JPS59173588A - Eccentric rotary compressor of variable displacement type - Google Patents
Eccentric rotary compressor of variable displacement typeInfo
- Publication number
- JPS59173588A JPS59173588A JP4605483A JP4605483A JPS59173588A JP S59173588 A JPS59173588 A JP S59173588A JP 4605483 A JP4605483 A JP 4605483A JP 4605483 A JP4605483 A JP 4605483A JP S59173588 A JPS59173588 A JP S59173588A
- Authority
- JP
- Japan
- Prior art keywords
- housing
- low pressure
- pressure chamber
- refrigerant
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C28/00—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
- F04C28/18—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the volume of the working chamber
- F04C28/22—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
Description
本発明は、偏心式ロータリー1ン゛プレツサの改良に関
する。
自動車用冷房サイクルにJハノる(F 、ひ)(ロータ
IJ」ンプレツサ1よ、部品点数が少なく小?¥:’
iiY昂であるど←jl′に1本梢効キも良いが、イf
7) 111帖器父ノ〕1要jミされる冷房能ノj(J
応じτ変わるもの’C”ek り−rンジン回転数に依
(y L、 ’Uいる/、:め、ll:(3中止行11
r+に冷房IJf=力の[トを起しに:す、中迷以1に
お0て°必要1ス爵が調整されているものの該膨張弁で
1.L調整し切れない場合に起こり、スーパピートil
の増大658いは減少によって把えることかでTECHNICAL FIELD The present invention relates to an improvement in an eccentric rotary impresor. J Hanoru (F, hi) (rotor IJ) compressor 1 for automobile cooling cycle, small number of parts and small?\:'
It is good to have one tree effect on ←jl′, but if
7) 111-choki father] 1 required cooling function (J
Depends on the engine rotation speed (y L, 'U is /, :me, ll: (3 stop line 11
To r+, the cooling IJf=force is set to 1. The expansion valve is adjusted to 1. This happens when the L adjustment is not completed, and super-peet illumination occurs.
It can be understood by the increase or decrease in
【(る。
この叉II teaを解消り”るには、ス・−バヒーt
−In: /J<人さ″いと〈\には圧縮ヰiを人さく
シ(冷媒を入量に01給し、スーバヒ−1−fitが小
さいとさくこtま圧縮率を小さくして供給冷媒量を少な
くνれ(,1′良(1a即ら、スーパヒート坦との関係
にa3いて:Iンブレツリの冷媒吐出量を制御1れば、
自動巾のはIff全もの走行域において最適の冷房0し
力を得ることがでさると共にパワーロスを少なく抑λる
ことができる。
しかし、従来の偏心式ロータリコンプレツリにあプては
、作動室古川(換言すれば圧縮率)が固定され且つ回転
数がちエンジン回転数に依存しているため、」ンプレッ
サの停止を図る以外冷媒のljl出聞を変えることはで
きない。このため、スーパヒート量に応じて冷媒吐出1
11をiF!lI口lIリ−ることはできない。
本発明は、この問題点を解決づべく為されたものであっ
て、スーパヒート・を自分で感知してコンプレッυの容
積を変え、スーパヒート1界に応じて冷媒の吐出量を変
化さぜ得る可変6最型偏心式ロータリコンプレッサを提
供することを目的どづる。
斯かる目的を達成する本発明の構成は、吸入ボート及び
吐出ボートを右りるサイドハウジングとリングハウジン
グとでロータを収める作動室を構成づ″る一方該ハウジ
ングをケースで包囲して低圧室を構成する偏心式ロータ
リコンプレッザに[I5いて、tfJ記リシリングハウ
ジングrt記E:1−夕の径方向に贋動可能に設けると
共にこのリングハウジングと前記ケースとの間に冷房サ
イクルにおいて使用する冷媒より・b蒸発圧力の高い作
動流体を封入した伸縮部材を設(′J、前記ケース内の
前記低圧室に導入される冷媒の湿度変化に伴い伸縮部る
前記伸縮部材の動きによって前記カムリングを移動させ
、圧縮率を変化さぼることを特徴とりる。
以下本発明の構成を図面に示す一実施例に基づいて耳組
に説明する。
第1図に本発明の可変音ff’型I−心式1コータリコ
ンブレッサの一実施例を中央横断面図で示づ。このコン
プレッサは、”31円状のリングハウジング1内に真円
のロータ3を偏心させて設置し、数枚のベーン4で作動
室5を画成した偏心式ベーンタイプである。作動室5は
、リングハウジング1とその両側を塞ぐナイトハウジン
グ2と、貞円状のロータ3及びこの[]−夕3から突出
しリングハウジング1の内周面を摺接づる数枚のベーン
4とで構成されている。この作動室5はり゛イドハウジ
ング2に穿孔された1′f1人ポート6及び吐出ボート
7を介してケース8内の低Jf、¥9及びml圧室15
と各々連通されている。尚、ロータ3はナイドハウジン
グ2に回転可能に支持され、外部からの駆動により回転
づるように設(プられている。前記リングハウジング1
とサイドハウジング2とで構成されたハウジングは、ケ
ース8内に収められてケース8どの間で低圧室9及び高
圧室15を構成づる。
尚、低圧室9はバイパス路1qで連通するフロント側低
圧室とリア側低圧室どからなる。また、前記サイドハウ
ジング2はケース8に固定されているが、リングハウジ
ング1は1コータ3の径方向へ移動し得るようにするた
めただ単にケース8の溝17に収められているだ番プで
ある。
前記ケースE3の低圧室9にはリングハウジング1を支
持する伸縮部材11が設置されている。この伸縮部材1
1は、封入流体の圧力変化によって伸縮づ−るものであ
って、例えばベローズのようなしのである1、この伸縮
部材11の内部には冷房りイクルに83いて使用する冷
媒12よりも蒸発圧力の高い作動流体13が封入されて
いる。この作動流体13は、使用冷媒(一般にR1上)
よりも蒸発圧力が高いと共に温度と圧力に関する特性が
第3図に示J°ように同じ傾向を示′!l−ものが好ま
しい。
そこで、作動流体と1ノでtよ、例えば、使用冷媒に窒
素(N)を加えて昇任したものが使用できる。
また、この伸縮部@11ど対応さμてリングハウジング
1の反対側にはリングハウジング1を伸縮部材11側に
向Cノで付勢する調整スジリンク10が設りられている
。該調整スブレング10は、リングハウジング1の同士
右側への移動を容易にJるためのものであって、調整ね
じ18の操作によってばね座19を移動させ、ばね力の
調整を図る。
以トのように構成したので、本考案のrIJ変容は型偏
心式E−1−タリ」ンブレッリIJ次の如く作動する。
ケース8のガス吸込み口13目ら吸入された低圧冷媒ガ
ス12は、まずフロント側低圧室9に入り、その一部は
バイパス路16を通ってリア側の低圧室9に入る。この
どき、低汀冷媒ガス12は伸縮部材11の円囲を通過す
るので、伸縮部材11に封入された作動流体13を温め
る。したがって、冷媒のスーパヒート・最が少ないとき
即ら循環冷媒量が過剰気味となっている場合、封入流体
13の温度も低下して圧力を下げるので伸縮部材11は
縮む。即ら、第1図(a )に示づように、リングハウ
ジング1が調整スプリング10の弾発力を受けてロータ
3と同心上に位置づるJ:うに移動づる。
すると、lコータ3はただ回転り′るだ【ノで低汀冷媒
ガスを圧縮吐出しない。反面、スーパヒートはが多過ぎ
るどき即ら循環冷媒it+が過剰気味となっている場合
、封入流体13の温1良も上界しく圧力を上げるので伸
縮部材11は伸びる。即ら第1図(b)に示フにうに、
リングハウジング1が調整スプリング10の弾発力に抗
して1]−夕3を相対的、に偏心させる方向つまり圧縮
率を増づ方向に移動する。するど、ロータ3は低11三
冷媒ガスを圧縮し吐出づることとなる。、そこで、ロー
タ3の回転によって作動室5への吸入ボート6が開放状
態になると、フ[]ント・及びリア側低圧室9内の低圧
冷媒ガス12は吸入ボート6を通って作動室5へ吸入さ
れる。更に、1コータ3が回転して吸入ボー1−6をベ
ーン4で塞ぐど、吸入工程が終了して圧縮工程へと移る
。ロータ3の回転が進み圧縮工程が終わると吐出ボート
7のバルブ(図示せず)が開放され高圧ガスl;、L
(’l動全°から田川され二1ン1しノック゛のガス吐
出口を紅て1ンfンリーへと111出される。
以上の説明J、り明らか<’Lように、本発明の二1ン
プレッサIJ、使用冷媒、」、りも蒸発JL力の高い作
動流体を封入しスーパじ一トtv1に応じて内部)[)
Jを変え伸縮1;る伸縮部材ににってリングハウジング
を支持して可動的にしたので、冷房リイクル中のスーパ
ヒート量を自ら感知して1.、】−夕の蘭心f、dを変
え、圧縮率を変化さけて冷媒の流量調整を図ることがで
きる。したがって、本発明のコンブレラ「すは、9何に
応じて容1■を変化さ往低i’Aj Il’rにお()
る冷房能力を向上さゼると共に中速以」二において必要
以上の冷房能力を抑え1gるので、バソー[1スを抑え
省燃費とできる。また、この°コンブレツリは、ヌーバ
ヒー1〜貞口を感知りるため、ベーンの焼付さを防止で
きる。[(ru.
-In: /J<Person" and 〈\" is supplied with compression ヰi. If the amount of refrigerant is decreased (,1' good (1a, that is, a3 is in relation to the superheat flat), if the amount of refrigerant discharged is controlled 1,
With the automatic width, it is possible to obtain the optimum cooling power in the entire Iff driving range, and it is possible to suppress power loss to a small extent. However, in conventional eccentric rotary compressors, the working chamber (in other words, the compression ratio) is fixed and the rotational speed depends on the engine rotational speed. You cannot change the ljl appearance of . Therefore, depending on the amount of superheat, the refrigerant discharge 1
iF 11! It is not possible to leave. The present invention was made in order to solve this problem, and is a variable that can change the volume of compressor υ by sensing superheat by itself, and change the discharge amount of refrigerant according to superheat 1. Our purpose is to provide the 6th model eccentric rotary compressor. The structure of the present invention that achieves such an object is such that a side housing and a ring housing on the right side of the suction boat and the discharge boat form a working chamber in which the rotor is housed, while the housing is surrounded by a case to form a low pressure chamber. The constituting eccentric rotary compressor is provided with a ring housing movable in the radial direction of the ring housing and a refrigerant used in the cooling cycle between the ring housing and the case. -b A telescoping member filled with a working fluid with high evaporation pressure is installed ('J, the cam ring is moved by the movement of the telescoping member in accordance with changes in the humidity of the refrigerant introduced into the low pressure chamber in the case. The structure of the present invention will be explained below based on an embodiment shown in the drawings. Fig. 1 shows the variable sound ff' type I-core type of the present invention. 1. An embodiment of a cot retard compressor is shown in a central cross-sectional view. This compressor has a perfect circular rotor 3 eccentrically installed in a circular ring housing 1, and is operated by several vanes 4. It is an eccentric vane type that defines a chamber 5.The working chamber 5 includes a ring housing 1, a night housing 2 that closes both sides of the ring housing 1, a circular rotor 3, and a rotor 3 that protrudes from the ring housing 1. It is composed of several vanes 4 that are in sliding contact with the inner circumferential surface.The working chamber 5 is connected to the low pressure inside the case 8 through the 1'f1 person port 6 and the discharge boat 7, which are bored in the rigid housing 2. Jf, ¥9 and ml pressure chamber 15
are communicated with each other. The rotor 3 is rotatably supported by the nide housing 2, and is configured to rotate when driven from the outside.
The housing constituted by the side housing 2 and the side housing 2 is housed in a case 8, and a low pressure chamber 9 and a high pressure chamber 15 are formed between the case 8 and the side housing 2. The low pressure chamber 9 includes a front low pressure chamber and a rear low pressure chamber that communicate with each other through a bypass path 1q. Furthermore, although the side housing 2 is fixed to the case 8, the ring housing 1 is simply a double plate that is housed in the groove 17 of the case 8 in order to be able to move in the radial direction of the coater 3. be. A telescopic member 11 that supports the ring housing 1 is installed in the low pressure chamber 9 of the case E3. This telescopic member 1
1 is a member that expands and contracts according to changes in the pressure of the sealed fluid, such as a bellows. A high-temperature working fluid 13 is enclosed. This working fluid 13 is the refrigerant used (generally on R1)
The evaporation pressure is higher than that of J°, and the characteristics related to temperature and pressure show the same tendency as shown in Figure 3. l- is preferred. Therefore, for example, a refrigerant prepared by adding nitrogen (N) to the working fluid can be used. In addition, on the opposite side of the ring housing 1, corresponding to the telescopic portion @11, there is provided an adjustment line link 10 for biasing the ring housing 1 toward the telescopic member 11 in the direction C. The adjustment ring 10 is for easily moving the ring housing 1 to the right side, and moves the spring seat 19 by operating the adjustment screw 18 to adjust the spring force. With the structure as described above, the rIJ transformation of the present invention operates as follows. The low-pressure refrigerant gas 12 sucked through the gas suction port 13 of the case 8 first enters the front-side low-pressure chamber 9, and part of it passes through the bypass path 16 and enters the rear-side low-pressure chamber 9. At this time, since the low-temperature refrigerant gas 12 passes through the circumference of the expandable member 11, it warms the working fluid 13 sealed in the expandable member 11. Therefore, when the superheat of the refrigerant is low, that is, when the amount of circulating refrigerant is slightly excessive, the temperature of the sealed fluid 13 also decreases and the pressure is lowered, so that the expandable member 11 contracts. That is, as shown in FIG. 1(a), the ring housing 1 receives the elastic force of the adjustment spring 10 and moves to be positioned concentrically with the rotor 3. Then, the coater 3 just rotates and does not compress and discharge the low-settlement refrigerant gas. On the other hand, if there is too much superheat, that is, if the circulating refrigerant IT+ is in excess, the temperature of the sealed fluid 13 will rise to the limit and the pressure will increase, causing the expandable member 11 to expand. That is, as shown in FIG. 1(b),
The ring housing 1 moves against the elastic force of the adjustment spring 10 in a direction to relatively eccentrically move the ring housing 1 to a direction in which the compression ratio increases. As a result, the rotor 3 compresses and discharges the refrigerant gas. Then, when the suction boat 6 to the working chamber 5 opens due to the rotation of the rotor 3, the low pressure refrigerant gas 12 in the front and rear low pressure chambers 9 passes through the suction boat 6 and flows into the working chamber 5. Inhaled. Furthermore, when the first coater 3 rotates and the vane 4 closes the suction bow 1-6, the suction process ends and the process moves to the compression process. As the rotation of the rotor 3 progresses and the compression process is completed, the valve (not shown) of the discharge boat 7 is opened and the high pressure gas L;
(The gas discharge port of the knock is red and the gas is discharged from the 21st position to the 1st position.) As is clear from the above explanation, it is clear that The compressor IJ, the refrigerant used, is filled with a working fluid with high evaporation power, and is heated internally according to the super same TV1) [)
By changing J, the ring housing is supported and made movable by a telescoping member, so that it can sense the amount of super heat during cooling recycle by itself.1. , ] - By changing the temperature f and d, it is possible to adjust the flow rate of the refrigerant without changing the compression ratio. Therefore, the combbrella of the present invention changes its capacity depending on what it does.
In addition to improving the cooling capacity of the air conditioner, it also suppresses the cooling capacity from exceeding the necessary level at medium speeds and above. In addition, since this combination sensor senses Nuvahi 1 to Sadaguchi, it is possible to prevent the vane from seizing.
図面は本発明の可変古川型偏心式[1−クリコンプレツ
リに関りる図で、第1図(a ’)スーパヒート量が小
さい場合にJハブる同=】ンプレッνの中央横断面図、
第1図(1))はスーバヒー・ト用が人さい場合におけ
る同コンブレッザの中央横断面図、第2図は開−1ンブ
レツリーの11−■断面図、第3図は封入流体の温度と
蒸発圧力どの間際を示す特性図である。
1・・・リングハウジング、 2・・・サイドハウジン
グ、3・・・ロータ、 4・・・ベーン、 5・・・作
動室、8・・・クース、 9・・・低圧室、 11・・
・伸縮部材、12・・・冷媒、 13・・・封入作動流
体。The drawings are diagrams related to the variable Furukawa type eccentric type [1-cricompletion] of the present invention, and Fig. 1 (a') is a central cross-sectional view of the J hub when the amount of superheat is small;
Figure 1 (1)) is a central cross-sectional view of the same compressor when subheating is used in a small space, Figure 2 is a 11-■ cross-sectional view of the open-1 combustion tree, and Figure 3 is the temperature and evaporation of the sealed fluid. FIG. 3 is a characteristic diagram showing the nearness of the pressure. DESCRIPTION OF SYMBOLS 1... Ring housing, 2... Side housing, 3... Rotor, 4... Vane, 5... Working chamber, 8... Coos, 9... Low pressure chamber, 11...
- Expandable member, 12... Refrigerant, 13... Enclosed working fluid.
Claims (1)
ジングとリングハウジングとで[j−夕を収める作動室
を構成り−る一方該ハウジングをクースで包囲して低圧
室を構成する偏心式ロータリコンプレッサにおいて、前
記リングハウジングを前記ロータの径方向に1晋勅可能
に設(プると共にこのリングハウジングと前記クースと
の間に冷房ナイクルにおいて使用する冷媒にす°ら黒光
圧力の高い作動流体を封入した伸縮部材を設(]、前記
ケース内の前記低圧室に導入される冷媒の温磨変1ヒに
伴い伸縮する前記伸縮部材の動きによって前記カムリン
グを移動させ、圧縮率を変化させることを特徴とするEnjoy the suction boat and discharge boat! In an eccentric rotary compressor in which a noid housing and a ring housing constitute a working chamber that accommodates the rotor, and the housing is surrounded by a coos to constitute a low pressure chamber, the ring housing is connected to the rotor. A retractable member is installed in the radial direction of the ring housing and a working fluid with a high pressure is installed between the ring housing and the coos. The cam ring is moved by the movement of the telescopic member that expands and contracts as the refrigerant introduced into the low pressure chamber in the case changes in temperature to change the compression ratio.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4605483A JPS59173588A (en) | 1983-03-22 | 1983-03-22 | Eccentric rotary compressor of variable displacement type |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4605483A JPS59173588A (en) | 1983-03-22 | 1983-03-22 | Eccentric rotary compressor of variable displacement type |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59173588A true JPS59173588A (en) | 1984-10-01 |
Family
ID=12736304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4605483A Pending JPS59173588A (en) | 1983-03-22 | 1983-03-22 | Eccentric rotary compressor of variable displacement type |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59173588A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4950137A (en) * | 1987-07-30 | 1990-08-21 | Mannesmann Rexroth Gmbh | Radial piston machine having pivoted control means engaging cam ring |
WO1994017308A1 (en) * | 1993-01-30 | 1994-08-04 | Mercedes-Benz Aktiengesellschaft | Process for regulating the capacity of lubricant pumps and lubricant pump therefor |
EP2318715A1 (en) * | 2008-07-10 | 2011-05-11 | Windfuel Mills Pty Ltd | Generation and use of high pressure air |
CN108302036A (en) * | 2017-01-12 | 2018-07-20 | 罗伯特·博世有限公司 | Vane pump and high pressure fuel pump |
-
1983
- 1983-03-22 JP JP4605483A patent/JPS59173588A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4950137A (en) * | 1987-07-30 | 1990-08-21 | Mannesmann Rexroth Gmbh | Radial piston machine having pivoted control means engaging cam ring |
WO1994017308A1 (en) * | 1993-01-30 | 1994-08-04 | Mercedes-Benz Aktiengesellschaft | Process for regulating the capacity of lubricant pumps and lubricant pump therefor |
EP2318715A1 (en) * | 2008-07-10 | 2011-05-11 | Windfuel Mills Pty Ltd | Generation and use of high pressure air |
EP2318715A4 (en) * | 2008-07-10 | 2014-06-11 | Windfuel Mills Pty Ltd | Generation and use of high pressure air |
US9091269B2 (en) | 2008-07-10 | 2015-07-28 | Windfuel Mills Pty Ltd | Generation and use of high pressure air |
CN108302036A (en) * | 2017-01-12 | 2018-07-20 | 罗伯特·博世有限公司 | Vane pump and high pressure fuel pump |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0744775Y2 (en) | Compressor capacity control device | |
JPS6220688A (en) | Vane type compressor | |
JPH02204694A (en) | Capacity variable mechanism in scroll type compressor | |
US4818189A (en) | Variable capacity vane compressor | |
JPS59173588A (en) | Eccentric rotary compressor of variable displacement type | |
JPS6135392B2 (en) | ||
US4813854A (en) | Variable capacity vane compressor | |
WO1983001818A1 (en) | Compressor | |
JPH024793B2 (en) | ||
JPS63186982A (en) | Vane type compressor | |
US4890986A (en) | Variable capacity compressor | |
WO1983003123A1 (en) | Rotary compressor | |
US4917578A (en) | Variable capacity compressor | |
JPS609382Y2 (en) | exhaust turbo supercharger | |
JP2000009065A (en) | Scroll type compressor | |
JPS59229079A (en) | Fluid supporting device of rotary sleeve in rotary compressor | |
JPH0712711Y2 (en) | Variable capacity compressor | |
JPH06323268A (en) | Scroll type fluid machine | |
JPS5882089A (en) | Compressor | |
JPS62178796A (en) | Vane type compressor | |
JPH0421033Y2 (en) | ||
JPS61294183A (en) | Vane type compressor | |
JPH0229265Y2 (en) | ||
JP3804036B2 (en) | Shock absorber when a car clutch is connected | |
JPS62265491A (en) | Vane type compressor |