo
- Publication number
- JPS591965B2 JPS591965B2 JP51116810A JP11681076A JPS591965B2 JP S591965 B2 JPS591965 B2 JP S591965B2 JP 51116810 A JP51116810 A JP 51116810A JP 11681076 A JP11681076 A JP 11681076A JP S591965 B2 JPS591965 B2 JP S591965B2
- Authority
- JP
- Japan
- Prior art keywords
- valve
- pressure
- flow rate
- pressure difference
- upstream
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Measuring Volume Flow (AREA)
- Flow Control (AREA)
Description
【発明の詳細な説明】
この発明は流体の流量を計量並びに制御する装置に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION This invention relates to a device for metering and controlling the flow rate of fluid.
一般に、この種流体の流量を計量並びに制御する装置に
は各種のものがあり、広範囲にわたつて使用されている
。In general, there are various types of devices for measuring and controlling the flow rate of this type of fluid, and they are widely used.
例えば、第1図に示すものはフィードバックコントロー
ル付空気流量計量装置の一例であり、内燃機関の燃料供
給装置に使用されているものである。同図に於いて、1
はエンジンの空気吸入管、2はフィードバックコントロ
ール機構で、開弁機構3と差圧コントロール用サーボ機
構4を有する。For example, what is shown in FIG. 1 is an example of an air flow metering device with feedback control, which is used in a fuel supply device for an internal combustion engine. In the same figure, 1
2 is a feedback control mechanism, which includes a valve opening mechanism 3 and a servo mechanism 4 for differential pressure control.
上記空気吸入管1中には空気絞り弁としての上流弁5と
下流弁6の2つを設け、例えば一方の上流弁5を流量検
出弁として開弁機構3に連結し、他方の下流弁6は流量
調節弁・としてアクセルペダルTに接続する。そしてこ
の上流弁5の上流側の空気圧をP1とし、上流弁5と下
流弁6とに仕切られた中間室8の空気圧をP2とすると
、その圧力差(P1−P2)を常に一定にすることによ
つて空気流量が上流弁5の開口面積に比例して、流量測
定がその弁の開口面積より可能となる。所謂これが面積
式流量計方式であり、圧力差(P、−Po)は次のフィ
ードバックコントロール機構2にて一定に制御さ反。即
ち、圧力差(P、−P2)がある一定値から僅かにずれ
た場合、そのずれを検出増幅するのが上記サーボ機構4
であり、サーボ機構4からの出力でもつて上流弁前後の
圧力のずれに相応して上流弁5を直接に開閉制御して圧
力差(P1−P2)を一定値に是正するのが開弁機構3
である。この開弁機構3は本体内にダイヤフラム9をス
プリング10を介して内装し、このダイヤフラム9の可
動部に上流弁5を連結してなる。次にサーボ機構4は内
装した差圧設定ダイヤフラム11にて仕切られたA室と
B室、そしてダイヤフラム11に連動するバルブ12の
変位により開口面積が変化する可変オリフィス13にて
仕切られたC室とD室を有する。A室とD室とは連通孔
14によつて同圧に連通し、またB室は上流弁5の下流
の中間室8に連通し、そしてC室は開弁機構3個に連通
すると共に絞り15を介して中間室8に連通する。更に
A室とD室は上流弁5の上流側に連通して空気圧はP1
となり、そしてB室のそれはP2となり、圧力差(P1
−P2)のずれはA室とB室を仕切るダイヤフラム11
の変位として検出される。又、上記圧力差(P1−P2
)は差圧設定スプリングIT、18によつて設定される
ものである。即ち、スプリング17、18のバネ圧はダ
イヤフラム11の両面に作用する空気圧P、及びP2の
圧力差によつて生ずる力と均合う様に設定され、19は
バネ圧の微調整を行なうための調整螺子である。スプリ
ング17,18に並例に設けられたベローズ16は特に
上流弁(流量検出弁)5の開口面積を重量流量に比例せ
しめるために、流入する空気の比重量即ち、温度及び圧
力に対して圧力差(P1−P2)の大き?補正するため
のもので基準状態の大気と温度・圧力の等しい気体を密
封し、その一端をバルブ12側に離れない様に接せしめ
、他端は本体の固定部に固定されている。上流弁5の開
口面積を作動時の大気圧力、大気温度における容積流量
に比例させるときはベローズ16は不要である。次に上
記構成による従来の内燃機関用空気重量測定装置の動作
原理を説明する。Two upstream valves 5 and downstream valves 6 as air throttle valves are provided in the air suction pipe 1. For example, one upstream valve 5 is connected to the valve opening mechanism 3 as a flow rate detection valve, and the other downstream valve 6 is connected to the valve opening mechanism 3 as a flow rate detection valve. is connected to the accelerator pedal T as a flow control valve. If the air pressure on the upstream side of the upstream valve 5 is P1, and the air pressure in the intermediate chamber 8 partitioned between the upstream valve 5 and the downstream valve 6 is P2, then the pressure difference (P1-P2) should always be constant. As a result, the air flow rate is proportional to the opening area of the upstream valve 5, and the flow rate can be measured from the opening area of the upstream valve 5. This is the so-called area type flow meter system, and the pressure difference (P, -Po) is controlled to be constant by the following feedback control mechanism 2. That is, when the pressure difference (P, -P2) slightly deviates from a certain constant value, the servo mechanism 4 detects and amplifies the deviation.
The valve opening mechanism directly controls the opening and closing of the upstream valve 5 according to the difference in pressure before and after the upstream valve using the output from the servo mechanism 4 to correct the pressure difference (P1-P2) to a constant value. 3
It is. This valve opening mechanism 3 has a diaphragm 9 installed inside the main body via a spring 10, and an upstream valve 5 connected to a movable portion of the diaphragm 9. Next, the servo mechanism 4 has chambers A and B separated by an internal differential pressure setting diaphragm 11, and chamber C separated by a variable orifice 13 whose opening area changes depending on the displacement of a valve 12 that is linked to the diaphragm 11. and room D. The A chamber and the D chamber communicate with each other at the same pressure through the communication hole 14, the B chamber communicates with the intermediate chamber 8 downstream of the upstream valve 5, and the C chamber communicates with three valve opening mechanisms and a throttle valve. It communicates with the intermediate chamber 8 via 15. Further, the A chamber and the D chamber communicate with the upstream side of the upstream valve 5, and the air pressure is P1.
Then, that of chamber B becomes P2, and the pressure difference (P1
-P2) is the diaphragm 11 that separates chamber A and chamber B.
is detected as the displacement of In addition, the above pressure difference (P1-P2
) is set by the differential pressure setting spring IT, 18. That is, the spring pressures of the springs 17 and 18 are set to be balanced with the air pressure P acting on both sides of the diaphragm 11, and the force generated by the pressure difference between P2, and 19 is an adjustment for finely adjusting the spring pressure. It is a screw. The bellows 16 provided in parallel with the springs 17 and 18 is designed to make the opening area of the upstream valve (flow rate detection valve) 5 proportional to the weight flow rate. How big is the difference (P1-P2)? It is used for correction, and is sealed with a gas having the same temperature and pressure as the standard atmosphere, and one end of the valve 12 is kept in contact with the valve 12, and the other end is fixed to a fixed part of the main body. The bellows 16 is not required when the opening area of the upstream valve 5 is made proportional to the volumetric flow rate at atmospheric pressure and atmospheric temperature during operation. Next, the operating principle of the conventional air weight measuring device for an internal combustion engine having the above configuration will be explained.
いま上流弁5の前後の圧力差(P1−P2)がある所定
値より僅かにずれると、ダイヤフラム11が変位してバ
ルブ12が動き、C−D室間の可変オリフイス13の開
口面積が変位してC室の圧力PnはP1とP2との間で
変化する。上記のように圧力差(P,−P2)がずれて
C室の圧力Pnが変化すると、これに連通した開弁機構
3のダイヤフラム9が変位し、結局ずれ量を是正する方
向に上流弁5が作動する。ところでこの場合、流入空気
の温度・圧力に変化があると、ベローズ16に封入され
た気体の容積が変化しベローズ16からバルブ12を介
してダイヤフラム11に作用している力が変化する。こ
の変化は流入空気の比重が大きくなつたとき圧力差(P
,−P2)が小さくなる方向におこり、結局上流弁5の
開口面積が重量流量に比例することになる。そして、こ
の開口面積に燃料流量が比例する様に燃料制御機構を結
合すれば吸入空気と燃料の重量比を大気の圧力及び温度
の変化に関係せず一定に保つことが出来るわけである。
このように第1図の装置は空気と燃料の比を一定に保持
するのに使用されるものであるが、流量検出弁5前後の
圧力差を十分大きくすることが出来ない場合は、開弁機
構3を駆動する負圧源P2が不足し、流量検出弁5の確
実な動作を得ることが困難となる。When the pressure difference (P1-P2) across the upstream valve 5 slightly deviates from a certain predetermined value, the diaphragm 11 is displaced, the valve 12 is moved, and the opening area of the variable orifice 13 between the CD chambers is displaced. The pressure Pn in chamber C changes between P1 and P2. As mentioned above, when the pressure difference (P, -P2) shifts and the pressure Pn in the C chamber changes, the diaphragm 9 of the valve opening mechanism 3 that communicates with it is displaced, and the upstream valve 5 eventually moves in the direction of correcting the shift amount. is activated. In this case, if there is a change in the temperature or pressure of the incoming air, the volume of the gas sealed in the bellows 16 changes, and the force acting on the diaphragm 11 from the bellows 16 via the valve 12 changes. This change is caused by the pressure difference (P
, -P2) decreases, and as a result, the opening area of the upstream valve 5 becomes proportional to the weight flow rate. If a fuel control mechanism is connected so that the fuel flow rate is proportional to this opening area, the weight ratio of intake air to fuel can be kept constant regardless of changes in atmospheric pressure and temperature.
In this way, the device shown in Figure 1 is used to maintain a constant ratio of air and fuel, but if the pressure difference before and after the flow rate detection valve 5 cannot be made sufficiently large, it is necessary to open the valve. The negative pressure source P2 that drives the mechanism 3 is insufficient, making it difficult to obtain reliable operation of the flow rate detection valve 5.
本発明は上記点に鑑み、流量検出弁5をバイパスする管
路を設けると共にその管路中に圧力差増倍機構内にて発
生する圧力を開弁機構3及びC室に作用させることによ
り、流量検出弁5前後の圧力差を十分大きくすることが
出来ない場合においても、開弁機構3の動作を確実に行
なうべく圧力を得るものである。In view of the above points, the present invention provides a conduit that bypasses the flow rate detection valve 5 and allows the pressure generated in the pressure difference multiplier mechanism to act on the valve opening mechanism 3 and the C chamber in the conduit. Even when the pressure difference before and after the flow rate detection valve 5 cannot be made sufficiently large, pressure is obtained so that the valve opening mechanism 3 can operate reliably.
以下本発明の構成を図面に示す実施例に従つて説明する
。第2図は本発明の第1の実施例を示すもので、同図に
於いて20は圧力差増倍機構で流量検出弁5の上流側と
中間室8を結ぶバイパス管路21の途中にベンチユリ一
管22を設け、且つその最狭部22aにオリフイス23
を設けることにより構成されている。DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of the present invention will be described below with reference to embodiments shown in the drawings. FIG. 2 shows a first embodiment of the present invention. In the figure, 20 is a pressure difference multiplier mechanism located in the middle of a bypass pipe 21 connecting the upstream side of the flow rate detection valve 5 and the intermediate chamber 8. A bench lily tube 22 is provided, and an orifice 23 is provided at the narrowest part 22a.
It is constructed by providing the following.
オリフイス23は管路24を介して開弁機構4のC室に
連通する。尚、上記ベンチユリ一管22の最狭部22a
にて検出される圧力は、第3図に示す如く中間室8の圧
力P2よりも低いP6である。このような構成に於いて
、サーボ機構4のダイヤフラム11にて検出される圧力
は流量検出弁5前後の圧力差(P,−P2)であり、圧
力差(P,−P2)に応じて可変オリフイス13の開口
面積が変化する。しかるにC室はD室を介して流量検出
弁5の上流側の圧力P,と、ベンチユリ一管22の最狭
部22aの圧力P6に連通しており、可変オリフイス1
3の間口面積に応じてC室の圧力Pnは(P1−P≦)
の間で変化する。結局、従来の場合のC室の圧力である
(P,−P±)の間の圧力に比し、(P2−P6)の分
だけ圧力差が増大することになり、流量検出弁5前後の
圧力差(P,−P2)が比較的小さくても開弁機構3の
動作は確実となる。尚、実施例はバイパス管路21の下
流側を中間室8に連通したが、流量調節弁6の下流側に
連通しても良く、この場合にはC室の圧力は最上流側の
圧力P,と最下流側の圧力P3よりも低い圧力Pくとの
間で変化するようになり、中間室8に連通した場合より
(P6−P6)の分だけ増加したものとなる。ところで
、上記第2図において、バイパス管路21を流れる空気
の量は、ベンチユリ一22の最狭部22aの断面積と圧
力差(P−P)により決まるが、(P−P)は小さく(
例えば300mmAq)、また、ベンチユリ一22の最
狭部22aの断面積も十分に小さく設計することができ
る(例えば1.5φ7ftm)ので、この空気流量はエ
ンジンのアイドリング時の空気流量に比べ少なくするこ
とができる。The orifice 23 communicates with chamber C of the valve opening mechanism 4 via a conduit 24. In addition, the narrowest part 22a of the bench lily tube 22
The pressure detected at is P6, which is lower than the pressure P2 in the intermediate chamber 8, as shown in FIG. In such a configuration, the pressure detected by the diaphragm 11 of the servo mechanism 4 is the pressure difference (P, -P2) before and after the flow rate detection valve 5, and is variable according to the pressure difference (P, -P2). The opening area of the orifice 13 changes. However, the C chamber communicates with the pressure P on the upstream side of the flow rate detection valve 5 and the pressure P6 at the narrowest part 22a of the bench lily pipe 22 via the D chamber, and the variable orifice 1
The pressure Pn of chamber C is (P1-P≦) according to the frontage area of 3.
Varies between. As a result, compared to the pressure between (P, -P±), which is the pressure in chamber C in the conventional case, the pressure difference increases by (P2-P6), and the pressure difference between before and after the flow rate detection valve 5 increases. Even if the pressure difference (P, -P2) is relatively small, the valve opening mechanism 3 can operate reliably. In the embodiment, the downstream side of the bypass pipe 21 is communicated with the intermediate chamber 8, but it may also be communicated with the downstream side of the flow control valve 6. In this case, the pressure in the C chamber is equal to the pressure P on the most upstream side. , and the pressure P, which is lower than the pressure P3 at the most downstream side, increases by (P6-P6) compared to when it communicates with the intermediate chamber 8. By the way, in FIG. 2, the amount of air flowing through the bypass pipe 21 is determined by the cross-sectional area of the narrowest part 22a of the bench lily 22 and the pressure difference (P-P), but (P-P) is small (
For example, 300 mmAq), and since the cross-sectional area of the narrowest part 22a of the bench lily 22 can be designed to be sufficiently small (for example, 1.5φ7ftm), this air flow rate should be smaller than the air flow rate when the engine is idling. I can do it.
また圧力差(P−P)は一定であり、したがつて、上記
バイパス管路21を流れる流量も一定であるので予めこ
の流量を計測して流量検出弁5による空気流量の計量値
を補正することができる。第4図及び第5図は本発明の
第2の実施例の圧力差増倍機構20を示すものである。Further, the pressure difference (P-P) is constant, and therefore the flow rate flowing through the bypass pipe 21 is also constant, so this flow rate is measured in advance and the measured value of the air flow rate by the flow rate detection valve 5 is corrected. be able to. 4 and 5 show a pressure difference multiplier mechanism 20 according to a second embodiment of the present invention.
この場合の圧力差増倍機構20は、バイパス管路21の
一部を成す管24に管24の内径よりその外径が小さい
管25を、夫々の中心線が直角に交わるように貫通させ
、管路24内に露出した管25の円筒面の下流側にオリ
フイス26を設けてなる。管24に流体が流れると管2
5のまわりの圧力分布は第6図のようになり、オリフイ
ス26のある下流側の圧力P6はP2よりも低くなる。
実験によると(P1−P6)は(P,−P2)の約1.
5倍であつた。従つて管25を開弁機構3及びサーボ機
構4のC室に連通すれば、第2図に示す第1の実施例と
同様の効果を得る事が出来る。第7図及び第8図は圧力
差増倍用ベンチユリ一管のひとつであり、第2図に示す
ベンチユリ一管22の最狭部22aに切かき27を穿設
したものである。In this case, the pressure difference multiplier mechanism 20 includes a tube 25 that has an outer diameter smaller than the inner diameter of the tube 24 passing through the tube 24 forming a part of the bypass conduit 21 so that their respective center lines intersect at right angles. An orifice 26 is provided on the downstream side of the cylindrical surface of the tube 25 exposed in the conduit 24. When fluid flows through tube 24, tube 2
The pressure distribution around 5 is as shown in FIG. 6, and the pressure P6 on the downstream side where the orifice 26 is located is lower than P2.
According to experiments, (P1-P6) is about 1.
It was 5 times hotter. Therefore, by communicating the pipe 25 with the valve opening mechanism 3 and the C chamber of the servo mechanism 4, the same effect as in the first embodiment shown in FIG. 2 can be obtained. FIGS. 7 and 8 show one type of bench lily tube for pressure difference multiplication, in which a notch 27 is bored in the narrowest part 22a of the bench lily tube 22 shown in FIG.
切かき27はベンチユリ一管22の下流側に開いた形状
になつており、オリフイス23はこの切かき27の中に
設けられている。これにより、開弁機構3の動作が確実
となる事は言うまでもなく、流体が管路24から最狭部
22aへ流入するときの流れの抵抗が減少し、サーボ機
構4の応答性が改善される。第9図及び第10図はベン
チユリ一管22と同じ作用をする機構を安価に製作する
方法を示したもので、パイプ28の一部を第10図の如
く偏平につぶして、この部分にオリフイス23を設けた
ものである。The notch 27 is open to the downstream side of the bench lily tube 22, and the orifice 23 is provided within this notch 27. This not only ensures reliable operation of the valve opening mechanism 3, but also reduces flow resistance when fluid flows from the pipe line 24 to the narrowest part 22a, improving the responsiveness of the servo mechanism 4. . Figures 9 and 10 show a method for inexpensively manufacturing a mechanism that has the same function as the bench lily pipe 22. A part of the pipe 28 is flattened as shown in Figure 10, and an orifice is installed in this part. 23 is provided.
第11図及び第12図は圧力差増倍機構20の更に他の
実施例を示したものである。11 and 12 show still another embodiment of the pressure difference multiplication mechanism 20. FIG.
第11図に示す実施例は第2図、第7図及び第8図に示
すベンチユリ一管22の原理と第4図及び第5図に示し
た機構の原理を組み合わせたものである。一方第12図
はベンチユリ一管222個と第4図及び第5図に示す機
構を組み合わせたものである。両者はいずれも圧力差の
増倍率の増加を狙つたものである。以上要するに本発明
は流体の流路に上流弁と下流弁を配し、上流弁(流量検
出弁)の前後の圧力差を流体を用いたフイードバツクコ
ントロール機構によつて一定値に保ち、上流弁の開口面
積から流体の流量を測定する面積式流量計量装置におい
て、上流弁をバイパスする管路を設けると共に流体の流
れを利用して圧力差を増倍する機構を設け、この機構内
に発生する圧力を利用して開弁機構を駆動させるように
したから、流量検出弁前後の圧力差が比較的小さい場合
に於いても開弁機構の安定した動作を得る事が出来、こ
の種計量装置の性能が向上する。The embodiment shown in FIG. 11 combines the principle of the bench lily tube 22 shown in FIGS. 2, 7, and 8 with the principle of the mechanism shown in FIGS. 4 and 5. On the other hand, FIG. 12 shows a combination of 222 bench lilies and the mechanisms shown in FIGS. 4 and 5. Both are aimed at increasing the multiplication factor of the pressure difference. In summary, the present invention arranges an upstream valve and a downstream valve in a fluid flow path, and maintains the pressure difference before and after the upstream valve (flow rate detection valve) at a constant value by a feedback control mechanism using fluid. In area type flow metering devices that measure the flow rate of fluid from the opening area of the valve, a conduit is provided that bypasses the upstream valve, and a mechanism is provided that uses the fluid flow to multiply the pressure difference. Since the valve opening mechanism is driven using the pressure of performance is improved.
第1図は従来の装置を示す縦断面図、第2図は本発明に
係る第1の実施例を示す縦断面図で、第3図はそのベン
チユリ一管内の圧力を示す図、第4図は第2の実施例を
示す圧力差増倍機構の縦断面図で、第5図はそのX−X
線断面図、第6図は同実施例の原理を示す圧力分布図、
第7図は第3の実施例を示す同機構の縦断面図で、第8
図はそのY−Y線断面図、第9図は第4の実施例を示す
同機構の縦断面図で、第10図はそのZ−Z線断面図、
第11図は第5の実施例を示す同機構の縦断面図、第1
2図は第6の実施例を示す同機構の縦断面図である。
1・・・・・・空気吸入管、2・・・・・・フイードバ
ツクコントロール機構、3・・・・・・開弁機構、4・
・・・・・差圧コントロール用サーボ機構、5・・・・
・・上流弁(流量検出弁)、6・・・・・・下流弁(流
量調節弁)、20・・・・・・圧力差増倍機構、21・
・・・・・バイパス管路、22・・・・・・ベンチユリ
一管、22a・・・・・・最狭部、23,26・・・・
・・オリフイス、27・・・・・・切かき部。Fig. 1 is a longitudinal cross-sectional view showing a conventional device, Fig. 2 is a longitudinal cross-sectional view showing a first embodiment of the present invention, Fig. 3 is a view showing the pressure inside the bench lily, and Fig. 4 is a longitudinal cross-sectional view showing a conventional device. is a vertical sectional view of the pressure difference multiplier mechanism showing the second embodiment, and FIG.
A line sectional view, FIG. 6 is a pressure distribution diagram showing the principle of the same embodiment,
FIG. 7 is a vertical sectional view of the same mechanism showing the third embodiment, and
The figure is a sectional view taken along the Y-Y line, FIG. 9 is a longitudinal sectional view of the same mechanism showing the fourth embodiment, and FIG. 10 is a sectional view taken along the Z-Z line.
FIG. 11 is a longitudinal cross-sectional view of the same mechanism showing the fifth embodiment;
FIG. 2 is a longitudinal sectional view of the same mechanism showing a sixth embodiment. DESCRIPTION OF SYMBOLS 1... Air suction pipe, 2... Feedback control mechanism, 3... Valve opening mechanism, 4...
...Servo mechanism for differential pressure control, 5...
...Upstream valve (flow rate detection valve), 6...Downstream valve (flow rate adjustment valve), 20...Pressure difference multiplication mechanism, 21.
... Bypass pipe, 22 ... Bench lily pipe, 22a ... Narrowest part, 23, 26 ...
... Orifice, 27 ... Cutting part.
Claims (1)
検出弁)の前後の圧力差を流体を用いたフィードバック
コントロール機構によつて一定値に保ち、上流弁の開口
面積から流体の流量を測定する面積式流量計量装置にお
いて、上流弁をバイパスする管路を設けると共に管路中
に流体の流れを利用して圧力差を増倍する機構を設け、
この機構内に発生する圧力を利用して開弁機構を駆動さ
せるようにした事を特徴とする面積式流量計量装置。1. An upstream valve and a downstream valve are arranged in the fluid flow path, and the pressure difference before and after the upstream valve (flow rate detection valve) is kept at a constant value by a feedback control mechanism using fluid, and the fluid is determined from the opening area of the upstream valve. In the area type flow metering device for measuring the flow rate of , a pipe line is provided that bypasses the upstream valve, and a mechanism is provided in the pipe line that uses the flow of fluid to multiply the pressure difference,
An area type flow metering device characterized in that the pressure generated within this mechanism is used to drive a valve opening mechanism.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51116810A JPS591965B2 (en) | 1976-09-28 | 1976-09-28 | Area flow metering device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51116810A JPS591965B2 (en) | 1976-09-28 | 1976-09-28 | Area flow metering device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5342071A JPS5342071A (en) | 1978-04-17 |
JPS591965B2 true JPS591965B2 (en) | 1984-01-14 |
Family
ID=14696204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP51116810A Expired JPS591965B2 (en) | 1976-09-28 | 1976-09-28 | Area flow metering device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS591965B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63195472A (en) * | 1987-02-04 | 1988-08-12 | Shimura Packing Kk | Resin made outer cover for gasket and its manufacture |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3153049T1 (en) * | 1981-11-20 | 1983-11-17 | Mitsubishi Light Metal Industries Ltd., Tokyo | METHOD FOR PRODUCING A LAMINATED PANEL |
JPS6044341A (en) * | 1983-08-20 | 1985-03-09 | 大同鋼板株式会社 | Manufacture of metallic plastic composite material |
JPS6048351A (en) * | 1983-08-26 | 1985-03-16 | 大同鋼板株式会社 | Manufacture of metallic plastic composite material |
JPS62178320A (en) * | 1986-01-31 | 1987-08-05 | Nisshin Steel Co Ltd | Method of adhesion between denatured polyolefin resin and metal |
JP2596086B2 (en) * | 1988-08-30 | 1997-04-02 | 三菱化学株式会社 | Manufacturing method of composite board |
JPH02196650A (en) * | 1989-01-26 | 1990-08-03 | Kawasaki Steel Corp | Production of weldable laminated metal plate |
JPH04185336A (en) * | 1990-11-16 | 1992-07-02 | Sekisui Jushi Co Ltd | Manufacture of metal laminated sheet |
-
1976
- 1976-09-28 JP JP51116810A patent/JPS591965B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63195472A (en) * | 1987-02-04 | 1988-08-12 | Shimura Packing Kk | Resin made outer cover for gasket and its manufacture |
Also Published As
Publication number | Publication date |
---|---|
JPS5342071A (en) | 1978-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2775231A (en) | Pneumatic control apparatus | |
US4194478A (en) | Air-fuel ratio control system for an internal combustion engine | |
US4200120A (en) | Area type flow rate measuring device | |
JPS591965B2 (en) | Area flow metering device | |
US5795998A (en) | Flow sensor and fuel control system | |
US4058100A (en) | Intake air flow rate measuring device for internal combustion engine | |
US4186698A (en) | Engine exhaust gas recirculation control system | |
US4273150A (en) | Leverless pressure transducer | |
US4285312A (en) | Air flow measuring device for internal combustion engines | |
US4085723A (en) | Fuel control system for internal combustion engine | |
JPS5945811B2 (en) | Gas turbine fuel control device with bleed passage | |
US4253440A (en) | Fuel supply apparatus for internal combustion engines | |
US2668697A (en) | Density responsive valve for carburetors | |
US4346727A (en) | Apparatus for measuring the amount of fluid supplied by a fluid supply device | |
JPS585079Y2 (en) | air supply control device | |
US4114575A (en) | Exhaust pressure regulating system | |
JPS5942890B2 (en) | control valve device | |
GB1568794A (en) | Flow rate control device | |
JPS591964B2 (en) | Area flow metering device | |
US2419523A (en) | Carburetor | |
JPH02553B2 (en) | ||
JP2572773B2 (en) | Zero governor for combustion equipment | |
JPH0141007Y2 (en) | ||
US4187816A (en) | Air-fuel ratio controlling system for an internal combustion engine | |
JPS5854670Y2 (en) | Control valve of flow metering device |