JPS59183327A - System for stabilizing encoder detection signal - Google Patents
System for stabilizing encoder detection signalInfo
- Publication number
- JPS59183327A JPS59183327A JP5902783A JP5902783A JPS59183327A JP S59183327 A JPS59183327 A JP S59183327A JP 5902783 A JP5902783 A JP 5902783A JP 5902783 A JP5902783 A JP 5902783A JP S59183327 A JPS59183327 A JP S59183327A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- encoder
- output signal
- maximum
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/244—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
- G01D5/24471—Error correction
- G01D5/24476—Signal processing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/244—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
- G01D5/24471—Error correction
- G01D5/2448—Correction of gain, threshold, offset or phase control
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
Abstract
Description
【発明の詳細な説明】
(技術分野)
不発1jJ−1は光ティスフ装置、プリンタ等に用いら
れるエンコーダの出力を安定化するエンコーダ検出信号
安定化ノラ式に関する。DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The FUJIJ-1 relates to a Nora type encoder detection signal stabilization system that stabilizes the output of an encoder used in optical tisf devices, printers, and the like.
(σC米づ支e::j )
ンサで検出するものがあり、その出力変動を補正する方
式としてはダミーのセンサを設けてこσ)センサの出力
により位置検出用センサθ)出力変動を補正する方式が
ある。(σC rice support e::j) There is a sensor that detects the sensor, and the method to correct the output fluctuation is to install a dummy sensor.σ) Position detection sensor θ) Corrects the output fluctuation using the sensor output. There is a method.
しかしこの方式ではターだ−のセンサの出力により位置
検出用センサσ)出力変動を補正するσ)で、両センザ
の特性がそろっていなければならな(・という第1の問
題があり、さらにリニアスケール上の汚れ具合及び取付
位置がそろってし・なけ;h、 ki ’Aらないとい
う第2の問題かある。第1 crン問題に対しては1つ
の半導体セル上に両センサを構成してバラツキを押えろ
と(・う方法かある。■−力・しこθ)方法では半導体
セルの大きさの点から両十ノツーを近接しなげればなら
ないため、両セン勺−σ)ヲ江こり等による汚れによっ
て出力信号の変動中爪カー大きくなり、つまりS/Nが
悪(なり、出力変動を補、+F、 l。However, in this method, the first problem is that the characteristics of both sensors must be the same, and the characteristics of both sensors must be the same. The second problem is that the level of contamination on the scale and the mounting position must be aligned. There is a way to suppress the variation by using the ■-force/force θ) method, which requires the two to be placed close to each other due to the size of the semiconductor cell. Due to contamination caused by bumps, etc., the output signal becomes larger during fluctuations, which means that the S/N ratio is poor.
きれ1よいとい5問題が発生ずる。At most 5 problems will occur.
(目的)
本兄明はエンコーダに1こり等による汚牙′1べ、−1
4又スの変動を・少なくすることができるエンコーダ検
出袷号安定化力式を提供することを目的とする。(Purpose) My brother Akira's encoder is contaminated by 1 scratch etc., -1
It is an object of the present invention to provide an encoder detection armature stabilizing force formula that can reduce fluctuations in the four-pronged path.
(イ17+成 )
以下図面を参照しながら本発明につし・て実施例をあけ
て説明す4フ。(A17+Construction) The present invention will be described below with reference to the drawings, with reference to the embodiments.
m 11’Z、lにインクリメンタル型リニアエンコー
ダの一例を示ず。An example of an incremental linear encoder is not shown in m 11'Z, l.
このエンコーダ10は格子状のマークをイ」シたりご/
スケール11とセンザブロック12とで栴成さ第1、セ
ンザブロック12は発光素子16と受光素子1/iが・
セノザマスク15のスリットを介して対向させて門已j
叙されたものである。このセンザブロック12(・まキ
)・リッジ16に固定さJ″l、キャリッジ16は線形
のロッド17にリニアベアリングにより移動自在に支搗
さねてし・て、駆動の例えばリニ7モークによりロット
17に沿って直線運動を行う。リニアスケール11はロ
ード17と平行に配設され、センザブロック12&’j
、’Jニアスクール11に跨かつて(・て発光索子16
とセンザマスク15との間にリニアスケール11か介在
される。このセンザブロック12はキャリッジ16の直
線速動に伴なって移動し、発光索子13、センザマスク
15及び受光素子1/lでリニアスケール11上のマー
クを検出することによってキャリッジ16の位置検出を
行う。This encoder 10 can be used to mark grid-like marks.
The first sensor block 12 is composed of the scale 11 and the sensor block 12, and the sensor block 12 has the light emitting element 16 and the light receiving element 1/i.
Facing each other through the slit of Cenoza Mask 15
It was ordained. This sensor block 12 is fixed to the ridge 16, and the carriage 16 is movably supported on a linear rod 17 by a linear bearing, and is driven by, for example, a linear motor. A linear movement is performed along the lot 17. The linear scale 11 is arranged parallel to the load 17, and the sensor block 12&'j
,'J Near School 11
A linear scale 11 is interposed between the sensor mask 15 and the sensor mask 15 . This sensor block 12 moves along with the linear speed movement of the carriage 16, and detects the position of the carriage 16 by detecting marks on the linear scale 11 with the light emitting cable 13, sensor mask 15, and light receiving element 1/l. conduct.
このエンコーダ10はリニアスケール11カムキ出しに
なって使わJする場合が多く、リニアスケール11上に
ほこりかあった」島台ある(・はりニアスケール11の
取句位置かずれた場合には受光素子14の出力か変動す
る。この受光素子14の出力は例えは第2図のように零
レベルで矩形波に波形整形さ〕1て位置検出信号として
用し・られるか、受光素子14の出力振幅が変動する(
第2図では零レベルの変動として示しである)ことによ
りδなる位置誤差が生じてしまう。またキャリノ/16
の位置制御をするため受光素子14の出力信号を微分し
て速度信号として使う場合も受光素子14の出力振幅が
変動すると速度信号の変動が太き(なり位置制御か正常
に行なえな(1ヨる州北性かある。This encoder 10 is often used with the linear scale 11 protruding, and if there is dust on the linear scale 11. The output of the light receiving element 14 fluctuates.For example, the output of the light receiving element 14 may be waveform-shaped into a rectangular wave at zero level as shown in FIG. changes (
In FIG. 2, this is shown as a zero-level fluctuation), resulting in a position error of δ. Also Carino/16
Even when the output signal of the light-receiving element 14 is differentiated and used as a speed signal for position control, if the output amplitude of the light-receiving element 14 fluctuates, the speed signal will fluctuate too much (and the position control may not be performed normally (1st yo). There are some northern states.
第6図は本発明の一実施例を示し、第4図(:J、その
タイムチャートである。発光索子16は抵抗18を介し
て直流’屯@ v。0により駆動され、受光素子14の
出力信号は演算増幅器19及び抵抗20よりなる前置増
幅器21で増幅され1.さらに演算増幅器22及び抵抗
26〜26よりなる次段の増幅器27により増幅される
。この増幅器27の出力信号A NA L QCは一定
の環境条件では振幅もバイアスも正規の大きさに調整さ
れており最大値へと最小値Bが等しくなっている。この
出力信号ANALOGは演算増幅器−28及び抵抗29
〜62よりなるバイアス補正回路33と、演算増幅器6
4、光電素子(例えばcdsオプトフイソレータ)65
及び抵抗36〜68よりなるAGC(自動利得慣]御ン
回路69を経て出力さf(、、AGC回路69は振幅補
正回路を構成している。FIG. 6 shows an embodiment of the present invention, and FIG. 4 (:J) is a time chart thereof. The output signal of 1 is amplified by a preamplifier 21 consisting of an operational amplifier 19 and a resistor 20, and is further amplified by the next stage amplifier 27 consisting of an operational amplifier 22 and resistors 26 to 26.The output signal of this amplifier 27 is A NA Under certain environmental conditions, the amplitude and bias of LQC are adjusted to normal values, and the maximum value and minimum value B are equal.This output signal ANALOG is output from the operational amplifier 28 and the resistor 29.
A bias correction circuit 33 consisting of ~62 and an operational amplifier 6
4. Photoelectric element (e.g. CDS optofisolator) 65
and an AGC (automatic gain adjustment) control circuit 69 consisting of resistors 36 to 68, and output f(, . The AGC circuit 69 constitutes an amplitude correction circuit.
キャリッジ16が移動していない状態ではスタート信号
STA RTが到来して(・なし・ので、フリップフロ
ッグ40,41がリセットさJl、スイッチSWE’、
SWFがオフすると同時にスイッチSWDがインバー
タ42の出力によりオンする。よって直流電源Eの電圧
がAGC回路69にAGC;信号として入力され、直流
電源43の電圧は正規のA、Bの絶対値の和IAI +
IBIに設定されている。この時AGC回路69の出
力(E号SIGは増幅器27の出力信号ANALOCと
同一になる。When the carriage 16 is not moving, the start signal STA RT arrives (no), so the flip-flops 40 and 41 are reset Jl, switch SWE',
At the same time as SWF is turned off, switch SWD is turned on by the output of inverter 42. Therefore, the voltage of the DC power supply E is input to the AGC circuit 69 as an AGC signal, and the voltage of the DC power supply 43 is the sum of the absolute values of normal A and B IAI +
IBI is set. At this time, the output of the AGC circuit 69 (No. E SIG) becomes the same as the output signal ANALOC of the amplifier 27.
次にキャリッジ16が移動してスタート信号が到来する
と、第4図に示ずタイムチャ〜1・通りに動作する。す
なわち増幅器27の出力信号A’NALOGはコンパレ
ーク44により零レベルと比11戊さ」1て矩形波5N
SA K波形整形さね、Dフリップフロッグ45゜46
及びアンド回路47よりなるデジタル微分回路48にテ
ハルス発生回路49からのクロックパルスGLKにより
微分される。フリップフロッグ41はデジタル微分回路
48の出力パルスDEF Kより反転されてJ曽幅器2
7の出力信号ANALOGが奇数ザーイクルと偶数サイ
クルとの(・ずねであるかを判別し、奇数サイクルで非
反転出力ODDが生じて偶数サイクルで反転出力EVE
Nが生ずる。そして奇数サイクルではフリップフロップ
41の非反転出力○DDによりスイッチSWAがオンし
、ピークホールド回路50゜51が増幅器27の出力信
号ANALOGの最大値A及び最lh値Bを各々検出す
る。偶数サイクルではフリップフロッグ410反転出力
EVEN KよりスイノチSWBかオンし、ピークホー
ルド回路52.53が増幅器27の出力信号ANALO
Cの最大値A及び最小値Bを各々検出する。−力、Dフ
リップフロップ54はパルス発生回WJ49からのクロ
ックパルスGLKによりデジタル微分回路48の出力D
EFをラッチし、7ンドケート55はフリップフロップ
41.54の非反転出力のアンドをとってケートパルス
αを発生する。Next, when the carriage 16 moves and a start signal arrives, it operates according to time chart 1, not shown in FIG. In other words, the output signal A'NALOG of the amplifier 27 is set to a zero level by the comparator 44, and the ratio is 11 to the zero level.
SA K waveform shaping, D flip frog 45°46
The signal is differentiated by a clock pulse GLK from a Tehalus generating circuit 49 into a digital differentiating circuit 48 consisting of an AND circuit 47 and an AND circuit 47 . The flip-flop 41 is inverted from the output pulse DEF K of the digital differentiator 48 and sent to the J width divider 2.
It is determined whether the output signal ANALOG of 7 is a difference between an odd number cycle and an even number cycle, and a non-inverted output ODD is generated in the odd number cycle and an inverted output EVE is generated in the even number cycle.
N is generated. In odd-numbered cycles, the switch SWA is turned on by the non-inverting output DD of the flip-flop 41, and the peak hold circuits 50 and 51 detect the maximum value A and the maximum lh value B of the output signal ANALOG of the amplifier 27, respectively. In even cycles, the flip-flop 410 inverted output EVEN K turns on Suinochi SWB, and the peak hold circuits 52 and 53 output the amplifier 27 output signal ANALO.
The maximum value A and the minimum value B of C are respectively detected. - output D of the digital differentiation circuit 48 is output by the clock pulse GLK from the pulse generation circuit WJ49.
EF is latched, and the seventh gate 55 ANDs the non-inverted outputs of the flip-flops 41 and 54 to generate a gate pulse α.
このケートパルスαは微分回路56により微分されてリ
セット信号D EFaとなり、ピークホールド回路50
、51を偶数サイクルの終了後に(奇数ザ′イクルの
最初に)リセットする。また7ンドゲート57はフリッ
プフロッグ41の反転出力とフリップフロッグ54の非
反転出力とのアンドをとってゲートパルスβを発生し、
とのケートパルスβは微分回路58により面分さねてリ
セット信号DEFβとなりピークホールド回路52.5
3を奇数サイクルの終了後に(偶数サイクルの最初に)
り十ノドする。スイッチSWI、SWJはフリップフロ
ッグ41の非反転出力ODDによりと1数ザイクルで゛
(ピークホールド回路50.51の最大11C1、最l
」・値検出動作時に)オンし、スイッチSWG、SV/
Hはツリノブフロップ410反転出力E V E Nに
より偶数サイクルで(ピークホールド回路52 、53
の最大値、最l」・値検出動作時に9オンする−6そ、
して減算回路59は奇数サイクルではピークイールド回
路52の出力からピークホールド回路53の出力を減算
することにより増幅器27の出力信号ANALOGの各
偶数サイクルでの最大値A及び最/J%値Bの絶対値の
差を求め、偶数サイクルではピークホールド回路50の
出力からピークホールド回路51の出力を減算すること
により増幅器27の出力信号ANALOGの各奇数サイ
クルでの最大値A及び最小値Bの絶対値の差を求める。This gate pulse α is differentiated by a differentiating circuit 56 and becomes a reset signal DEFa, which is output by a peak hold circuit 50.
, 51 after the end of the even cycle (at the beginning of the odd cycle). Furthermore, the seventh AND gate 57 generates a gate pulse β by ANDing the inverted output of the flip-frog 41 and the non-inverted output of the flip-frog 54.
The gate pulse β is divided by the differentiating circuit 58 and becomes the reset signal DEFβ by the peak hold circuit 52.
3 after the end of the odd cycle (at the beginning of the even cycle)
10 nods. Switches SWI and SWJ are activated in several cycles by the non-inverting output ODD of the flip-flop 41 (maximum 11C1 of peak hold circuit 50, 51, maximum
”・During value detection operation) turns on and switches SWG, SV/
H is output in even cycles (peak hold circuits 52, 53
Maximum value of ', maximum l' - 9 turns on during value detection operation -6 so,
By subtracting the output of the peak hold circuit 53 from the output of the peak yield circuit 52 in odd cycles, the subtraction circuit 59 obtains the maximum value A and the maximum /J% value B of the output signal ANALOG of the amplifier 27 in each even cycle. The absolute value of the maximum value A and the minimum value B of the output signal ANALOG of the amplifier 27 in each odd cycle is calculated by calculating the difference in absolute values and subtracting the output of the peak hold circuit 51 from the output of the peak hold circuit 50 in the even cycles. Find the difference between.
この減算回路59の出力信号はスイッチSWFを介して
バイアス補正回路66にバイアス補正信号として送らね
、増幅器27の出力信号に加えられてその振幅が補正さ
れる。また加算回路60はfl−数サイクルではピーク
ホールド回路52.53の出力を加算することにより増
幅器27の出力信号ANALOGの各偶数サイクルでの
最大il&A及び最小値Bの絶対値の札を氷め、偶数サ
イクルではピークホールド臣1路50,51の出力を加
qすることにより増幅器27の出力信号ANALOGの
各奇数サイクルでの最大値A及び最l」\値Bの絶対値
の和を求める。この加算回路60の出力信号はスイッチ
SWEを介してAGO回路69にAGO信号として送も
ね、バイアス補正回路63の出力信号の振幅が補正され
る。またフリップフロップ40はフリップフロップ41
の最初の非反転出力○DD及びデジタル微分回路48の
出力パルスDEFにより最初の奇数サイクルの終了後(
最初の偶数サイクルの初期)にセットさλ1てイネーブ
ル信号ENABLEを発生し、この信号1州ABLEに
よりスイッチSWE、SWFがオンしてスイッチSWD
がオフする。したがって増幅器27の出力信号に対する
バイアス補正及び振幅補正はキャリッジ16が動き始め
た(センサブロック12か動き始めた)後最初の1サイ
クルでピークホールド回″#′J50.51か動作して
から開始され、つまり補市用情号か発生ずる前には行な
われな〜・。The output signal of the subtraction circuit 59 is sent as a bias correction signal to the bias correction circuit 66 via the switch SWF, and is added to the output signal of the amplifier 27 to correct its amplitude. Further, the adder circuit 60 freezes the absolute values of the maximum il&A and the minimum value B in each even cycle of the output signal ANALOG of the amplifier 27 by adding the outputs of the peak hold circuits 52 and 53 in fl-number cycles. In even cycles, the sum of the absolute values of the maximum value A and the maximum value B of the output signal ANALOG of the amplifier 27 in each odd cycle is determined by adding the outputs of the peak hold circuits 50 and 51. The output signal of the adder circuit 60 is sent as an AGO signal to the AGO circuit 69 via the switch SWE, and the amplitude of the output signal of the bias correction circuit 63 is corrected. Also, the flip-flop 40 is a flip-flop 41
After the first odd cycle is completed by the first non-inverted output ○DD of
The enable signal ENABLE is generated by setting λ1 at the beginning of the first even-numbered cycle, and this signal ABLE turns on the switches SWE and SWF.
turns off. Therefore, bias correction and amplitude correction for the output signal of the amplifier 27 are started after the peak hold cycle "#'J50.51" is operated in the first cycle after the carriage 16 starts moving (the sensor block 12 starts moving). In other words, it must not be done before the supplementary city information is issued.
この実施例の特徴の1つはバイアス補正を行なってから
AGC回路で振幅補正を行うと(・うことにある。これ
を逆にすると、増幅器27からバイアスがずれた信号が
出た」動台AGC回路でバイアス分まで補正がががって
しま(・、それたけバイアス補正かずれることになって
最終的な出方信号SIGのバイアスが結局はずれてしま
う。この実施例の判徴の他の1っは出刃S工Gを使わな
いでバイアス補正及び振幅補正を行うことにある。出刃
SZCをフィードバックして上述のように奇数サイクル
と偶数サイクルでバイアス補正及び振幅補正を行うと、
例えば偶数サイクルで補正した信号が次の奇数サイクル
で補正すべき補正量の検出対象となるので、・もとの信
号ANALOGが変化してし゛てもネ11百Fにより変
化していないものとして判断してしまし・、結局は出力
S、TGが補正できな(なる。One of the features of this embodiment is that the AGC circuit performs amplitude correction after bias correction.If this was reversed, a signal with a bias deviation was output from the amplifier 27. In the AGC circuit, the correction is offset by the amount of bias (-, the bias correction is shifted by that much, and the bias of the final output signal SIG ends up being off.Other characteristics of this embodiment The first is to perform bias correction and amplitude correction without using Deba S-G.If Deba SZC is fed back and bias correction and amplitude correction are performed in odd-numbered cycles and even-numbered cycles as described above,
For example, since the signal corrected in an even cycle becomes the target of detection of the correction amount to be corrected in the next odd cycle, even if the original signal ANALOG changes, it is determined that it has not changed due to the However, in the end, the outputs S and TG cannot be corrected.
また上記実施例は光方式のセンサを有するエンコーダに
対しての実施例であるが、その他の方式例えばパーミア
ンス変化をオリ用するセンサを持つエンコーダに対して
も同様に本発明を適用することができる。さらに本発明
はりニアエンコーダ以外の回転型エンコーダ等に対して
も同様に適用することができる。Further, although the above embodiment is an embodiment for an encoder having an optical type sensor, the present invention can be similarly applied to an encoder having a sensor using other types, for example, a permeance change. . Furthermore, the present invention can be similarly applied to rotary encoders other than linear encoders.
(効果)
以上のように本発明によるエンコーダ検出信号安定化方
式にあってはエンコーダの出力信号の最大値及び最小価
の絶対値の差と相を求めてエンコーダの出力信号のバイ
ア、ス補正及び振幅補正を行うので、エンコーダにほこ
り等による汚れ、取付誤差等の機械的なバラツキ、温度
による変化、経時変化があってもエンコーダの出力変動
を少な(することができ、ダミーのセンサも不要となる
。(Effects) As described above, in the encoder detection signal stabilization method according to the present invention, the difference and phase between the absolute values of the maximum value and the minimum value of the encoder output signal are determined, and the bias and bias correction of the encoder output signal is performed. Since amplitude correction is performed, the encoder output fluctuation can be minimized even if the encoder is contaminated by dust, mechanical variations such as installation errors, changes due to temperature, or changes over time, and a dummy sensor is not required. Become.
第1図(al〜(d)はエンコーダの一例を示す斜視図
及びその谷部を示すM面図及び正面図、第2図はエンコ
ーダの出力変動を説明するためのタイムチャート、第6
図は本発明の一実施例を示すブロック図、第4図は同実
施例のタイムチャートである。
36・・・バイアス補正回路、69・・・AGC回路、
50〜56・・・ピークホールド回路、59・・・減算
回路、60・・・加搬1回路。Figures 1 (al to d) are a perspective view showing an example of an encoder, and an M-plane view and a front view showing valleys thereof; Figure 2 is a time chart for explaining output fluctuations of the encoder;
The figure is a block diagram showing one embodiment of the present invention, and FIG. 4 is a time chart of the same embodiment. 36... Bias correction circuit, 69... AGC circuit,
50 to 56...Peak hold circuit, 59...Subtraction circuit, 60...1 addition circuit.
Claims (1)
大イ1α最/」・値検出手段と、この最大値最小値検出
手段で検出した最大値と最小値との絶対値の差を求めて
この差により前記エンコーダの出力信号のバイアスを補
正するバイアス補正手段と、前記最大値最小値検出手段
で検出した最大値及び最小値のN’llを求めてこの相
により前記エンコーダの出力信号のバイアスを補正する
バイアス補正手段とを備えたエンコーダ検出信号安定北
方4式。A maximum value detection means for detecting the maximum value and minimum value of the output signal of the encoder and the absolute value difference between the maximum value and the minimum value detected by the maximum value and minimum value detection means are determined. Bias correction means for correcting the bias of the output signal of the encoder based on the difference, and N'll of the maximum value and minimum value detected by the maximum value and minimum value detection means, and the bias of the output signal of the encoder is determined by this phase. 4 types of encoder detection signal stability Kitakata equipped with bias correction means for correction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5902783A JPS59183327A (en) | 1983-04-04 | 1983-04-04 | System for stabilizing encoder detection signal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5902783A JPS59183327A (en) | 1983-04-04 | 1983-04-04 | System for stabilizing encoder detection signal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59183327A true JPS59183327A (en) | 1984-10-18 |
Family
ID=13101390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5902783A Pending JPS59183327A (en) | 1983-04-04 | 1983-04-04 | System for stabilizing encoder detection signal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59183327A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19502399A1 (en) * | 1994-01-28 | 1995-10-19 | Mitsubishi Electric Corp | Position reporting device with detection of an absolute position and associated method for error correction |
EP2040041A3 (en) * | 2007-09-22 | 2013-05-22 | Dr. Johannes Heidenhain GmbH | Position measuring device |
-
1983
- 1983-04-04 JP JP5902783A patent/JPS59183327A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19502399A1 (en) * | 1994-01-28 | 1995-10-19 | Mitsubishi Electric Corp | Position reporting device with detection of an absolute position and associated method for error correction |
DE19502399C2 (en) * | 1994-01-28 | 1998-04-09 | Mitsubishi Electric Corp | Method for correcting errors in a position sensor |
EP2040041A3 (en) * | 2007-09-22 | 2013-05-22 | Dr. Johannes Heidenhain GmbH | Position measuring device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9091566B2 (en) | Binarization circuit for binarizing detection signal representing rotation or movement of object | |
JPS59183327A (en) | System for stabilizing encoder detection signal | |
JP2005127762A (en) | Sensor signal processing apparatus | |
JP5162739B2 (en) | Encoder signal processing method, encoder device, and servo motor | |
JP2004219333A (en) | Encoder output signal correcting device | |
JP3318843B2 (en) | Position detector origin detection method and detection system | |
JP2008003041A (en) | Position detecting method and imaging device | |
JP2584747B2 (en) | Image processing device | |
JPS644680B2 (en) | ||
JP3260533B2 (en) | Current detector | |
JP2810695B2 (en) | Zero detection method for incremental magnetic encoder | |
JP3339214B2 (en) | Servo motor control device | |
JP3448664B2 (en) | Multi-turn absolute encoder | |
JPS6184519A (en) | Position signal detecting device | |
JPH0620408A (en) | Magnetic disk device | |
JPH1188165A (en) | Input device and input method for analog signal and recording medium | |
JPS61223603A (en) | Mark detecting machine | |
JPH0756941B2 (en) | Automatic correction method in AD converter | |
JP2979433B2 (en) | Head speed detection device for optical disk drive | |
JP2007101297A (en) | Compensating circuit of encoder output signal | |
JP2005257330A (en) | Position detector, camera and interchangeable lens | |
JP4543420B2 (en) | Linear scale | |
JPH03251482A (en) | Serial printer | |
JP3267195B2 (en) | Photoelectric smoke detector | |
WO2006025134A1 (en) | Semiconductor integrated circuit having jitter measuring function |