JPS59186602A - Gas separation membrane - Google Patents
Gas separation membraneInfo
- Publication number
- JPS59186602A JPS59186602A JP6054183A JP6054183A JPS59186602A JP S59186602 A JPS59186602 A JP S59186602A JP 6054183 A JP6054183 A JP 6054183A JP 6054183 A JP6054183 A JP 6054183A JP S59186602 A JPS59186602 A JP S59186602A
- Authority
- JP
- Japan
- Prior art keywords
- group
- membrane
- gas separation
- separation membrane
- atom
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は気体分#膜に関する。詳しくは不飽和基を有す
るエチレン系重合体に反応性基を有するケイ素化合物を
付加し、そのまま或いは架橋剤を用いて架橋し膜の機械
的強度および気体の分離性能を改良した気体分離膜に関
する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to gaseous membranes. Specifically, the present invention relates to a gas separation membrane in which a silicon compound having a reactive group is added to an ethylene polymer having an unsaturated group, and the mechanical strength and gas separation performance of the membrane are improved by crosslinking the membrane as it is or by using a crosslinking agent.
気体分@−膜には気体に対する高い分離率と犬さい透溝
速度が要求される。この様な性能を満足する為には、実
質的に分離能を有する膜層は可能な限シ薄くする必要が
ある。七ころが過度に膜厚を薄くしようとすれば、遂に
は欠陥を生じ分離能が失われてしまう。従って膜厚を薄
くシてゆ≧為には、膜材料の機械的強度を増大させるか
又は多孔質の層に保持・強化する方法が考えられる。こ
こで多孔質の層に保持強化干る方法は種々考案さ、れて
bる。例えば多孔層の上に。Gas content - Membranes require a high gas separation rate and high permeation velocity. In order to satisfy such performance, it is necessary to make the membrane layer having substantial separation ability as thin as possible. If the seven rollers try to reduce the film thickness too much, defects will eventually occur and separation ability will be lost. Therefore, in order to reduce the film thickness, it is possible to increase the mechanical strength of the film material or to maintain and strengthen it in a porous layer. Here, various methods have been devised to strengthen retention in the porous layer. For example, on top of a porous layer.
別途製膜した薄膜を重ね合わせる方法、懺皮層と多孔層
が共存する異方性膜を一度に製膜する方法、多孔胸膜の
上に種々の方法によりモノマーカ・ら直接重合等を行い
、薄膜を製に+る力・、あるいけポリマーの溶液を被挾
した佐で溶媒を蒸発させて薄膜を製膜するなどの方法が
ある。A method of overlapping separately formed thin films, a method of forming an anisotropic film in which the epidermis layer and a porous layer coexist, a method of directly polymerizing monomers on the porous pleura by various methods, etc. to form a thin film. There is a method of forming a thin film by evaporating the solvent in a sample of a polymer solution.
本発明者等は、以上の方法に適した尚分子材料について
鋭意検討した結呆、不飽オロ基を有するエチレン系重合
体に反応性基金有するケイ素化合物を付加し、その捷ま
或いは架偽剤を用いて架橋することにより、得られた膜
の強度は増大し、しかも分離性能の高い膜が得られるこ
とを舅い出し1本発明に到達した。即ち、本発明の要旨
は下記一般式(1)で表わ略れる構造単位(式中、nけ
0またけ/から5までの整数、R1゜R2およびR3ケ
水素原子、ハロゲン原子、アルキル基−)たけフェニル
基を表わし互いに同一でも異っていてもよい。)を1モ
ル%以上含む工科を主成分とする気体分離膜に存する。The present inventors have intensively studied molecular materials suitable for the above method, added a silicon compound having a reactive group to an ethylene polymer having an unsaturated oro group, and used the method as a cross-linking agent. The present invention was based on the discovery that by crosslinking using a methane compound, the strength of the resulting membrane can be increased and a membrane with high separation performance can be obtained. That is, the gist of the present invention is an abbreviated structural unit represented by the following general formula (1) (in the formula, an integer from n to 0 to 5, R1゜R2 and R3, a hydrogen atom, a halogen atom, an alkyl group) -) represents a phenyl group and may be the same or different from each other. ) is present in a gas separation membrane whose main component is polyester containing 1 mol% or more.
本発明の詳細な説明するに、前足一般式(1)で
−示される構造単位を1モル以上言むエチレン系1合体
(以下においてこれを成分Aと称する)としては液状で
も固体状であってもよく、前足一般式(1)の構造単位
を7モル%以上、好ましく17−570モル%以上含み
、有機溶媒に可溶であることが望寸しい。ここで構造単
位(1)の割合が7モル%未満では、後述のケイ素化合
物の付加量が少なくなり、従ってその後の架橋効果の度
合が小さくなって機械的強度の低下をきたすので不利で
ある。更には気体分離性能の著しい低下も起こる。成分
Aの具体例としては、/、2−ポリブタジェン、線状ポ
リジビニルベンゼン、スチレン−ジビニルベンゼン共重
合体等が挙げられるが、勿論これらK ff1E定され
るものではない。To explain the present invention in detail, the forefoot general formula (1)
- The ethylene-based monomer containing 1 mol or more of the structural unit shown (hereinafter referred to as component A) may be in liquid or solid form, and contains 7 mol% of the structural unit of the forefoot general formula (1). As mentioned above, it is desirable that the content is preferably 17-570 mol% or more and that it is soluble in organic solvents. Here, if the proportion of the structural unit (1) is less than 7 mol%, the amount of the silicon compound added below will be small, and therefore the degree of subsequent crosslinking effect will be small, resulting in a decrease in mechanical strength, which is disadvantageous. Furthermore, a significant decrease in gas separation performance also occurs. Specific examples of component A include /, 2-polybutadiene, linear polydivinylbenzene, styrene-divinylbenzene copolymer, etc., but of course these Kff1E are not defined.
加水分解性の原子又は原子団を損するケイ素化合物(以
下において、これを成分B、l−称する)としては、成
分Aと付加反応できる必要がある、従って一般にはケイ
素上に水素を有するヒドロシラン類又dシアノ基を有す
るシアノシラン類が挙げられる。このようなケイ素化合
物は30℃以上の加熱下、無触媒で、成員は白金、ロジ
ウム、コバルト等の金属、又は過酸化物等の触媒を使用
することによυ、ヒドロシリル化又はシアノシリル化反
応で成分にの不飽和結合に付加できる。更Ki分B上に
は加水分解し得る原子又は原子団が存在する必要がある
が、このような原子又は原子団としては、水酸基、アミ
ノ基、アルコキシ基、アシロキシ基、メルカプト基、ア
シル基、シアノ基、エポキシ基、水素原子またはハロゲ
ン原子が挙げられる。成分Bのケイ素化合物は上記の官
能基を有する必要があるが、ケイ素原子が一個以上の鎖
状又は環状のポリシランτあってもよいし、又はシロキ
サン結合を有していてもよく、或いは数種類の混合物で
あってもよい。しかし成分Bけ適当な有機溶媒に可溶で
あって、分子量が100θ以下であることが好ましい。The silicon compound that loses the hydrolyzable atom or atomic group (hereinafter referred to as component B, l-) must be able to undergo an addition reaction with component A, and is therefore generally a hydrosilane containing hydrogen on silicon or a Examples include cyanosilanes having a d-cyano group. Such silicon compounds can undergo hydrosilylation or cyanosilylation reaction by heating at 30°C or higher without using a catalyst, or by using a metal such as platinum, rhodium, cobalt, or a catalyst such as peroxide. Can be added to unsaturated bonds in components. Furthermore, it is necessary that an atom or atomic group that can be hydrolyzed exists on the Ki component B, and such atoms or atomic groups include hydroxyl group, amino group, alkoxy group, acyloxy group, mercapto group, acyl group, Examples include a cyano group, an epoxy group, a hydrogen atom, and a halogen atom. The silicon compound of component B must have the above-mentioned functional group, but it may also have one or more chain or cyclic polysilane τ, or it may have a siloxane bond, or it may contain several types of silicon atoms. It may be a mixture. However, it is preferable that component B is soluble in a suitable organic solvent and has a molecular weight of 100θ or less.
成分Bの具体例としては、ジメチルクロロシラン、ジク
ロ四メチルシラン、トリクロロシラン、トリブロモシラ
ン、テトラメチルクロロジシラン、テトラクロロシクロ
テトラシロキサン等のハロゲン化ケイ素化合物、トリエ
トキシシラン、トリメトキシシラン、ジメチルエトキシ
シラン、メチルエトキシシラン、テトラメトキシジシラ
ン、ンエニルジメトキシシラン、ジフェニルメトキシシ
アノシラン等のアルコキシシラン、ビスジメチルアミノ
メチルシラン、ジメチルアミノメチルクロロシラン、ジ
メチルアミノジメチルシラン叫のアミノシラン、アセト
キシジメチルシラン、メチルジアセトキシシラン、フエ
≧ルメチルアセトキシシラン等のアセトキシシラン、ジ
メチルシリルメチルメルカプタン、ジエチルシリルメチ
ルメルカプタン等のメルカフトシ2ン、ジメチルアシル
シラン、ジエチルアシルシラ・ン等のアシルシランが誉
げらハるが、これらは/釉又けそれ以上の混合物として
用いることができる。Specific examples of component B include halogenated silicon compounds such as dimethylchlorosilane, dichlorotetramethylsilane, trichlorosilane, tribromosilane, tetramethylchlorodisilane, and tetrachlorocyclotetrasiloxane, triethoxysilane, trimethoxysilane, and dimethylethoxysilane. Alkoxysilanes such as , methylethoxysilane, tetramethoxydisilane, enyldimethoxysilane, diphenylmethoxycyanosilane, bisdimethylaminomethylsilane, dimethylaminomethylchlorosilane, dimethylaminodimethylsilane, aminosilane, acetoxydimethylsilane, methyldiacetoxysilane , acetoxysilanes such as fer≧rumethylacetoxysilane, mercapsilanes such as dimethylsilylmethylmercaptan and diethylsilylmethylmercaptan, and acylsilanes such as dimethylacylsilanes and diethylacylsilanes, but these are / It can be used as a mixture for glazing or more.
成分Aと成分Bとの間の付加反応0℃以上、好tL<は
3θ〜300℃の温度で、無溶奴、下又は適当な有機溶
媒中で行なうことができる。The addition reaction between component A and component B can be carried out at a temperature of 0° C. or higher, preferably tL<3θ to 300° C., in an undissolved solution or in a suitable organic solvent.
このような反応に適する有捺俗媒としてd、ヘキサン、
ヘフリン、シクロヘキサン等の脂肪族炭化水先、ベンゼ
ン、トルエノ、キシレン等の芳香族炭化水素、クロロホ
ルム、四塩化炭素、クロロベンゼン、ジクロロベンゼン
、フロモホルム等のハロゲン化炭化水素、シx −y−
A/ :r−−−rル、テトラヒドロフラン、ジブチル
エーテル等のエーテル類が挙げられる。また成分Bけ成
分Aの不飽第1】結合7モル肖量に対して0.5モル以
上、好−1=L〈け−7〜700モル使用して、なおか
つ不活性ガス中で反応ケ行なうのが好ましい。d, hexane,
Heflin, aliphatic hydrocarbons such as cyclohexane, aromatic hydrocarbons such as benzene, tolueno, xylene, halogenated hydrocarbons such as chloroform, carbon tetrachloride, chlorobenzene, dichlorobenzene, fromoform, etc.
A/: Ethers such as r---r, tetrahydrofuran, and dibutyl ether can be mentioned. In addition, 0.5 mole or more, preferably -1 = L (preferably -7 to 700 moles), is used for the unsaturated 1st bond of component B and component A, and the reaction is carried out in an inert gas. It is preferable to do so.
なぜなら゛、空気中の水分で水酸基がケイ素上に導入さ
れ、ネらに他のアミノ基、ノ・ロゲン、水酸基、アシル
基、メルカプト基勢を有するケイ素置換基又は未反応ケ
イ素化合物と縮合して架橋反応が進行する25)らであ
る。This is because hydroxyl groups are introduced onto silicon by moisture in the air, and then condensed with other amino groups, nitrogen, hydroxyl, acyl, mercapto-containing silicon substituents or unreacted silicon compounds. 25) et al., in which the crosslinking reaction proceeds.
上記の如くして得られたケイ素化合物の付加物は未反応
の成分Bf含んだ甘ま、康、いけ未反応の成分Bおよび
溶媒等の揮発成分を除去′した後、適当な有機溶IJI
K溶解してから製膜に供することができる。製膜は該反
応γに合物の清液をガラス板対C゛平板上に適当な厚濾
になるように流動する力・、又i′i適尚な多孔質支持
膜上に塗布又は浸消子る方法等があるが、その方法は限
定しない。但し、いずれの方法をとるにしでも、反応生
成物の架橋を促進させて膜強贋及び気体分離性能の向上
を図るためには0℃以上好ましくは室温〜/θ0℃でθ
、7時間以上、好ましくは7〜.29時間空気中に放伽
するか、或いは水蒸気と接触略せることが好捷しく%更
に望むならば′30℃以上、好ましくけ!θ〜300℃
の温度で熱処理することもできる。The adduct of the silicon compound obtained as described above is sweetened with unreacted component B, and after removing volatile components such as unreacted component B and solvent, it is dissolved in a suitable organic solution IJI.
After dissolving K, it can be used for film formation. Film formation involves the reaction γ, the force of flowing the clear liquid of the compound onto a glass plate vs. There are ways to erase it, but the method is not limited. However, whichever method is used, in order to promote crosslinking of the reaction product and improve membrane strength and gas separation performance, the temperature should be 0°C or higher, preferably room temperature to /θ0°C.
, 7 hours or more, preferably 7 to . It is preferable to leave it in the air for 29 hours or avoid contact with water vapor. θ~300℃
It can also be heat treated at a temperature of .
以上の方法によって得られる膜はとの第1でも気体分離
能を有しているが、更に気体の透遜性能を向上させるた
めに、前記膜材料を架橋剤で処理しで後製膜してもよい
。このような処理により、一般に気体透治能が大きいこ
とが知ら茂
れている物鷺例えばポリシロキサンを前記膜材料に導入
しうる。例えば、上記成分Aへの成分Bの付加反応物に
、成分B上に存在する反応性基又はその加水分11Jr
4によって得られた水酸基と付加又は縮合反応し得る一
以上の官能基を治するポリシロキサンを加えて架橋反応
せしめ、気体分離膜の林料とするものである。このよう
なポリシロキサンの構造および分子諷ハ%に限定しな−
か、構造は鎖状、環状、網目状いすわでこのようなポリ
シロキサンとしては、α、ω−ジヒドロキシボリジメチ
ルシロキザン、α。The membrane obtained by the above method has gas separation ability in the first method, but in order to further improve the gas see-through performance, the membrane material is treated with a crosslinking agent and then formed into a membrane. Good too. Such treatment allows the introduction of materials, such as polysiloxanes, which are generally known to have high gas permeability into the membrane material. For example, in the addition reaction product of component B to component A, the reactive group present on component B or its hydrolysis 11 Jr.
A polysiloxane that cures one or more functional groups capable of addition or condensation reaction with the hydroxyl group obtained in step 4 is added to cause a crosslinking reaction, thereby producing a forest material for a gas separation membrane. The structure and molecular weight of such polysiloxanes are not limited.
Examples of such polysiloxanes include α,ω-dihydroxyboridimethylsiloxane and α.
ω−ジヒドロキシポリメチルフェニルシロキサにα、ω
−ジアミノポリジメチルシロキサン、α、ω−ジグリシ
ジルボリジメチルシロキサン、α、ω−ジアセトキシポ
リジメチルシロキサン、α、ω−ジメトキシポリジメチ
ルシロキサン等の線状ポリシロキサン、シクロポリメチ
ルメトキシシロキサン、シクロポリジメトキシポリシロ
キサン等の環状ポリシロキサンが挙げられる。α, ω to ω-dihydroxypolymethylphenylsiloxa
- Linear polysiloxanes such as diaminopolydimethylsiloxane, α,ω-diglycidylboridimethylsiloxane, α,ω-diacetoxypolydimethylsiloxane, α,ω-dimethoxypolydimethylsiloxane, cyclopolymethylmethoxysiloxane, cyclopolydimethoxy Examples include cyclic polysiloxanes such as polysiloxane.
前足コ種以上、の官能基を有するポリシロキサン(以下
において、これを架橋剤ポリシロキサンと称する)を架
橋剤として使用する反応は無溶媒下又は適当な有機溶媒
の存在下に行なうことができるが、有機溶媒を用いたt
6液状態で行なうことが好ましい、これらの架橋反応は
、成分A、成分Bおよび架橋剤ポリシロキサンの種類又
は反応温度等によって適宜の方法で行なわれるが、空気
中、水分の存在下、或いは適当々触媒の存在下に行々つ
てもよい。また架橋剤ポリシロキサンの使用量は成分A
と成分Bの付加物7重葉部に対して0,7〜−2重量部
が好ましい。The reaction using a polysiloxane having more than one functional group (hereinafter referred to as a crosslinking polysiloxane) as a crosslinking agent can be carried out without a solvent or in the presence of a suitable organic solvent. , t using an organic solvent
These crosslinking reactions, which are preferably carried out in a six-liquid state, may be carried out in an appropriate manner depending on the type of component A, component B and crosslinking polysiloxane, reaction temperature, etc., but may be carried out in air, in the presence of moisture, or in an appropriate manner. The reaction may also be carried out in the presence of a catalyst. In addition, the amount of crosslinking agent polysiloxane used is component A.
The amount is preferably 0.7 to -2 parts by weight based on 7 parts of the adduct of component B.
更に′架橋剤ポリシロキサン上の官能基は2以上であれ
ば■)−でも異っていてもよく、又官能基の置換位置も
特に限定けしないが、架橋汐応の容易さの点では互いに
両末端のような離れた位置にあることが望ましい。この
ような架橋剤ポリシロキサン上の官能基は、成分Aへの
成分Bの付加反応物の反応性基と付加又は縮合反応し得
るものであれば%に限定けし7々いが1例えば前記成分
B上の加水分解性原子又はm子団を挙げることができる
。Furthermore, the functional groups on the crosslinking polysiloxane may be different from each other as long as they are two or more, and the substitution positions of the functional groups are not particularly limited. It is preferable that they be located at separate locations such as at both ends. The functional group on such a crosslinking polysiloxane is limited to 1%, but may be limited to 1%, as long as it can undergo an addition or condensation reaction with the reactive group of the addition reaction product of component B to component A. Mention may be made of hydrolyzable atoms or m-groups on B.
上記のように架橋剤で処理された膜狗料は反応混合物の
まま、或いは揮発性成分、その他溶媒不溶部を除去した
後、適当な有板溶媒の溶液として前記成分Aと成分Bの
付加反応物と同様に、そのま捷又は多孔質膜上に製に−
Fることかできる。The membrane dog material treated with the crosslinking agent as described above can be used as a reaction mixture, or after removing volatile components and other solvent-insoluble parts, it can be used as a solution in a suitable plated solvent for the addition reaction of component A and component B. As with other products, it can be rolled as is or made on a porous membrane.
I can do F.
本発明の膜は気体特に酸素、窒素、炭はガ入−酸化炭素
、水素、ヘリウム、メタン、アルコ。The membrane of the present invention can be used with gases, especially oxygen, nitrogen, carbon oxide, hydrogen, helium, methane, alcohol.
ンの少くとも一つの気体を含有中る気体混合物を互いに
分離する為に使用することが出来る。It can be used to separate gas mixtures containing at least one of the following gases from each other.
例えは、酸素富化突気の製造に於ける窒素と酸素の分離
、天然ガスからのヘリウムの回収に於けるメタンとヘリ
ウムの分離、水添反応排ガスからの水素の回収に於ける
アルゴンと水素、メタン七水素、窒素と水素の分離、ク
ラッキングガス中の水素の回収K 、:i”)ける−酸
化炭素と水素の分離、燃焼ガスからの二酸化炭素の回収
に於ける二酸化炭素と窒素の分離等に応用出来る。Examples include the separation of nitrogen and oxygen in the production of oxygen-enriched gas, the separation of methane and helium in the recovery of helium from natural gas, and the separation of argon and hydrogen in the recovery of hydrogen from hydrogenation reaction exhaust gas. , Separation of methane heptahydrogen, nitrogen and hydrogen, recovery of hydrogen in cracking gas K , :i'') - Separation of carbon oxide and hydrogen, separation of carbon dioxide and nitrogen in the recovery of carbon dioxide from combustion gases It can be applied to etc.
次に実施例により本発明の詳細な説明するが本発明の内
容は実施例のみに限定されるものではない。Next, the present invention will be explained in detail with reference to Examples, but the content of the present invention is not limited to the Examples.
参考例/
乾燥窒素置換した。200rn13つロフラスコに日本
曹達社製、液状ゴム(N15so PB B−20θ0
゜商標) 6.tr 7 yを仕入み%、200℃に加
熱した。Reference example/ The air was replaced with dry nitrogen. Nippon Soda Co., Ltd. liquid rubber (N15so PB B-20θ0
゜Trademark) 6. tr 7 y was purchased and heated to 200°C.
次いでトリエトキシシラン371およびジーtベ
ープチルブルオキシドコ、0に1の渭合物を滴下ロート
から、撹拌下に徐々に滴下した。3θ分間で滴下終了後
、フラスコf/、20℃に昇温L/!時間、加熱・撹拌
を継続した。次すて、反応混′合物を減圧下に室温で処
理することにより、未反応のトリエトキシシラン及び揮
発性成分を除去したところ、10.73りの黄色液状物
が得られ、液状ゴム/重量部に対してo、!6重量達ト
リエトキシシランが付加したことが判る。得られた付加
恰に乾燥トルエンを加えて−2,?重量部の溶液として
屋素下に保存し、以下の気体分喰膜の製膜溶液として使
用した。Next, a mixture of triethoxysilane 371 and di-t-vapyl fluoride in a ratio of 0 to 1 was gradually added dropwise from the dropping funnel while stirring. After completing the dropwise addition for 3θ minutes, the flask f/ is heated to 20°C L/! Heating and stirring were continued for several hours. The reaction mixture was then treated under reduced pressure at room temperature to remove unreacted triethoxysilane and volatile components, yielding a yellow liquid of 10.73%. o, for the weight part! It can be seen that 6 weights of triethoxysilane was added. Dry toluene is added to the resulting addition and -2,? It was stored under a roof as a solution in parts by weight and used as a membrane forming solution for the following gas separation membrane.
実施例/
参考例/で得られた、トリエトキシシラン付加物のトル
エン溶液を八200μの厚さにガラス板上に流処し、空
気中に室温下で/晩放値[乾燥してゴム状の膜を得た。The toluene solution of the triethoxysilane adduct obtained in Example/Reference Example/ was poured onto a glass plate to a thickness of 8,200 μm, and dried in the air at room temperature/overnight [dry to form a rubbery layer. A membrane was obtained.
得られた膜を透過試験装置上に装着し、各抑気体の透過
特性を以下のように測定した。即ち、測定装置肖として
は限外r混用装置〔米国アミコン(Am1con )社
製、!コ型〕を用い、膜紮装着した後、膜の上m1に所
定ガスを7.θkKr/Iゲージ圧の圧力で加圧し、膜
の下面をガスビューレットに接続し、コ!℃、一定時間
に膜を透過するガス量を測定し、ガス量を測定し1ガス
透適性を求めた。各l気体の気体透過速度けRで表わし
、又単位けcc (8TP)/−・気・cm Hf
であり以後単位は省略して表示する。また気体の選択分
離性は透過速度の比で表わす。The obtained membrane was mounted on a permeation test device, and the permeation characteristics of each depressant were measured as follows. In other words, the measuring device is an ultra-rather mixed device [manufactured by Amicon, Inc., USA]. After attaching the membrane ligature, apply the specified gas to the top m1 of the membrane in 7. Pressurize with θkKr/I gauge pressure, connect the bottom surface of the membrane to a gas buret, and then! ℃, the amount of gas permeating through the membrane over a certain period of time was measured, and the gas permeability was determined by measuring the amount of gas. The gas permeation rate of each l gas is expressed as R, and the unit is cc (8TP)/-・air・cm Hf
, and henceforth the units will be omitted. In addition, the selective separation of gases is expressed as a ratio of permeation rates.
本実施例の膜の気体の透過性能は Ro、 = ’?、3 X 10−” RN2セコ、OX 10−畠 Rot/RM2 =ダ、2 であった。The gas permeation performance of the membrane in this example is Ro, =’? , 3 X 10-” RN2 Seco, OX 10-Hatake Rot/RM2 = da, 2 Met.
比較例/
市販のミリポアフィルタ−(商品名)vSW”(平均孔
仔0,0−21μ)の気体透過速度Rを実施例/と同様
にして測定した。結果は以下に示す。Comparative Example/The gas permeation rate R of a commercially available Millipore filter (trade name) vSW'' (average porosity 0.0-21μ) was measured in the same manner as in Example/.The results are shown below.
RN2= /J X 1O−2
Ro□ = /、7 X 10−” l(O
,/RN2e O9りRaO2−=:=/ 、4’ X
/ 0 ”−” R002/RN t ;0Jl
(112−飢λ×/θJ Ra!/RN、 =コ、
3実施例コ
参考例/で得られたトルエン溶液中に、市販のミリポア
フィルター(藺品名)vswp (平均孔径O6θ2!
μ)を窒素下に2分間、浸漬して後、空気中で風乾して
溶t9を除去した。この豚を透過試験装置1#に装着し
て実施例/と同様にして各RO,=3,3×/θ−’R
O2/RN2=ハ/Roo2= /、グ×/θ−’
Roo2/RN2= 27.JRH2z/、り×10
づ R)+2/RN2= 2/J比較例/から判るよ
うに、窒素に対しては酸素、二酸化炭素、水素の全てに
選択性があるが、特に二酸化要素の選択性が太きい。RN2= /J X 1O-2 Ro□ = /, 7
,/RN2e O9riRaO2-=:=/ ,4' X
/ 0 "-" R002/RN t ;0Jl
(112-starvation λ×/θJ Ra!/RN, =ko,
A commercially available Millipore filter (product name) vswp (average pore size O6θ2!) was added to the toluene solution obtained in Example 3 and Reference Example/.
μ) was immersed under nitrogen for 2 minutes and then air-dried in the air to remove the molten t9. This pig was attached to the transmission test device 1# and the same procedure as in Example/ was carried out for each RO, = 3, 3 x /θ-'R
O2/RN2=ha/Roo2= /, g×/θ−'
Roo2/RN2=27. JRH2z/,ri×10
R)+2/RN2=2/JAs can be seen from the comparative example, there is selectivity for all of oxygen, carbon dioxide, and hydrogen with respect to nitrogen, but the selectivity for the element dioxide is particularly large.
)(友山 例 3
参考例/で得ら力、たトリエトキシラン付、加物のコ、
2.♂重量当のトルエン溶液3.と11α、ω−ジヒド
ロキシジメチルポリシロキサン(チッソsp開発部P8
−/りj)θ、悔および動台反応触媒としてジブチルス
ズジラウレート0.θj2を室温下に全気中で、20分
間撹拌して均−溶成を得た。次いで、得らiまた均一溶
液を、/θθ0μの淳さにガラス板上に流延L1室温下
に/晩放慣して竪燥した。得られた膜を透過試験装置に
装着し、実施例/と同様にして気体の透過速度Rを測定
した。結果は以下に示す、
RN2= 2.グ×/θ−7
Ro、 = / 、、2 X 1O−6Ro2/Ry2
= s、θ特許出願人 三菱化成工業株式会社
代 理 入 弁理士 長谷用 −
ほか/名) (Tomoyama Example 3 Reference example/The power obtained with triethoxylan, additives,
2. Toluene solution per ♂ weight 3. and 11α,ω-dihydroxydimethylpolysiloxane (Chisso SP Development Department P8
-/rij) θ, dibutyltin dilaurate as a reaction catalyst and 0. θj2 was stirred at room temperature in full air for 20 minutes to obtain uniform dissolution. Next, the obtained homogeneous solution was cast onto a glass plate at a temperature of /θθ0μ and left to dry overnight at room temperature. The obtained membrane was attached to a permeation test device, and the gas permeation rate R was measured in the same manner as in Example. The results are shown below, RN2=2. G×/θ−7 Ro, = / ,, 2 X 1O−6Ro2/Ry2
= s, θ Patent applicant Mitsubishi Chemical Industries, Ltd. Representative Patent attorney Hase - Others/names
Claims (3)
ルキル基またはフェニル基を表わし互込に同一でも異っ
ていてもよい。)を1モル%以上含むエチレン系重合体
に加水分解性の原子又は原子団を有するケイ素化合物を
付加後そのまま、或すは架橋剤で処理した体得られる高
分子材料を主成分とする気体分離膜。(1) Structural unit 41 represented by the general formula for manure (in the formula, n is an integer from 0 or 1l-i/ to j). R1, Ht and R'3 are a hydrogen atom, a halogen atom, an alkyl group or a phenyl After adding a silicon compound having a hydrolyzable atom or atomic group to an ethylene polymer containing 1 mol% or more of ethylene-based polymers (which may be mutually the same or different), it is added as is or with a crosslinking agent. A gas separation membrane whose main component is a polymer material obtained from a treated body.
、アシロキシ基、アルコキシ基、メルカプト基、アシル
基、シアン基、エポキシ基、水素原子オたはハロゲン原
子である特許請求の範囲第7項記載の気体分離膜。(2) The hydrolyzable atom or atomic group is an amine group, an acyloxy group, an alkoxy group, a mercapto group, an acyl group, a cyan group, an epoxy group, a hydrogen atom, or a halogen atom. Gas separation membrane according to item 7.
縮合反応し得る2以上の官能基を有するポリシロキサン
である%oh求の範囲第7項記載の気体分離膜。(3) The gas separation membrane according to item 7, wherein the crosslinking agent is a polysiloxane having two or more functional groups that can undergo an addition or condensation reaction with a hydrolyzable atom or atomic group.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6054183A JPS59186602A (en) | 1983-04-06 | 1983-04-06 | Gas separation membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6054183A JPS59186602A (en) | 1983-04-06 | 1983-04-06 | Gas separation membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59186602A true JPS59186602A (en) | 1984-10-23 |
JPH0536093B2 JPH0536093B2 (en) | 1993-05-28 |
Family
ID=13145251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6054183A Granted JPS59186602A (en) | 1983-04-06 | 1983-04-06 | Gas separation membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59186602A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0194684A2 (en) * | 1985-03-13 | 1986-09-17 | Asahi Kasei Kogyo Kabushiki Kaisha | A composite membrane for use in gas separation |
US4950314A (en) * | 1986-08-14 | 1990-08-21 | Toray Industries Inc. | Gas separation membrane |
WO2018139134A1 (en) * | 2017-01-30 | 2018-08-02 | 信越化学工業株式会社 | Room temperature-vulcanizing silane-containing resin composition and mounting circuit substrate |
WO2019163330A1 (en) * | 2018-02-20 | 2019-08-29 | 信越化学工業株式会社 | Organosilicon compound, and additive for rubber and rubber composition each including same |
-
1983
- 1983-04-06 JP JP6054183A patent/JPS59186602A/en active Granted
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0194684A2 (en) * | 1985-03-13 | 1986-09-17 | Asahi Kasei Kogyo Kabushiki Kaisha | A composite membrane for use in gas separation |
US4950314A (en) * | 1986-08-14 | 1990-08-21 | Toray Industries Inc. | Gas separation membrane |
WO2018139134A1 (en) * | 2017-01-30 | 2018-08-02 | 信越化学工業株式会社 | Room temperature-vulcanizing silane-containing resin composition and mounting circuit substrate |
CN110234697A (en) * | 2017-01-30 | 2019-09-13 | 信越化学工业株式会社 | The resin combination and installation circuit substrate of room temp solidified silane-containing |
JPWO2018139134A1 (en) * | 2017-01-30 | 2019-11-07 | 信越化学工業株式会社 | Room temperature curable silane-containing resin composition and mounting circuit board |
US11274225B2 (en) | 2017-01-30 | 2022-03-15 | Shin-Etsu Chemical Co., Ltd. | Room temperature-vulcanizing silane-containing resin composition and mounting circuit substrate |
CN110234697B (en) * | 2017-01-30 | 2022-11-18 | 信越化学工业株式会社 | Room temperature-curable silane-containing resin composition and circuit board mounted with the same |
WO2019163330A1 (en) * | 2018-02-20 | 2019-08-29 | 信越化学工業株式会社 | Organosilicon compound, and additive for rubber and rubber composition each including same |
Also Published As
Publication number | Publication date |
---|---|
JPH0536093B2 (en) | 1993-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Choi et al. | Organic/inorganic imide nanocomposites from aminophenylsilsesquioxanes | |
Gomes et al. | Membranes for gas separation based on poly (1-trimethylsilyl-1-propyne)–silica nanocomposites | |
JP4277037B2 (en) | Precursors of compounds containing flexible organic and hard inorganic moieties and methods for their preparation | |
EP0927736B1 (en) | Silphenylene polymer and composition containing same | |
JPH1171519A (en) | Composition containing network structure based on dendrimer containing hydrophilic and hydrophobic nanoscopic domains | |
WO1998041566A1 (en) | Silicone compounds and process for producing the same | |
Gong et al. | End functionalization of hyperbranched poly (siloxysilane): novel crosslinking agents and hyperbranched–linear star block copolymers | |
Kurayama et al. | Facile method for preparing organic/inorganic hybrid capsules using amino-functional silane coupling agent in aqueous media | |
Aguilar-Lugo et al. | Highly permeable mixed matrix membranes of thermally rearranged polymers and porous polymer networks for gas separations | |
JP2799217B2 (en) | Fluorinated diaminobenzene derivatives and polyimides | |
JPS59186602A (en) | Gas separation membrane | |
JP2013129809A (en) | Acid anhydride group-containing organosiloxane and method for producing the same | |
JPS6284126A (en) | Poly-disubstituted acetylene/polyorganosiloxane graft copolymer anad gas separation membrane | |
Matteucci et al. | Desilylation of substituted polyacetylenes by nanoparticles | |
Zhang et al. | Preparation of thermally stable 3-glycidyloxypropyl-POSS-derived polysilsesquioxane RO membranes for water desalination | |
JP3609753B2 (en) | Polyvalent reactive silicon compound substituted with polyalkylene glycol and method for producing the same | |
Flipsen et al. | Densely crosslinked polycarbosiloxanes. I. Synthesis | |
US5171794A (en) | Modified poly(2,6-dimethyl-p-oxyphenylene), a process for its preparation and its use in gas mixture separation membranes | |
JPH0255100B2 (en) | ||
Huertas et al. | Polyimide-silica sol–gel membranes from a novel alkoxysilane functionalized polyimide: preparation, characterization and gas separation properties | |
JPH0436317A (en) | Preparation of amorphous modified poly-(2,6-dimethyl-p-oxyphenylene) | |
Nasr et al. | Functionalization of polymethylhydrosiloxane gels with an allyl ureido benzocrown ether derivative: complexation properties | |
Yur’evich et al. | Methods for the Preparation of Modified Polyorganosiloxanes (A Review) | |
Adachi et al. | Pinacol Boronate Ester-Containing Polysilsesquioxane Membranes for CO2 Separation | |
JP5504591B2 (en) | Method for producing molded product containing hydroxyl group-containing block copolymer, molded product containing hydroxyl group-containing block copolymer, and hydroxyl group-containing block copolymer |