[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS59187614A - Drawn polyethylene material having ultrahigh molecular weight - Google Patents

Drawn polyethylene material having ultrahigh molecular weight

Info

Publication number
JPS59187614A
JPS59187614A JP5997683A JP5997683A JPS59187614A JP S59187614 A JPS59187614 A JP S59187614A JP 5997683 A JP5997683 A JP 5997683A JP 5997683 A JP5997683 A JP 5997683A JP S59187614 A JPS59187614 A JP S59187614A
Authority
JP
Japan
Prior art keywords
molecular weight
stretching
ratio
ultra
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5997683A
Other languages
Japanese (ja)
Other versions
JPH0240763B2 (en
Inventor
Masanori Motooka
本岡 正則
Hitoshi Mantoku
万徳 均
Takao Ono
隆夫 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP5997683A priority Critical patent/JPS59187614A/en
Priority to DE8383307928T priority patent/DE3363610D1/en
Priority to EP83307928A priority patent/EP0115192B2/en
Priority to US06/566,302 priority patent/US4545950A/en
Publication of JPS59187614A publication Critical patent/JPS59187614A/en
Priority to US06/755,590 priority patent/US4612148A/en
Publication of JPH0240763B2 publication Critical patent/JPH0240763B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain easily the titled drawn polyethylene material having a high elasticity and tensile strength, by melt extruding polyethylene (PE) having an ultrahigh molecular weight and a specific intrinsic viscosity and a low-melting paraffinic wax, drafting the extrudate, solidifying the drafted extrudate under cooling, and drawing the solidified extrudate under specific conditions. CONSTITUTION:A drawn polyethylene material, having an ultrahigh molecular weight, and obtained by melt kneading a mixture of (A) 15-80pts.wt. polyethylene having an ultrrahigh molecular weight and >=5dl/g intrinsic viscosity with (B) 85-20pts.wt. paraffinic wax having 40-120 deg.C melting point and <=2,000 mol.wt. at 190-280 deg.C temperature in a screw extruder, extruding the resultant kneaded mixture through a die at 210-300 deg.C, drafting the resultant undrawn extrudate at least >1 drafting ratio, solidifying the drafted extrudate under cooling, and drawing the solidified extrudate at least >3 drawing ratio.

Description

【発明の詳細な説明】 本発明は、超高分−1電ポリ」ブレ゛・の溶融押L(脣
1伸方法にI’Mi−J6o更に詳l−5<は超高分子
量ポリエチレンと特定のパラフィン系ワックスとからな
る組成物を溶融押出延伸することにより、引張強度、弾
性率が共に大きい超高分子量ポリエチレン延伸物を製造
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is based on the melt extrusion method of ultra-high molecular weight polyethylene. The present invention relates to a method for producing a stretched ultra-high molecular weight polyethylene product having high tensile strength and elastic modulus by melt-extruding and stretching a composition comprising a paraffin wax.

超高分子量ポリエチレンは汎用のポリエチレン伝−比べ
耐衝撃性6耐摩耗性、耐薬品性、引張強度等に優れ′C
おり、エンジニアリングプラスチックとしてその用途が
拡がりつつある。■、5かしながら汎用のポリエチレン
に比較して溶融粘度が極めて高く流動性が悪いため、押
出成形や射出成形によって成形する・−とは非常に@t
、<、その殆どは圧縮成形?・こ、にっで成形されてお
り、−1一部ロッド等が極〈低速で押出成形されている
のが現状であった。
Ultra-high molecular weight polyethylene has superior impact resistance, abrasion resistance, chemical resistance, tensile strength, etc. compared to general-purpose polyethylene.
Its use as an engineering plastic is expanding. ■, 5 However, compared to general-purpose polyethylene, the melt viscosity is extremely high and the fluidity is poor, so it is molded by extrusion molding or injection molding.
, <, Are most of them compression molded?・Currently, some of the rods and the like were extruded at extremely low speeds.

・−・15 、& 密rポリエチレンのモ、ノフイラメ
ントを高倍率で延伸する方法と1.′τ、:a−: I
J 5′−(1,ンの角点、]り高い高沸点の添加剤を
ポリエチレンの上置に対1,20−・150%の範囲内
で共存せしめ、得られた高濃度分散体から第1次繊維状
物を形成さυ、次いで5゛二の紡出糸中にぞ+7)5−
・25%相当量の添加剤を残存せ14めたま−r元の長
さの5・・・−・15倍(こ熱延伸する方法(特公昭3
7−9765号)あるいは分子量が400,000以上
の線状ポリエチレンの溶液を紡糸して、少なくとも2Q
GPaになるような温度で延伸する方法が提案されてい
る。しがしながらこれらの方法は、具体的には0−ジク
ロルベンゼン、キシレンあるいはデカリン等の溶媒に分
散あるいは溶解させて特定の方法で紡糸する方法であり
、スクリュー押出機により連続的に押出紡糸する方法に
このような液状の溶媒を分子量が高い超高分子量ポリエ
チレンの延伸性改良剤として用いようとしても、溶媒と
粉末との粘度差が大き過ぎて溶媒と粉末との混合が全く
出来ず、また溶媒が粉末とスクリューとの間の滑剤とし
て働き、粉末とスクリューとが共回りを起こして殆ど押
出しが出来ない。また、たとえ押出せたとしても均一に
混合されていないので延伸が全く不可能であり、スクリ
ュー押出機を用いて連続的に溶融押出紡糸することは出
来ないのが現状であった。またそれらの溶媒は低沸点で
σ1大性が大きいので、電熱で加熱するスクリュー押出
機には危険で使用に際しては格別注意を払う必要もある
・-・15, & A method for stretching monofilaments of dense polyethylene at high magnification and 1. ′τ, :a-: I
A high boiling point additive with a high boiling point of J 5'-(1,000 yen corner point) is allowed to coexist on top of polyethylene in a range of 1,20-150%, and from the resulting high-concentration dispersion, the The primary fibrous material is formed υ, then 5゛ into the second spun yarn +7) 5-
・Remaining an amount equivalent to 25% of the additive, 14 metama-r 5...-15 times the original length (this method of hot stretching (Tokuko Sho 3)
7-9765) or by spinning a solution of linear polyethylene with a molecular weight of 400,000 or more to obtain at least 2Q
A method of stretching at a temperature of GPa has been proposed. However, these methods specifically involve dispersing or dissolving in a solvent such as 0-dichlorobenzene, xylene, or decalin and spinning using a specific method, and continuous extrusion spinning using a screw extruder. Even if an attempt was made to use such a liquid solvent as a stretchability improver for ultra-high molecular weight polyethylene with a high molecular weight, the difference in viscosity between the solvent and the powder was too large, making it impossible to mix the solvent and the powder at all. In addition, the solvent acts as a lubricant between the powder and the screw, causing the powder and screw to rotate together, making extrusion almost impossible. Further, even if it could be extruded, it would be completely impossible to draw it because it was not mixed uniformly, and it was currently impossible to perform continuous melt extrusion spinning using a screw extruder. Furthermore, since these solvents have low boiling points and large σ1 values, they are dangerous to use in screw extruders that heat with electric heat, and special care must be taken when using them.

他方、超高分子量ポリエチレンの成形性を改善するため
に分子量が5000〜20000の低分子量ポリエチレ
ンを超高分子量ポリエチレン100重量部に対して10
〜60重量部を添加した組成物(特開昭57−1770
36号公報)が提案されているが、これらの組成物では
添加された低分子量ポリエチレンの分子量が大きすぎて
溶融押出紡糸されたモノフィラメントを20倍以上の高
倍率には延伸出来ず、高弾性率、高す[張強度のモノフ
ィラメントを得ることはできない。
On the other hand, in order to improve the moldability of ultra-high molecular weight polyethylene, 10 parts by weight of low molecular weight polyethylene with a molecular weight of 5,000 to 20,000 is added to 100 parts by weight of ultra-high molecular weight polyethylene.
~60 parts by weight of the composition (Japanese Patent Application Laid-open No. 57-1770)
However, in these compositions, the molecular weight of the added low molecular weight polyethylene is too large, making it impossible to draw the melt extrusion spun monofilament to a high magnification of 20 times or more, resulting in a high elastic modulus. , it is not possible to obtain monofilaments with high tensile strength.

かかる観点から本発明者らは、スクリュー押出機による
高弾性率、高引張強度を有する超高分子量ポリエチレン
の延伸物の連続押出成形方法の開発を目的とし種々検討
した結果、超高分子量ポリエチレンに特定のパラフィン
系ワックスを配合した組成物を用いることにより本発明
の目的を達することができ、本発明を完成するに至った
From this point of view, the present inventors conducted various studies aimed at developing a continuous extrusion molding method for drawn products of ultra-high molecular weight polyethylene having high elastic modulus and high tensile strength using a screw extruder, and as a result, they identified ultra-high molecular weight polyethylene. The object of the present invention was achieved by using a composition containing paraffin wax, and the present invention was completed.

すなわち本発明は、少なくとも極限粘度〔η〕が5dJ
l?/g以上の超高分子量ポリエチレン(→:15ない
し80重量部と融点が40ないし120°Cで且つ分子
量が2000以下のパラフィン系ワックス(B):85
ないし20重量部との混合物を190ないし280°C
の温度でスクリュー押出機で溶融混練し、210ないし
300°Cのグイより未延伸物を押出し、少なくとも1
を越えるドラフトをかけた後冷却固化、次いで60ない
し140°Cの温度で少なくとも3倍を越える延伸比で
延伸することを特徴とする弾性率が大きい超高分子量ポ
リエチレン延伸物の製造法を提案するものである〇 本発明の方法に用いる超高分子量ポリエチレン(蜀とは
、デカリン溶媒135°Cにおける極限粘度(η:)カ
56#/g以上、好tL、< ハフ7zイL、30d#
/gの範囲のものである。〔η〕が5dβ/g未満のも
のは、延伸しても引張強度に優れた延伸物が得られない
。又〔η〕の上限はとくに限定はされないが、30 d
l/g ヲ!えるものは後述のパラフィン系ワックス(
B)を添加しても溶融粘度が高く後述の温度範囲でのス
クリュー押出機による溶融紡糸性に劣る。
That is, in the present invention, the intrinsic viscosity [η] is at least 5 dJ.
l? Ultra-high molecular weight polyethylene (→: 15 to 80 parts by weight of /g or more) and paraffin wax (B) with a melting point of 40 to 120°C and a molecular weight of 2000 or less (B): 85
and 20 parts by weight at 190 to 280°C.
The unstretched material is melt-kneaded in a screw extruder at a temperature of
We propose a method for producing a drawn ultra-high molecular weight polyethylene product with a high elastic modulus, which is characterized by applying a draft exceeding 100°C, solidifying it by cooling, and then drawing it at a temperature of 60 to 140°C with a drawing ratio of at least 3 times. 〇 Ultra-high molecular weight polyethylene used in the method of the present invention.
/g range. If [η] is less than 5 dβ/g, a stretched product with excellent tensile strength cannot be obtained even if stretched. Also, the upper limit of [η] is not particularly limited, but is 30 d
l/g wo! What you can get is paraffin wax (described below).
Even if B) is added, the melt viscosity is high and the melt spinnability with a screw extruder in the temperature range described below is poor.

本発明の方法に用いるパラフィン系ワックス(B)とは
、融点が40ないし120°C1好ましくは45ないし
110°Cで且つ分子量が2000以下、好ましくは1
000以下、特に好ましくは800以下のパラフィン系
ワックスである。融点が40°C未満のものあるいは液
状パラフィンを用いると超高分子量ポリエチレン(菊と
スクリューとが共回りを起こして均一な溶融紡糸が出来
ない。一方融点が120°Cを越え、且つ分子量が20
00を越えるものは、冷却固化する前にドラフトをかけ
ると延伸切れを起こし、高弾性率、高σ[張強度の延伸
物が得られず、更に後述の如く延伸物から過剰のパラフ
ィン系ワックスを抽出することも出来ない。また分子量
が800以下のものを用いる場合は冷却固化する前にト
ラフ)をかけることにより5倍を越える延伸比でも充分
高弾性率の延伸物が得られるが、分子量が 。
The paraffin wax (B) used in the method of the present invention has a melting point of 40 to 120°C, preferably 45 to 110°C, and a molecular weight of 2000 or less, preferably 1
000 or less, particularly preferably 800 or less. If a material with a melting point of less than 40°C or liquid paraffin is used, ultra-high molecular weight polyethylene (the chrysanthemum and the screw will rotate together and uniform melt spinning will not be possible.On the other hand, if a material with a melting point of less than 120°C and a molecular weight of
If it exceeds 00, drafting before cooling and solidification will cause stretching breakage, making it impossible to obtain a drawn product with high elastic modulus and high σ[tensile strength. It cannot be extracted either. In addition, when using a material with a molecular weight of 800 or less, by applying a trough before cooling and solidifying, a drawn product with a sufficiently high elastic modulus can be obtained even at a drawing ratio of more than 5 times.

800〜2000のパラフィン系ワックスを用いる場合
は冷却固化する前にドラフトをかけて5倍、好ましくは
10倍以上の延伸比で延伸することが好ましい。
When a paraffin wax having a molecular weight of 800 to 2000 is used, it is preferable to apply a draft and stretch the wax at a stretching ratio of 5 times, preferably 10 times or more, before cooling and solidifying it.

本発明における融点は、ASTM D 3417により
示差走査型熱量計(DSC)により測定[7た値である
。また分子量はGPC法(ゲル・パーミェーション・ク
ロマトグラフィー)により次の条件で測定して得た重計
平均分子量(石W)である。
The melting point in the present invention is a value measured by a differential scanning calorimeter (DSC) according to ASTM D 3417 [7]. Moreover, the molecular weight is the weight average molecular weight (stone W) obtained by measuring by GPC method (gel permeation chromatography) under the following conditions.

装 置 :ウォーターズ社製 150C型カラム :東
洋曹達社製 TSK、GMH−6(6mmφX600m
m) 溶 媒 :オルソジクロルベンゼン(oDeB)温度:
135°C 流量: 1.Omd/min 注入濃度: 30mg/20ml 0DCB (注入量
400tG 尚、東洋曹達社製およびプレッシャー・ケミカル社製、
標準ポリエチレンを用いてユニバーサル法によりカラム
溶出体積は較正した。
Equipment: Waters Co., Ltd. 150C type column: Toyo Soda Co., Ltd. TSK, GMH-6 (6 mmφ x 600 m
m) Solvent: Orthodichlorobenzene (oDeB) Temperature:
135°C Flow rate: 1. Omd/min Injection concentration: 30mg/20ml 0DCB (Injection amount 400tG In addition, manufactured by Toyo Soda Co., Ltd. and Pressure Chemical Company,
Column elution volumes were calibrated by the universal method using standard polyethylene.

本発明の方法に用いるパラフィン系ワックス(B)は前
記範囲の融点及び分子量を有するものであれば、とくに
炭素と水素のみからなる化合物には限定されず、少量の
酸素、その他の元素を含んでいてもよい。
The paraffin wax (B) used in the method of the present invention is not particularly limited to a compound consisting only of carbon and hydrogen, as long as it has a melting point and molecular weight within the above range, and may contain a small amount of oxygen or other elements. You can stay there.

前記パラフィン系ワックスCB)としては、飽和脂肪族
炭化水素化合物を主体とするもので、具体的にはトコサ
ン、トリコサン、テトラコサン、トリアコンタン等の炭
素数22以上のn−アルカンあるいはこれらを主成分と
した低級n−アルカン等との混合物、石油から分離精製
された所謂パラフィンワックス、エチレンあるいはエチ
レンと他のα−オレフィンとを共重合して得られる低分
子策重合体である中・低圧法ポリエチレンワックス、高
圧法ポリエチレンワックス、エチレン共重合ワックスあ
るいは中・低圧法ポリエチレン、高圧法ポリエチレン等
のポリエチレンを熱減成等により分子量を低下させたワ
ックス及びそれらワックスの酸化物あるいはマレイン酸
変性物等の酵化ワックス、マレイン酸変性ワックス等が
挙げられる。
The paraffinic wax CB) is mainly composed of saturated aliphatic hydrocarbon compounds, specifically, n-alkanes having 22 or more carbon atoms such as tocosan, tricosane, tetracosane, triacontane, etc., or those containing these as main components. so-called paraffin wax separated and purified from petroleum, medium/low pressure polyethylene wax which is a low molecular weight polymer obtained by copolymerizing ethylene or ethylene with other α-olefins. , high-pressure polyethylene wax, ethylene copolymer wax, medium/low-pressure polyethylene, high-pressure polyethylene, wax whose molecular weight has been lowered by thermal degradation, etc., and fermentation of oxides or maleic acid modified products of these waxes. Examples include wax, maleic acid-modified wax, and the like.

本発明に用いる前記パラフィン系ワックスCB)の融点
及び分子量範囲に入る他の炭化水素化合物として例えば
ナフタリン、ジメチルナフタリン等の芳香族炭化水素化
合物があるが、これらのものはパラフィン系ワックスと
異なり超高分子量ポリエチレン(A)との相溶性が劣り
、本発明の方法に用いると超高分子量ポリエチレン(A
)への芳香族炭化水素の分散むらが生じ、均一延伸ある
いは高延伸倍率の達成が内端である。
Other hydrocarbon compounds that fall within the melting point and molecular weight range of the paraffinic wax CB) used in the present invention include aromatic hydrocarbon compounds such as naphthalene and dimethylnaphthalene, but unlike paraffinic wax, these compounds have ultrahigh The compatibility with molecular weight polyethylene (A) is poor, and when used in the method of the present invention, ultra-high molecular weight polyethylene (A)
), resulting in uneven dispersion of aromatic hydrocarbons in the film, making it impossible to achieve uniform stretching or a high stretching ratio.

超高分子量ポリエチレン(蜀とパラフィン系ワックス(
B)等との相溶性を調べる方法としては、具体的には高
倍率走査型電子顕微鏡による未延伸糸の断面の観察法が
例示出来る。すなわち、超高分子量ポリエチレン(A)
とパラフィン系ワックス(B)等との等量ブレンド物を
溶融混練後溶融紡糸する。次いで得られた未延伸原糸を
その長手方向に直交するようにミクロF−へ等の鋭利な
刃で切断する。
Ultra-high molecular weight polyethylene (shu and paraffin wax)
A specific example of a method for examining the compatibility with B) and the like is a method of observing a cross section of an undrawn yarn using a high-magnification scanning electron microscope. That is, ultra-high molecular weight polyethylene (A)
and paraffin wax (B), etc. in equal amounts are melt-kneaded and then melt-spun. Next, the obtained undrawn yarn is cut with a sharp blade such as a micro F-cut so as to be perpendicular to its longitudinal direction.

当該断面と同様の処理により切り出した断面をさらにヘ
キサジあるいはへブタン等の無極性溶剤に少なくとも1
時間以上室温で浸漬して、パラフィン系ワックス(B)
等を抽出除去した抽出処理断面を少なくとも3000倍
以上の倍率で走査型電子顕微鏡にて比較観察する。本発
明のパラフィン系ワックス(F()は超高分子量ポリエ
チレン(椙J対して相溶性が良好であるため、0Att
以上の陥没は殆ど観察されず、パラフィンワックス(B
)の代わりにナフタリンを用いた場合は分散不良を起こ
し、0.1μ以上の陥没が無数に観察される。
A cross section cut out by the same treatment as the cross section was further soaked in a non-polar solvent such as hexadi or hebutane for at least 1 hour.
Paraffin wax (B) after soaking at room temperature for more than an hour.
The extracted cross-section from which these substances have been extracted and removed is comparatively observed using a scanning electron microscope at a magnification of at least 3000 times or more. The paraffin wax (F() of the present invention has good compatibility with ultra-high molecular weight polyethylene (Sugi J), so it has 0Att
Almost no depression was observed, and paraffin wax (B
) If naphthalene is used instead of 20%, poor dispersion occurs and numerous depressions of 0.1 μm or more are observed.

本発明の方法は前記超高分子量ポリエチレン(A):1
5ないし80重量部、好ましくは30ないし50重量部
と前記パラフィン系ワックス(B) : 85ないし2
0重量部、好ましくは70ないし50重量部との混合物
を190ないし280°c1好ましくは1907’;j
いし250℃の温度でスクリュー押出機で溶融混練し2
10ないし300’C,好ましくは210ないし270
°Cのダイより未延伸物を押出し、少なくとも1を越え
る、好ましくは2以上のドラフトをかけた後冷却固化し
、次いで60ないし140℃、好ましくは100ないし
135℃の温度で少なくとも3倍、好ましくは5倍以上
の延伸比で延伸する方法である。
The method of the present invention includes the ultra-high molecular weight polyethylene (A): 1
5 to 80 parts by weight, preferably 30 to 50 parts by weight, and the paraffin wax (B): 85 to 2 parts by weight.
j
Melt and knead with a screw extruder at a temperature of 250℃ 2
10 to 300'C, preferably 210 to 270
The unstretched material is extruded through a die at 60°C, preferably 2 or more drafts, then cooled and solidified, and then heated at a temperature of 60 to 140°C, preferably 100 to 135°C, at least 3 times This is a method of stretching at a stretching ratio of 5 times or more.

超高分子量ポリエチレン(A)の量が15重量部未満で
はスクリュー押出機での溶融混練が困難であり、また押
出されたものの延伸性が劣り、ブツ切れを起こしドラフ
トをかけることができない。一方80重量部を越えると
、溶融粘度が高くなり溶融押出しが困難であり、また押
出された未延伸物(ストランド)の肌荒れが激しく延伸
切れを起こし易い。
If the amount of ultra-high molecular weight polyethylene (A) is less than 15 parts by weight, it will be difficult to melt-knead it in a screw extruder, and the extruded product will have poor stretchability, breakage will occur, and drafting will not be possible. On the other hand, if it exceeds 80 parts by weight, the melt viscosity becomes high, making melt extrusion difficult, and the extruded unstretched product (strand) has a rough surface and is prone to stretching breakage.

スクリュー押出機及びグイの温度がそれぞれ190°C
及び210°C未満では、溶融粘度が高く、溶融押出し
が困難であり、一方それぞれ280°C及び300℃を
越えると超高分子量ポリエチレン(A)の分子蛍が低下
して高引張強度の延伸物が得られない。尚超高分子量ポ
リエチレン(尋とパラフィン系ワックス(B)との混合
はヘンシェルミキサー、■−ブレンダー等による混合、
あるいは混合後更に単軸あるいは多軸押出機で溶融混練
して造粒する方法により行い得る。
The temperature of the screw extruder and Gui is 190°C each.
and below 210°C, the melt viscosity is high and melt extrusion is difficult, while above 280°C and 300°C, respectively, the molecular weight of the ultra-high molecular weight polyethylene (A) decreases, resulting in a drawn product with high tensile strength. is not obtained. In addition, ultra-high molecular weight polyethylene (broadcast) and paraffin wax (B) are mixed using a Henschel mixer, ■-blender, etc.
Alternatively, after mixing, the mixture may be further melt-kneaded and granulated using a single-screw or multi-screw extruder.

未延伸物をグイから押出した際に、該溶融物が冷却固化
する前に少なくとも1を越えるドラフトをかけることに
より、ドラフトをかけないものの延伸物に比べて高弾性
率で高引張強度の延伸物が得られる。
When an undrawn material is extruded from a gooey, by applying a draft of at least 1 or more before the molten material is cooled and solidified, a drawn material with a higher elastic modulus and higher tensile strength than a drawn material without drafting can be obtained. is obtained.

本発明におけるドラフトとは、スクリュー押出機より押
出された溶融物の溶融時における延伸を意味し、溶融物
の引き落としのことである。即ち、グイ・オリアイス径
と冷却固化した繊維の径との比をドラフト比と定義した
The term "draft" in the present invention refers to the drawing of the melt extruded from the screw extruder during melting, and refers to the drawing down of the melt. That is, the draft ratio was defined as the ratio of the Gouy-Oriais diameter to the diameter of the cooled and solidified fibers.

又、前記冷却は空冷、水冷いずれの方法でも良い。Further, the cooling may be performed by either air cooling or water cooling.

延伸時の温度が60℃未満では6倍を越える延伸倍率が
達成出来ず、一方、140″Cを越えると超高分子量ポ
リエチレン(A)が軟化し、延伸はされるものの、高弾
性率の延伸物が得られない。
If the temperature during stretching is less than 60°C, a stretching ratio of more than 6 times cannot be achieved, while if it exceeds 140"C, the ultra-high molecular weight polyethylene (A) will soften and although it will be stretched, it will not be possible to achieve a stretching ratio of more than 6 times. I can't get things.

上記延伸は60ないし140°Cの範囲内の雰囲気下で
あれば熱媒は空気、水蒸気、溶媒のいずれを用いても高
弾性率の延伸物が得られるが、熱媒として前記パラフィ
ン系ワックス(B)を溶出あるいは滲出除去することが
出来る溶媒で沸点が140℃以上のもの、具体的には例
えばデカリン、デカン、灯油を用いると延伸時に過剰の
パラフィン系ワックス(B)を抽出あるいは滲出したワ
ックスの除去ができ、延伸時の延伸むらの低減ならびに
高延伸倍率の達成が可能となるので好ましい。また超高
分子量ポリエチレン(A)の延伸物から過剰のパラフィ
ン系ワックス(B)を除去する手段としては前記方法に
限らず、未延伸物をヘキサン、ヘプタン等の溶剤で処理
後延伸する方法、延伸物をヘキサン、ヘプタン等の溶剤
で処理する方法によってもパラフィン系ワックスCB)
を抽出除去出来しかも高弾性率、高強度の延伸物が得ら
れる。
If the above-mentioned stretching is carried out in an atmosphere within the range of 60 to 140°C, a stretched product with a high elastic modulus can be obtained using air, water vapor, or a solvent as the heating medium. A solvent that can elute or exude B) and has a boiling point of 140°C or higher, specifically, for example, decalin, decane, or kerosene, can be used to extract or exude excess paraffin wax (B) during stretching. This is preferable because it is possible to remove the above, reduce stretching unevenness during stretching, and achieve a high stretching ratio. In addition, methods for removing excess paraffin wax (B) from a stretched product of ultra-high molecular weight polyethylene (A) are not limited to the above-mentioned method, but include a method in which an unstretched product is treated with a solvent such as hexane or heptane, and then stretched. Paraffin wax CB)
can be extracted and removed, and a drawn product with high elastic modulus and high strength can be obtained.

上記溶媒あるいは溶剤でパラフィン系ワックス(B)を
抽出する際に、延伸物におけるパラフィン系ワックスC
B)の残量を10重量%以下にすると微細孔繊維が得ら
れ、重量換算によって真断面積を求める方法から得た弾
性率、強度ともに抽出前の延伸物の値を下廻ることがな
く好ましい。
When extracting paraffin wax (B) with the above solvent or solvent, paraffin wax C in the stretched product
When the remaining amount of B) is 10% by weight or less, microporous fibers can be obtained, and both the elastic modulus and strength obtained from the method of determining the true cross-sectional area in terms of weight do not fall below the values of the stretched product before extraction, which is preferable. .

前記溶媒中での延伸比が3倍未満では高引張強度、高弾
性率化の程度が少なく、また延伸物に延伸むらが随伴す
るため、外観を損う例が多い。尚延伸には、最終延伸比
が6倍以上になればよく、1段延伸でも2段以上の多段
延伸でもよい。
When the stretching ratio in the solvent is less than 3 times, the degree of high tensile strength and high elastic modulus is small, and the stretched product is accompanied by uneven stretching, which often impairs the appearance. The stretching may be carried out in a final stretching ratio of 6 times or more, and may be carried out in one stage or in multiple stages of two or more stages.

また延伸の際の最終延伸速度はとくに限定はされないが
、生産性から3m/min以上、好ましくは5m/mi
n以上がよい。
Further, the final stretching speed during stretching is not particularly limited, but from the viewpoint of productivity it is 3 m/min or more, preferably 5 m/min.
It is better to have n or more.

本発明に用いる超高分子量ポリエチレン(A)には、耐
熱安定剤、耐候安定剤、顔料、染料、無機充填剤等通常
ポリオレフィンに添加することが出来る添加剤を本発明
の目的を損わない範囲で添加しておいてもよい。
The ultra-high molecular weight polyethylene (A) used in the present invention contains additives that can be normally added to polyolefins, such as heat stabilizers, weather stabilizers, pigments, dyes, and inorganic fillers, within a range that does not impair the purpose of the present invention. It may be added in advance.

本発明の方法により得られる超高分子量ポリエチレンの
延伸物は、従来の通常のポリエチレンの延伸物では得ら
れない高引張強度を有し、且つ高弾性率であるので、モ
ノフィラメント、テープ等の従来の延伸糸の分野に加え
て高弾性率、高強度繊維の分野への利用が可能となり、
軽量性が要求される各種捕強材に使用できる。さらには
、超高延伸による結晶配列の高度な整列ならびに過剰の
パラフィン系ワックス(B)を抽出することにより副次
的に生成する微孔を利用した選択膜、エレクトレット等
の機能材料への適性にも優れている。
The drawn product of ultra-high molecular weight polyethylene obtained by the method of the present invention has high tensile strength and high elastic modulus that cannot be obtained with conventional drawn products of ordinary polyethylene. In addition to the field of drawn yarn, it can be used in the field of high modulus and high strength fibers.
Can be used for various reinforcing materials that require lightness. Furthermore, it is suitable for functional materials such as selective membranes and electrets that utilize the highly aligned crystal arrangement achieved by ultra-high stretching and the micropores that are generated as a by-product by extracting excess paraffin wax (B). is also excellent.

次に実施例を挙げて本発明を更に具体的に説明するが、
本発明の要旨を越えない限りそれらの実施例に制約され
るものではない。
Next, the present invention will be explained in more detail with reference to Examples.
The invention is not limited to these embodiments unless it goes beyond the gist of the invention.

実施例 超高分子量ポリエチレン(〔η) −8,20d//g
)とパラフィンワックス(融点=69°01分子量=4
60)との25ニア5ブレンド物を次の条件下で溶融紡
糸延伸を行った。超高分子量ポリエチレンの粉末とパラ
フィンワックスの粉砕品とを混合後、2(’1mmφ、
L/D=20のスクリュー押出機を用い樹脂温度190
°Cで溶融混練を行った。次いで該溶融物をオリフィス
径がjmmのダイより押し出し、エアーギャップ:10
Crnで20°Cの冷水にて固化させた。
Example Ultra-high molecular weight polyethylene ([η) -8,20d//g
) and paraffin wax (melting point = 69°01 molecular weight = 4
60) was melt-spun and drawn under the following conditions. After mixing ultra-high molecular weight polyethylene powder and crushed paraffin wax,
Using a screw extruder with L/D=20, the resin temperature was 190.
Melt kneading was carried out at °C. Next, the melt was extruded through a die with an orifice diameter of j mm, and an air gap of 10
Solidified with cold water at 20°C.

この際、冷却固化した繊維の径が0−50mmになる様
にす1き落としを行った。即ち、ドラフト比を2とした
。引き続き一対のゴデツトロールを用いてn−デカンを
熱媒とした延伸槽(槽内温度=130°C1槽の長さ=
40z)で延伸を行った。
At this time, the fibers were skimmed so that the diameter of the cooled and solidified fibers was 0 to 50 mm. That is, the draft ratio was set to 2. Subsequently, using a pair of godet rolls, a drawing tank was drawn using n-decane as a heating medium (temperature inside the tank = 130°C, length of 1 tank =
40z).

延伸に際しては、第1ゴデツトロールの回転速度を0・
5m/m1−nとして、第2ゴデツトロールの回転速度
を適宜変更することにより延伸比の異なる繊維を得た。
During stretching, the rotational speed of the first godet roll was set to 0.
5 m/m1-n, and by appropriately changing the rotational speed of the second godet roll, fibers with different drawing ratios were obtained.

但し、延伸比はゴデツトロールの回転比より計算して求
めた。各延伸比における弾性率および強度を表1に示す
。表1から延伸比を10倍以上にすると高強度の延伸物
が得られることが分かる。尚、弾性率および強度はイン
ストロン万能試験機1123型(インストロン社製)を
用いて室温(23°C)にて測定した。このとき、クラ
ンプ間の試料長は100mmで引張速度1 Q 0mm
7分とした。但し、弾性率は2%歪における応力を用い
て計算した。計算に必要な繊維断面積は、ポリエチレン
の密度をQ、96g/cm’として繊維の重量と長さ実
施例 超高分子量ポリエチレン(〔η) = 8.20 al
/g )とパラフィンワックス(融点=69°C1分子
量=460)との25775ブレンド物を実験例1と同
一条件下で溶融紡糸延伸を行った。但し、オリフィス径
が1mmのダイより溶融物を押し出し、エアーギャップ
:10crnで20°Cの冷水にて固化させた。この際
、冷却固化した繊維の径が0.20mmになる様に引き
落としを行った。即ち、ドラフト比を5とした。各延伸
比における弾性率と強度を表2に示す。ドラフト比を上
げることにより、8倍程度の延伸比においても高強度の
延伸物が得られることが分る。
However, the stretching ratio was calculated from the rotation ratio of the godet roll. Table 1 shows the elastic modulus and strength at each stretching ratio. It can be seen from Table 1 that a stretched product with high strength can be obtained when the stretching ratio is 10 times or more. The elastic modulus and strength were measured at room temperature (23°C) using an Instron universal testing machine model 1123 (manufactured by Instron). At this time, the sample length between the clamps is 100 mm and the tensile speed is 1 Q 0 mm.
It was set to 7 minutes. However, the elastic modulus was calculated using stress at 2% strain. The fiber cross-sectional area required for calculation is as follows: The density of polyethylene is Q, 96 g/cm', and the weight and length of the fiber Example: Ultra-high molecular weight polyethylene ([η) = 8.20 al
/g) and paraffin wax (melting point = 69°C, molecular weight = 460) was melt-spun and stretched under the same conditions as in Experimental Example 1. However, the melt was extruded through a die with an orifice diameter of 1 mm and solidified with cold water at 20° C. with an air gap of 10 crn. At this time, the fibers were drawn down so that the diameter of the cooled and solidified fibers was 0.20 mm. That is, the draft ratio was set to 5. Table 2 shows the elastic modulus and strength at each stretching ratio. It can be seen that by increasing the draft ratio, a drawn product with high strength can be obtained even at a drawing ratio of about 8 times.

表     2 実施例 超高分子量ポリエチレン(〔η)=8.20dl/g)
とパラフィンワックス(融点−69°C1分子量=46
0)との25775ブレンド物を実験例1と同一条件下
で溶融紡糸延伸を行った。但し、オリフィス径が2mm
のグイより溶融物を押し出し、エアーギャップ:10a
で20°Cの冷水にて固化させた。この際、冷却固化し
た繊維の径が0.04mmになる様に引き落としを行っ
た。即ち、ドラフト比を50とした0各延伸比における
弾性率と強度を表6に示す。実験例2に較べさらにドラ
フト比を上げることにより、6倍程度の延伸比において
も高強度の延伸物が得られることが分る。
Table 2 Example ultra-high molecular weight polyethylene ([η) = 8.20 dl/g)
and paraffin wax (melting point -69°C1 molecular weight = 46
25775 blend with 0) was subjected to melt spinning and drawing under the same conditions as in Experimental Example 1. However, the orifice diameter is 2mm.
Push out the melt through the guide, air gap: 10a
It was solidified with cold water at 20°C. At this time, the fibers were drawn down so that the diameter of the cooled and solidified fibers was 0.04 mm. That is, Table 6 shows the elastic modulus and strength at each stretch ratio of 0 with a draft ratio of 50. It can be seen that by further increasing the draft ratio compared to Experimental Example 2, a drawn product with high strength can be obtained even at a drawing ratio of about 6 times.

表    3 比較例1 超高分子量ポリエチレン(〔η)−8,20a#/g)
とパラフィンワックス(融点=69°C1分子量=46
0)との25775ブレンド物を実験例1と同一条件下
で溶融紡糸延伸を行った。但し、オリフィス径が1mm
のグイより溶融物を押し出し、エアーギャップ=10c
11tで20°Cの冷水にて固化させた。この際、す1
き落としを全く行わなかった。即ち、スウェルした溶融
樹脂をそのまま冷却固化した。冷却固化して得られた繊
維の径は5.3mmであり、定義によりドラフト比は0
.3と計算された。ドラフトをかけないと25倍の延伸
比においても、高強度の延伸物が得られていないことが
分る。
Table 3 Comparative Example 1 Ultra-high molecular weight polyethylene ([η)-8,20a#/g)
and paraffin wax (melting point = 69°C1 molecular weight = 46
25775 blend with 0) was subjected to melt spinning and drawing under the same conditions as in Experimental Example 1. However, the orifice diameter is 1mm.
Push out the molten material through the guide, air gap = 10c
It was solidified with cold water at 20°C at 11t. At this time, Su1
No scraping was done at all. That is, the swelled molten resin was directly cooled and solidified. The diameter of the fiber obtained by cooling and solidifying is 5.3 mm, and the draft ratio is 0 by definition.
.. It was calculated as 3. It can be seen that without drafting, a drawn product with high strength was not obtained even at a drawing ratio of 25 times.

表    4 本実験例において、ドラフトの影響を調べるため図1お
よび図2に弾性率および強度を延伸比に対してプロット
した。さらに、強度を弾性率に対して図3にプロットし
た。
Table 4 In this experimental example, the elastic modulus and strength were plotted against the drawing ratio in FIGS. 1 and 2 in order to investigate the influence of draft. Furthermore, the strength is plotted against the elastic modulus in Figure 3.

弾性率および強度は、ドラフトの影響を受は延伸比に対
する依存性が顕著に違うことを示している。溶融時に引
き落としをかけると、高弾性率でかつ高強度な延伸物が
得られるのに対して、溶融時にσ1き落としをかけない
と、高弾性率は達成できるにも拘らず高強度な延伸物が
得られないことが図5から明らかである。即ち、冷却固
化前にドラフトをかけることにより高弾性率、高強度繊
維が得られることが分る。
The elastic modulus and strength are influenced by draft and show a markedly different dependence on the draw ratio. If a drop is applied during melting, a drawn product with a high elastic modulus and high strength can be obtained, whereas if a σ1 drop is not applied during melting, a drawn product with high strength can be achieved although a high modulus can be achieved. It is clear from FIG. 5 that this cannot be obtained. That is, it can be seen that high elastic modulus and high strength fibers can be obtained by applying a draft before cooling and solidifying.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は弾性率と延伸比との関係、図2は強度と延伸比と
の関係および図3は強度と弾性率との関係を表わす。 出願人  三井石油化学工業株式会社 代理人  山  口     和 図     1 0          10         20 
        30延伸比 図     2 延伸比 図     5 0    10    20    30   40 
   50   60弾性率、(]Pa 手続補正書(自発) 特許庁長官  若杉和夫殿 1、 事件の表示 昭和58年特許願第59976号 2 発明の名称 超高分子■ポリエチレン延伸物の製造法3 補正をする
者 事件との関係 特許出願人 (58B)三井石油化学工業株式会社 4、代理人〒io。 東京都千代田区霞が関三丁目2番5号 5 自発補正 64  補正の対象 明細書の発明の詳細な説明の欄 7 補正の内容 (1)明細書第15E713行の「引き続き一対−1の
語句の後に、 「−(2段延伸を行う場合は二対)」 の語句を挿入する。 (2)  明細書第15頁17行の「第2ゴデツトロー
ル」の語句の後に、 [及び第5ゴデツトロール」 の語句を挿入する。 (3)明細書第15頁19行の「繊維を得た。」の語句
の後に、 「延伸は、実験番号1は第2ゴデツトロールのみによる
1段延伸、実験番号2〜6は、第2ゴデツトロールで予
め延伸比10.0 倍に延伸した後、引き続き2段目の
延伸を第6ゴデツトロールで所定の延伸比進行った。」
の語句を挿入する。 (4)明細書第16頁1行に「および強度」とあるを、 [−1強度及び残留パラフィン量」 と補正する。 (5)明細書第16頁10行の「求めた。」の語句の後
に、 r又、s留パラフィンワックス量(残留パラフィン量)
はn−一・キサンに一昼夜浸漬後パラフインワックスを
繊維から除去してその重量減により定量した。」 の語句を挿入する。 (6)明細書第17頁の[表1−1の最下欄(強度の欄
の下)に以下の欄を追加する。 [ (7〕  明細書第18頁10行の「各延伸比」の語句
の前に、 「延伸は、実験番号7は第2ゴデツトロールのみによる
1段延伸、実験番号8〜10は、第2ゴデツトロールで
予め延伸比8.0倍に延伸した後、引き続き2段目の延
伸を第3ゴデツトロールで所定の延伸比迄行った。」 (8)明細書第18頁10行に「と強度−1とあるを、
「、強度及び残留パラフィン量−1 と補正する。 (9)明細書第18頁の[表2−1の最下欄(強度の欄
の下)に以下の欄を追加する。 「 」 aO明細書第19頁10行の「各延伸比−1の語句の前
に、 「延伸は、実験番号11は第2ゴデツトロールのみによ
る1段延伸、実験番号12〜14は、第2ゴデツ)cr
−ルで予め延伸比5.6倍に延伸した後、引き続き2段
目の延伸を第ろゴデツトロールで所定の延伸比迄行った
。−10力 明細書第19頁10行に「強度−1とある
を、「、強度及び残留パラフィン量−1 と補正する。 (l  明細書第19頁の「表3−1の最下欄(強度の
欄の下)に以下の欄を追加す、る。 3− 「 」 θ[有] 明細書第20頁11行の「計算された。−1
の語句の後に、 [延伸は、実験番号15は、第2ゴデツトロールのみに
よる1段延伸、実験番号16及び17は、第2ゴデツト
ロールで予め10.0倍に延伸した後、引き続き2段目
の延伸を第3ゴデツ)Iff−ルで所定の延伸比迄行っ
た。」の語句を挿入する。 010  明細書第20頁の「表4」の最下欄(強度の
欄の下)に以下の欄を追加する。 「 」 0υ 明細書第21頁13行の「ことが分かる。」の超
高分子量ポリエチレン(〔η)=8.21/g)=4− とパラフィンワックス(融点= 84℃、分子1=70
0)との50:50ブレンド物を次の条件下でTダイフ
ィル人成形した後延伸を行った。超高分子量ポリエチレ
ンの粉末とパラフィンワックスの粉砕品とを混合後、2
0mmφ、L/D = 20のスクリュー押出機を用い
樹脂温度190”Cで溶融混練ペレタイズした。次いで
、該ペレットを220”Oのコートハンガー型ダイ(リ
ップ長=300mm、リップ厚=0.5mm)を付けた
20mmφ、′L/D=20のスクリュー押出機により
フィルム成形した。20°Cの冷水を用いて冷却したロ
ールを用いフィルム幅が43mmになる様に300mm
幅のリップより溶融時に引き落としをかけてフィルムを
調製した。すなわち、ドラフト比を50とした。すIき
続き一対(2段延伸を行う場合は二対)のスナップロー
ルを用いてn−デカンを熱媒とした延伸槽(槽内温度=
130°C1槽の長さ=80ffl)で延伸を行った。 延伸に際しては、第1スナツプロールの回転速度を0.
5 m/mi、nとして、第2スナップロール及び第5
スナツプロールの回転速度を適宜変更することにより延
伸比の異なる延伸テープを得た。 8 延伸は、実験番号−は第2スナツプロールのみによる1
段延伸、実験番号19〜21は、第2スナツプロールで
予め延伸比2.0倍に延伸した後、引き続き2段目の延
伸を第5スナツプロールで所定の延伸比進行った。但し
、延伸比は各スナップロールの回転比より計算して求め
た。各延伸比における延伸テープのインス)ロン万能試
験機1127+型(インストロン社製)を用いて室温(
23°C)で測定した弾性率、強度およびテープの幅を
表5にまとめた。 表    5 比較例2 超高分子量ポリエチレン(〔η〕−8,2d、g/ g
 )と高密度ポリエチレン(融点−130”C1分子■
=40,0DD)との50:50ブレンド物を実験例1
と同一条件下でTダイフィルム成形した後延伸を行った
。この系においては溶融時に引き落としをかけると延伸
切れが生ずるため50 D mm幅のフィルムを成形し
た。延伸は実験番号22は、第2スナツプロールのみに
よる1段延伸、実験番号25〜25は、第2スナツプロ
ールで予め延伸比5.4倍に延伸した後、引き続き2段
目の延伸を第3スナツプロールで所定の延伸比進行った
。各延伸比における延伸テープの弾性率、強度およびテ
ープの幅を表6にまとめた。この系においては高延伸比
を達成できず高弾性、高表    6 実施例 超高分子量ポリエチレン(〔η) = 8.20 af
f/g )とパラフィンワックス(融点=69°C5分
子量=460)との25ニア5ブレンド物を実験例1と
同一・条件下で溶融紡糸延伸を行った。但し、オリフィ
ス径が4.Ommのダイより溶融物を押し出し、エアー
ギャップ:10Cfnで20℃の冷水にて固化させた。 この際、冷却固化した繊維の径が0.80 mmになる
様に引き落としひ行った。即ぢ、ドラフト比を5とした
1、3延伸は、第2ゴデツトヲールで予め延伸比+ 0
.0倍に延伸した後、引き続き2段目の延伸を第3ゴデ
ツトロールで所定の延伸比進行った。各延伸比における
弾性率、強度及びパラフィン残留量を表7に示す。 表    7 実施例 超高分子量ポリエチレン(〔η〕= 8.201/に)
とパラフィンワックス(融点=69”C,分子量=46
0)との25ニア5ブレンド物を実験例1と同一条件下
で溶融紡糸延伸を行った。但し、オリフィス径が2mm
のグイより溶融物を押し出し、〕−アーギーVツブ;1
0mで20℃の冷水にて同化させた。この際、冷却固化
した繊維の径が0.20 mmになる様に引き落としを
行った。即ち、ドラフト比を10とした。延伸は、実験
番号”、0−35は第2ゴデツトロールのみによる1段
延伸、実験番号34〜37は、第2ゴデツトロールで予
め延伸比8.0倍に延伸した後、引き続き2段目の延伸
を第3ゴデツトロールで所定の延伸比迄行った。各延伸
比における弾性率、強度及びパラフィン残留量を表8及
び表9に示す。 表    8 表    9 実施例 超高分子量ポリエチレン(〔η) = 8.20 dn
/g )とパラフィンワックス(融点=69°01分子
量=460)との50 : 70ブレンド物を実験例1
と同一条件下で溶融紡糸延伸を行った。但し、オリフィ
ス径が1mmのグイより溶融物を押し出し、エアーギャ
ップ:10個で20℃の冷水にて固化させた。この際、
冷却固化した繊維の径が0.20mmになる様に引き落
としを行った。即ち、ドラフト比を5とした。尚、延伸
槽の熱媒は実験列1で用いたn−デカンに代えて、上記
ブレンド物に用いたパラフィンワックスを用いた。 延伸は、実験番号38は第2ゴデツトロールのみによる
1段延伸、実験番号39〜42は、第2ゴデツトロール
で予め延伸比7.0倍に延伸した後、引き続き2段目の
延伸を第6ゴデツトロールで所定の延伸比迄行った。各
延伸比における弾性率、強度及びパラフィン残留量を表
10に示す。n−デカン熱媒に比ベパラフィン残留量が
幾分多いが、延伸比を増すとともに、パラフィン残留量
が減少することが分かる。 表    10 実施例8 超高分子量ポリエチレン(〔η) = 8.20 an
/g )とパラフィンワックス(融点=109°C5分
子量=900)との25ニア5ブレンド物を実施例1と
同一条件下で溶融紡糸延伸を行った。但し、オリフィス
径が2.0mmのグイより溶融物を押し出し、エアーギ
ャップ:10口で20°Cの冷水にて固化させた。この
際、冷却固化した繊維の径がo、4 mmになる様に引
き落としを行った。即ち、ドラフト比を5とした。尚、
延伸槽の熱媒は実験例1で用いたn−デカンに代え、シ
リコン油を用いた。延伸は、実験番号43は第2ゴデツ
トロールのみによる1段延伸、実験番号44〜46は第
2ゴデツトロールで予め延伸比6,0倍に延伸した後、
引き続き2段目の延伸を第3ゴデツトロールで所定の延
伸比迄行った。得られた延伸繊維の弾性率および強度の
結果をパラフィンワックスの残留量と併せて表11にま
とめた。 シコリン油とパラフィンワックスとは相溶しないため、
繊維表面からパラフィンワックスを完全に除去しきれな
いが、原糸に比較して本実験の場合にもパラフィンワッ
クスを延伸により除去できることが分かる。又、延伸繊
維に残留したパラフィンワックスは、ヘキサン等の溶媒
で洗浄することにより完全に除去でき、パラフィンワッ
クス全除去することにより弾性率および強度の向上を計
ることができる。上記延伸繊維のヘキサン洗浄後の弾性
率および強度の結果を表12にまとめた。 表    11 表    12 −97
FIG. 1 shows the relationship between elastic modulus and stretching ratio, FIG. 2 shows the relationship between strength and stretching ratio, and FIG. 3 shows the relationship between strength and elastic modulus. Applicant Mitsui Petrochemical Industries Co., Ltd. Agent Kazuzu Yamaguchi 1 0 10 20
30 Stretching ratio diagram 2 Stretching ratio diagram 5 0 10 20 30 40
50 60 Modulus of elasticity, (]Pa Procedural amendment (spontaneous) Kazuo Wakasugi, Commissioner of the Japan Patent Office1, Indication of the case, Patent Application No. 59976, filed in 1982, Title of the invention: Ultrapolymer ■ Process for manufacturing stretched polyethylene product 3 Amendment Patent applicant (58B) Mitsui Petrochemical Industries Co., Ltd. 4, Agent 〒io. 3-2-5-5 Kasumigaseki, Chiyoda-ku, Tokyo Voluntary amendment 64 Details of the invention in the specification subject to amendment Explanation Column 7 Contents of the amendment (1) Insert the phrase "- (two pairs if two-stage stretching is performed)" after the phrase "one to - one" on line 15E713 of the specification. (2) Details Insert the phrase "[and fifth godettrol]" after the phrase "second godettrol" on page 15, line 17 of the specification. (3) Insert the phrase "fiber obtained" on page 15, line 19 of the specification. Later, ``Experiment No. 1 was one-stage stretching using only the second godet roll, and Experiments Nos. 2 to 6 were drawn using the second godet roll in advance to a stretching ratio of 10.0 times, and then the second-stage stretching was performed. The predetermined stretching ratio was achieved with 6 godet rolls.
Insert the word or phrase. (4) In the first line of page 16 of the specification, the phrase "and strength" is amended to read "-1 strength and amount of residual paraffin." (5) After the phrase “obtained” on page 16, line 10 of the specification, the amount of r- or s-distilled paraffin wax (residual paraffin amount)
The paraffin wax was removed from the fibers after soaking them in n-1 xane for a day and night, and the fibers were quantified by weight loss. Insert the phrase ``. (6) The following column is added to the bottom column of Table 1-1 (below the strength column) on page 17 of the specification. [(7) On page 18, line 10 of the specification, before the phrase “each stretching ratio”, it is written that “Experiment No. 7 was a single-stage stretching using only the second godet roll, and experiments No. 8 to 10 were using the second godet roll. After pre-stretching to a stretching ratio of 8.0 times, a second stage of stretching was then carried out using a third godet roll to a predetermined stretching ratio.'' (8) On page 18, line 10 of the specification, ``and strength -1 There is,
", strength and amount of residual paraffin - 1. (9) Add the following column to the bottom column of Table 2-1 (below the strength column) on page 18 of the specification." aO details On page 19, line 10 of the book, ``Before each stretch ratio -1 phrase,'' ``Experiment number 11 was one-stage stretching using only the second godet roll, and experiment numbers 12 to 14 were drawn using the second godet roll.'' cr
After the film was previously stretched to a stretching ratio of 5.6 times using a second godet roll, a second stage of stretching was performed using a second godet roll to a predetermined stretching ratio. -10 strength On page 19 of the specification, line 10, "strength - 1" is corrected to ", strength and amount of residual paraffin - 1". 3- "" θ [Yes] "Calculated.-1" on page 20, line 11 of the specification.
After the phrase, [Experiment No. 15 is one-stage stretching using only the second godet roll, Experiment Nos. 16 and 17 is stretching by 10.0 times using the second godet roll, and then the second-stage stretching. The stretching was carried out in a third Godet wheel to a predetermined stretching ratio. Insert the phrase ``. 010 The following column is added to the bottom column (below the strength column) of "Table 4" on page 20 of the specification. "" 0υ Ultra-high molecular weight polyethylene ([η) = 8.21/g) = 4- and paraffin wax (melting point = 84°C, molecule 1 = 70
A 50:50 blend with 0) was molded in a T-die mold under the following conditions and then stretched. After mixing ultra-high molecular weight polyethylene powder and crushed paraffin wax,
Using a screw extruder with a diameter of 0 mm and L/D = 20, the pellets were melt-kneaded and pelletized at a resin temperature of 190"C.Then, the pellets were passed through a 220"O coat hanger type die (lip length = 300mm, lip thickness = 0.5mm). A film was formed using a screw extruder with a diameter of 20 mm and a L/D=20. Using a roll cooled with 20°C cold water, roll 300mm so that the film width is 43mm.
A film was prepared by drawing down from the width lip during melting. That is, the draft ratio was set to 50. A stretching tank (tank temperature =
Stretching was performed at 130° C. (length of one tank = 80 ffl). During stretching, the rotational speed of the first snap roll was set to 0.
5 m/mi, n, the second snap roll and the fifth
Stretched tapes with different stretching ratios were obtained by appropriately changing the rotational speed of the snack roll. 8 Stretching was carried out using only the second Snut roll in Experiment No. 1.
In stage stretching, experiment numbers 19 to 21, the film was first stretched to a stretching ratio of 2.0 times using a second snap roll, and then the second stage stretching was performed at a predetermined stretching ratio using a fifth snap roll. However, the stretching ratio was calculated from the rotation ratio of each snap roll. The stretched tape at each stretching ratio was measured at room temperature (
The elastic modulus, strength and tape width measured at 23°C are summarized in Table 5. Table 5 Comparative Example 2 Ultra-high molecular weight polyethylene ([η]-8.2d, g/g
) and high-density polyethylene (melting point -130" C1 molecule■
=40,0DD) in Experimental Example 1.
A T-die film was formed under the same conditions as described above, and then stretched. In this system, a film with a width of 50 D mm was formed because stretching breakage occurs if a drawdown is applied during melting. In experiment No. 22, the stretching was done in one stage using only the second Snut roll, and in Experiments Nos. 25 to 25, the second Snut roll was used to stretch to a stretching ratio of 5.4 times, and then the second stage of stretching was performed using the third Snut roll. A predetermined stretching ratio was achieved. Table 6 summarizes the elastic modulus, strength, and tape width of the stretched tape at each stretching ratio. In this system, a high draw ratio could not be achieved, resulting in high elasticity and high stability. 6 Example ultra-high molecular weight polyethylene ([η) = 8.20 af
f/g) and paraffin wax (melting point = 69°C, molecular weight = 460) was subjected to melt spinning and drawing under the same conditions as in Experimental Example 1. However, if the orifice diameter is 4. The melt was extruded through an Omm die and solidified with cold water at 20° C. with an air gap of 10 Cfn. At this time, the fibers were drawn down so that the diameter of the cooled and solidified fibers was 0.80 mm. Immediately, in the 1st and 3rd stretching with a draft ratio of 5, the stretching ratio + 0 is preliminarily set in the second godet wall.
.. After stretching to 0 times, a second stage of stretching was performed at a predetermined stretching ratio using a third godet roll. Table 7 shows the elastic modulus, strength, and residual amount of paraffin at each stretching ratio. Table 7 Example ultra-high molecular weight polyethylene ([η] = 8.201/)
and paraffin wax (melting point = 69”C, molecular weight = 46
0) and 25Nia5 blend was subjected to melt spinning and drawing under the same conditions as in Experimental Example 1. However, the orifice diameter is 2mm.
Extrude the molten material from the Gui, ]-Argy V-tub; 1
Assimilated in cold water at 20°C at 0 m. At this time, the fibers were drawn down so that the diameter of the cooled and solidified fibers was 0.20 mm. That is, the draft ratio was set to 10. Stretching was carried out in experiment number "1", 0-35 was one-stage stretching using only the second godet roll, and experiment numbers 34-37 were drawn in advance with the second godet roll to a stretching ratio of 8.0 times, and then the second-stage stretching was carried out. The stretching was carried out to a predetermined stretching ratio using a third godet roll.The elastic modulus, strength and residual amount of paraffin at each stretching ratio are shown in Tables 8 and 9. Table 8 Table 9 Examples Ultra-high molecular weight polyethylene ([η) = 8. 20 dn
/g) and paraffin wax (melting point = 69°01 molecular weight = 460) in Experimental Example 1.
Melt-spinning and drawing were performed under the same conditions as described above. However, the melt was extruded through a gouie with an orifice diameter of 1 mm and solidified in cold water at 20° C. with 10 air gaps. On this occasion,
The fibers were drawn down so that the diameter of the cooled and solidified fibers was 0.20 mm. That is, the draft ratio was set to 5. Note that the paraffin wax used in the above blend was used as the heating medium in the stretching tank instead of the n-decane used in Experimental Series 1. In experiment No. 38, the stretching was carried out in one step using only the second godet roll, and in experiments No. 39 to 42, the second godet roll was used to draw the stretching ratio to 7.0 times, and then the second step of drawing was carried out using the sixth godet roll. The stretching was carried out to a predetermined stretching ratio. Table 10 shows the elastic modulus, strength, and residual amount of paraffin at each stretching ratio. Although the residual amount of paraffin is somewhat larger than that of the n-decane heating medium, it is seen that as the stretching ratio increases, the residual amount of paraffin decreases. Table 10 Example 8 Ultra-high molecular weight polyethylene ([η) = 8.20 an
/g) and paraffin wax (melting point = 109°C, molecular weight = 900) was melt-spun and stretched under the same conditions as in Example 1. However, the molten material was extruded through a gouie with an orifice diameter of 2.0 mm and solidified with cold water at 20° C. with an air gap of 10 ports. At this time, the fibers were drawn down so that the diameter of the cooled and solidified fibers was 0.4 mm. That is, the draft ratio was set to 5. still,
As the heating medium in the stretching tank, silicone oil was used instead of n-decane used in Experimental Example 1. For the stretching, experiment number 43 was one-stage stretching using only the second godet roll, and experiment numbers 44 to 46 were drawn in advance with the second godet roll at a stretching ratio of 6.0 times.
Subsequently, a second stage of stretching was performed using a third godet roll to a predetermined stretching ratio. The results of the elastic modulus and strength of the obtained drawn fibers are summarized in Table 11 together with the residual amount of paraffin wax. Because cicoline oil and paraffin wax are incompatible,
Although the paraffin wax cannot be completely removed from the fiber surface, it can be seen that the paraffin wax can be removed by stretching in this experiment compared to the original yarn. Further, paraffin wax remaining on the drawn fibers can be completely removed by washing with a solvent such as hexane, and by completely removing paraffin wax, it is possible to improve the elastic modulus and strength. Table 12 summarizes the results of the elastic modulus and strength of the drawn fibers after washing with hexane. Table 11 Table 12 -97

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも極限粘度が5d7?/g以上の超高分
子量ポリエチレン(A) 15ないし80重量部と融点
が40ないし120°Cで且つ分子量が2000以下の
パラフィン系1ノツクス(B) 85ないし20市量部
との混合物を190ないL 280’Cの温度でスクリ
ュー押出機で溶融混練し、21Dないし30D”Cのり
イより未延伸物を押出し、少なくとも1を越えるドラフ
トをか1.l+1だ後冷却固化し、次いでろ([ない1
.、140°Cの温度で少なくとも5倍を越える延伸比
で延伸IVることを特徴とする超高分子量ポリエチレン
延伸物の製造;プ、。
(1) Is the intrinsic viscosity at least 5d7? /g or more ultra-high molecular weight polyethylene (A) 15 to 80 parts by weight and paraffin type 1 NOx having a melting point of 40 to 120°C and a molecular weight of 2000 or less (B) 85 to 20 parts by weight. The unstretched material was melt-kneaded in a screw extruder at a temperature of 280'C, extruded through a 21D to 30D"C glue, and cooled and solidified after passing through a draft of at least 1.1+1. 1
.. , production of a drawn ultra-high molecular weight polyethylene product characterized by IV drawing at a temperature of 140°C and a drawing ratio of at least 5 times;
JP5997683A 1982-12-28 1983-04-07 Drawn polyethylene material having ultrahigh molecular weight Granted JPS59187614A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP5997683A JPS59187614A (en) 1983-04-07 1983-04-07 Drawn polyethylene material having ultrahigh molecular weight
DE8383307928T DE3363610D1 (en) 1982-12-28 1983-12-23 Process for producing stretched articles of ultrahigh-molecular-weight polyethylene
EP83307928A EP0115192B2 (en) 1982-12-28 1983-12-23 Process for producing stretched filaments of ultrahigh-molecular-weight polyethylene
US06/566,302 US4545950A (en) 1982-12-28 1983-12-28 Process for producing stretched articles of ultrahigh-molecular-weight polyethylene
US06/755,590 US4612148A (en) 1982-12-28 1985-07-16 Process for producing stretched articles of ultrahigh-molecular-weight polyethylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5997683A JPS59187614A (en) 1983-04-07 1983-04-07 Drawn polyethylene material having ultrahigh molecular weight

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP23765991A Division JPH0729372B2 (en) 1991-09-18 1991-09-18 Stretched tape made of ultra high molecular weight polyethylene

Publications (2)

Publication Number Publication Date
JPS59187614A true JPS59187614A (en) 1984-10-24
JPH0240763B2 JPH0240763B2 (en) 1990-09-13

Family

ID=13128707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5997683A Granted JPS59187614A (en) 1982-12-28 1983-04-07 Drawn polyethylene material having ultrahigh molecular weight

Country Status (1)

Country Link
JP (1) JPS59187614A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61252134A (en) * 1985-04-17 1986-11-10 Mitsubishi Petrochem Co Ltd Polypropylene stretched tape yarn and manufacture thereof
JPS62257414A (en) * 1986-05-01 1987-11-10 Mitsui Petrochem Ind Ltd Highly orientated molded article of ultra-high-molecular-weight polyethylene and production thereof
JPS6350516A (en) * 1986-08-21 1988-03-03 Asahi Chem Ind Co Ltd Production of drawn ultrahigh-molecular weight polyethylene
JPS6392745A (en) * 1986-10-06 1988-04-23 グンゼ株式会社 Polyethylene sewing yarn
JPS63203816A (en) * 1987-02-12 1988-08-23 Mitsui Petrochem Ind Ltd Drawn product of ultra-high-molecular weight polyolefin and production thereof
JPS63308049A (en) * 1987-05-22 1988-12-15 デーエスエム ナムローゼ フェンノートシャップ Production of super-stretchable polymer material, super-stretchable material and production of article using the same
JPH0192407A (en) * 1987-09-30 1989-04-11 Mitsui Petrochem Ind Ltd Draw-formed article of ultra-high molecular weight ethylene-alpha-olefin copolymer having high breaking energy and production thereof
JPH01148807A (en) * 1987-12-03 1989-06-12 Mitsui Petrochem Ind Ltd Polyolefin fiber having improved initial elongation and production thereof
JPH01256689A (en) * 1988-04-04 1989-10-13 Mitsui Petrochem Ind Ltd Cord for window blind
US4879076A (en) * 1986-06-17 1989-11-07 Nippon Oil Co., Ltd. Process for the production of polyethylene materials
US4996011A (en) * 1988-07-09 1991-02-26 Nippon Oil Co., Ltd. Production of polyethylene materials having improved strength and modulus qualities
EP0419060A2 (en) * 1989-09-22 1991-03-27 Mitsui Petrochemical Industries, Ltd. Molecular orientation articles molded from high-molecular weight polyethylene and processes for preparing same
JPH0577607A (en) * 1991-09-17 1993-03-30 Sumitomo Rubber Ind Ltd Pneumatic tire
JPH05104905A (en) * 1991-09-27 1993-04-27 Sumitomo Rubber Ind Ltd Pneumatic tire
US5246657A (en) * 1987-12-03 1993-09-21 Mitsui Petrochemical Industries, Ltd. Process of making polyolefin fiber
EP0608137A2 (en) 1993-01-20 1994-07-27 Nippon Oil Company, Limited Process for producing polyethylene material of high strength and high elastic modulus
US6017480A (en) * 1996-03-22 2000-01-25 Nippon Oil Co., Ltd. Process for producing polyolefin materials
JP2000052428A (en) * 1998-08-11 2000-02-22 Sekisui Chem Co Ltd Laminate producing method and apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5480712A (en) * 1991-10-31 1996-01-02 Ube-Nitto Kasei Co., Ltd. Non-hollow adsorbent porous fiber

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107506A (en) * 1979-02-08 1980-08-18 Stamicarbon Filament with high tensile strength and elastic ratio and method
JPS585228A (en) * 1981-04-30 1983-01-12 アライド・コ−ポレ−シヨン Manufacture of crystalline thermoplastic article having high strength and high modulus and fiber as novel product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107506A (en) * 1979-02-08 1980-08-18 Stamicarbon Filament with high tensile strength and elastic ratio and method
JPS585228A (en) * 1981-04-30 1983-01-12 アライド・コ−ポレ−シヨン Manufacture of crystalline thermoplastic article having high strength and high modulus and fiber as novel product

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0464295B2 (en) * 1985-04-17 1992-10-14 Mitsubishi Petrochemical Co
JPS61252134A (en) * 1985-04-17 1986-11-10 Mitsubishi Petrochem Co Ltd Polypropylene stretched tape yarn and manufacture thereof
JPS62257414A (en) * 1986-05-01 1987-11-10 Mitsui Petrochem Ind Ltd Highly orientated molded article of ultra-high-molecular-weight polyethylene and production thereof
US4879076A (en) * 1986-06-17 1989-11-07 Nippon Oil Co., Ltd. Process for the production of polyethylene materials
JPS6350516A (en) * 1986-08-21 1988-03-03 Asahi Chem Ind Co Ltd Production of drawn ultrahigh-molecular weight polyethylene
JPH0336929B2 (en) * 1986-08-21 1991-06-04 Asahi Chemical Ind
JPS6392745A (en) * 1986-10-06 1988-04-23 グンゼ株式会社 Polyethylene sewing yarn
JPS63203816A (en) * 1987-02-12 1988-08-23 Mitsui Petrochem Ind Ltd Drawn product of ultra-high-molecular weight polyolefin and production thereof
JPS63308049A (en) * 1987-05-22 1988-12-15 デーエスエム ナムローゼ フェンノートシャップ Production of super-stretchable polymer material, super-stretchable material and production of article using the same
JPH0192407A (en) * 1987-09-30 1989-04-11 Mitsui Petrochem Ind Ltd Draw-formed article of ultra-high molecular weight ethylene-alpha-olefin copolymer having high breaking energy and production thereof
JPH01148807A (en) * 1987-12-03 1989-06-12 Mitsui Petrochem Ind Ltd Polyolefin fiber having improved initial elongation and production thereof
US5246657A (en) * 1987-12-03 1993-09-21 Mitsui Petrochemical Industries, Ltd. Process of making polyolefin fiber
JPH01256689A (en) * 1988-04-04 1989-10-13 Mitsui Petrochem Ind Ltd Cord for window blind
US4996011A (en) * 1988-07-09 1991-02-26 Nippon Oil Co., Ltd. Production of polyethylene materials having improved strength and modulus qualities
EP0419060A3 (en) * 1989-09-22 1992-06-17 Mitsui Petrochemical Industries, Ltd. Molecular orientation articles molded from high-molecular weight polyethylene and processes for preparing same
EP0419060A2 (en) * 1989-09-22 1991-03-27 Mitsui Petrochemical Industries, Ltd. Molecular orientation articles molded from high-molecular weight polyethylene and processes for preparing same
JPH0577607A (en) * 1991-09-17 1993-03-30 Sumitomo Rubber Ind Ltd Pneumatic tire
JPH05104905A (en) * 1991-09-27 1993-04-27 Sumitomo Rubber Ind Ltd Pneumatic tire
EP0608137A2 (en) 1993-01-20 1994-07-27 Nippon Oil Company, Limited Process for producing polyethylene material of high strength and high elastic modulus
US6017480A (en) * 1996-03-22 2000-01-25 Nippon Oil Co., Ltd. Process for producing polyolefin materials
JP2000052428A (en) * 1998-08-11 2000-02-22 Sekisui Chem Co Ltd Laminate producing method and apparatus

Also Published As

Publication number Publication date
JPH0240763B2 (en) 1990-09-13

Similar Documents

Publication Publication Date Title
EP0115192B1 (en) Process for producing stretched filaments of ultrahigh-molecular-weight polyethylene
EP0168923B1 (en) Process for producing stretched article of ultrahigh-molecular weight polyethylene
JPS59187614A (en) Drawn polyethylene material having ultrahigh molecular weight
US6432496B1 (en) High density polyethylene films with improved barrier properties
EP0151343B1 (en) Orientated polyolefins
EP0173572B1 (en) Graft-modified ultrahigh-molecular-weight polyethylene and process for producing same
JPS59130313A (en) Manufacture of drawn ultra-high-molecular-weight polyethylene
JP4889733B2 (en) High density polyethylene microporous membrane excellent in extrusion kneadability and physical properties and method for producing the same
EP3357563A1 (en) Separation film, cellulose-based resin composition, and method for manufacturing separation film
JP2008540794A6 (en) High density polyethylene microporous membrane excellent in extrusion kneadability and physical properties and method for producing the same
JPS60189420A (en) Manufacture of oriented article of ultra-high-molocular polyethylene
JPH0246053B2 (en) CHOKOBUNSHIRYOHORIECHIRENYOEKINOSEIZOHOHO
JPS59168116A (en) Production of drawn polyethylene
JPS60240432A (en) Manufacture of elongated polyethylene of superhigh molecular weight
JPH0417132B2 (en)
JPS60190330A (en) Manufacture of superhigh molecular weight polyethylene stretched product
JPS60210425A (en) Manufacture of stretched polyethylene product
JPH05254011A (en) Stretched tape made of ultra-high-molecular-weight polyethylene
JPS60232927A (en) Manufacture of orientated polyethylene
CA1216118A (en) Process for producing stretched articles of ultrahigh- molecular-weight polyethylene
KR100727751B1 (en) Poly phenylenesulfide composition with improved melt strength
CN118667255A (en) Frosted heat-shrinkable tube and preparation method thereof
JPS60244524A (en) Preparation of stretched polyethylene article
JPH0336929B2 (en)