[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS59172739A - Semiconductor integrated circuit device and manufacture thereof - Google Patents

Semiconductor integrated circuit device and manufacture thereof

Info

Publication number
JPS59172739A
JPS59172739A JP4752183A JP4752183A JPS59172739A JP S59172739 A JPS59172739 A JP S59172739A JP 4752183 A JP4752183 A JP 4752183A JP 4752183 A JP4752183 A JP 4752183A JP S59172739 A JPS59172739 A JP S59172739A
Authority
JP
Japan
Prior art keywords
integrated circuit
silicon
circuit device
region
semiconductor integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4752183A
Other languages
Japanese (ja)
Inventor
Akinobu Satou
佐藤 倬暢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toko Inc
Original Assignee
Toko Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toko Inc filed Critical Toko Inc
Priority to JP4752183A priority Critical patent/JPS59172739A/en
Publication of JPS59172739A publication Critical patent/JPS59172739A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • H01L21/7627Vertical isolation by full isolation by porous oxide silicon, i.e. FIPOS techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • H01L21/76283Lateral isolation by refilling of trenches with dielectric material

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Element Separation (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To shield between islands of single crystal silicon forming elements and improve element characteristic by forming a region to which impurity is doped with high concentration between dielectric layers and by giving the shield effect to said region. CONSTITUTION:The islands 10, 11 of single crystal silicon are separated by silicon oxides 12, 13 obtained by oxidation of porous silicon and the N-P-N transistors are formed in the respective islands. Between two silicon oxides 12, 13, regions 14, 15 including high concentration of N type impurity are formed. These regions 14, 15 are formed in contact each other on the substrate surface. Since the region including high concentration of N type impurity is formed in both sides of the silicon oxides 12, 13, the region 16 including N type impurity in high concentration formed in the single crystal silicon island can be used as a high conductive layer which connects the buried layer 17 and collector electrode.

Description

【発明の詳細な説明】 本発明は、半導体集積回路装置とその製造方法に係るも
ので、誘電体層で素子が分離されるとともに素子間をシ
ールドする半導体集積回路装置とその製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor integrated circuit device and a method for manufacturing the same, and more particularly to a semiconductor integrated circuit device in which elements are separated by a dielectric layer and shielded between the elements, and a method for manufacturing the same. be.

半導体集積回路装置における素子間の分離の方法は種々
ある。一般的な方法はPN接合分離であるが、より完全
な分離を目的として誘電体分離が注目されている。これ
は、素子をシリコン酸化物で囲まれた単結晶シリコンの
島の中に形成し、素子間をシリコン酸化物の誘電体層で
分離するものである。この誘電体分離にも幾つかのタイ
プがあシ、最も一般的なものは異方性エツチングによっ
てV字形の溝を形成し、酸化膜、多結晶シリコン層を形
成し、研磨によって単結晶ンリコ/の島を形成するもの
である。しかし、このような誘電体分離基板を得るだめ
の工程が複雑となυ、歩留が低いことから、多孔質シリ
コンを利用して絶縁領域を形成することが考えられてい
る。
There are various methods for separating elements in a semiconductor integrated circuit device. A common method is PN junction isolation, but dielectric isolation is attracting attention for the purpose of more complete isolation. In this method, devices are formed in single-crystal silicon islands surrounded by silicon oxide, and the devices are separated by a dielectric layer of silicon oxide. There are several types of dielectric separation, but the most common one is to form a V-shaped groove by anisotropic etching, form an oxide film and a polycrystalline silicon layer, and then polish it to form a single-crystalline silicon layer. It forms an island. However, since the process for obtaining such a dielectric isolation substrate is complicated and the yield is low, it has been considered to use porous silicon to form the insulating regions.

上記の多孔質シリコンを利用する方法においては、単結
晶シリコンを陽極化成処理して多孔質化し、これを酸化
してシリコン酸化物とすることによって誘電体層を形成
する。
In the method using porous silicon described above, single crystal silicon is anodized to make it porous, and then oxidized to form silicon oxide to form a dielectric layer.

本発明は、この多孔質シリコンを陽極化成し、酸化する
ことによって誘電体の分離領域を形成する半導体集積回
路装置とその製造方法に関するものである。
The present invention relates to a semiconductor integrated circuit device in which a dielectric isolation region is formed by anodizing and oxidizing this porous silicon, and a method for manufacturing the same.

半導体集積回路装置においては、素子間を分離するだけ
でなく、素子間を完全にシールドすることが望ましい。
In a semiconductor integrated circuit device, it is desirable not only to isolate the elements, but also to completely shield the elements.

特に、高周波の信号を扱う半導体集積回路装置などにお
いては、特性の劣化を防止するためにシールドのための
手段が必要となることが多い。
In particular, in semiconductor integrated circuit devices that handle high-frequency signals, shielding means are often required to prevent deterioration of characteristics.

本発明は、このシールド効果を有する半導体集積回路装
置を得るととを目的とする。
An object of the present invention is to obtain a semiconductor integrated circuit device having this shielding effect.

まだ、分離領域の形成と同時にシールドのための領域を
形成できる半導体集積回路装置の製造方法を提供するこ
とを目的とする。
Another object of the present invention is to provide a method for manufacturing a semiconductor integrated circuit device that can form a shielding region at the same time as forming an isolation region.

本発明による半導体集積回路装置は、誘電体層の間に高
濃度に不純物がドープされた領域を形成してシールド効
果を持たせるものである。まだ、多孔質シリコンを酸化
するときに、そこに含まれる不純物が周囲のシリコン層
に拡散されることを利用して、その高濃度に不純物がド
ープされた領域を形成するものである。
A semiconductor integrated circuit device according to the present invention has a shielding effect by forming a region doped with impurities at a high concentration between dielectric layers. However, when porous silicon is oxidized, the impurities contained therein are diffused into the surrounding silicon layer to form a region doped with impurities at a high concentration.

以下、図面に従って、本発明の実施例につき説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明による半導体集積回路装置の一例の正
面断面図を示したもので、MPN)ランジスタを複数具
えた列を示している。単結晶シリコンの島10.11は
多孔質シリコンを酸化して得られたシリコン酸化物12
.13によって分離され、それぞれの島の中にNPN)
ランジスタか形成されている。二つのクリコン酸化物1
2.13の間にはN型の不純物を高濃度に含む領域14
゜15が形成されている。この二つの領域14.15は
基板表面では接するように形成されている。なお、シリ
コン酸化物12.13はその両側にN型の不純物を高濃
度に含む領域が形成されるので、単結晶シリコンの島内
に形成されたN型の不純物を高濃度に含む領域16を埋
込層17とコレクタ電極を接続する高導電層として利用
することができる。
FIG. 1 shows a front cross-sectional view of an example of a semiconductor integrated circuit device according to the present invention, showing a row including a plurality of MPN transistors. Single-crystal silicon islands 10 and 11 are silicon oxide 12 obtained by oxidizing porous silicon.
.. separated by 13 NPN within each island)
A transistor is formed. two cricon oxides 1
Between 2.13 and 13, there is a region 14 containing a high concentration of N-type impurities.
15 is formed. These two regions 14 and 15 are formed so as to be in contact with each other on the substrate surface. Note that since regions containing a high concentration of N-type impurities are formed on both sides of the silicon oxide 12 and 13, the region 16 containing a high concentration of N-type impurities formed within the single-crystal silicon island is buried. It can be used as a highly conductive layer that connects the embedded layer 17 and the collector electrode.

単結晶シリコンの島10.11の間に形成される二つの
シリコン酸化物12.13は接触することのないように
形成されなければならないが、二つのN型の不純物を高
濃度に含む領域14.15は重なシ合うようにしなけれ
ばならない。したがって、二つのシリコン酸化物12.
13の間隔は、酸化の時間とその際の拡散の距離によっ
て決定される。なお、単結晶シリコン島10..11は
シリコン窒化膜18を介して多結晶シリコン19に支持
された構造がこの例では示されている。
The two silicon oxides 12.13 formed between the single-crystal silicon islands 10.11 must be formed so that they do not come into contact with each other, but the two regions 14 containing a high concentration of N-type impurities .15 must be made to overlap. Therefore, two silicon oxides 12.
The spacing of 13 is determined by the oxidation time and the diffusion distance during the oxidation. In addition, single crystal silicon island 10. .. In this example, a structure in which 11 is supported by polycrystalline silicon 19 via a silicon nitride film 18 is shown.

上記の例では、バイポーラトランジスタを具えた半導体
集積回路装置を示したが、MO8)ランジスタ、接合型
電界効果トランジスタ等、単結晶の島にはいかなる素子
を形成しても良い。また、支持基板も多結晶シリコンに
限られず、どのような基板であっても同様に形成できる
Although the above example shows a semiconductor integrated circuit device including a bipolar transistor, any element such as an MO8 transistor or a junction field effect transistor may be formed on the single crystal island. Further, the support substrate is not limited to polycrystalline silicon, and any substrate can be formed in the same manner.

第2図は本発明による半導体集積回路装置の製造方法の
一列を示す正面断面図であシ、分離のための絶縁領域の
形筬と菌濃度不純物拡散層の形成の工程を示したもので
ある。これらの工程は素子を形成する前に行われるのが
普通であるが、場合によっては後の工程としても良い。
FIG. 2 is a front cross-sectional view showing one line of the method for manufacturing a semiconductor integrated circuit device according to the present invention, showing the shape of an insulating region for isolation and the steps of forming a germ-concentrated impurity diffusion layer. . These steps are normally performed before forming the element, but may be performed later in some cases.

N型の単結晶シリコン基板20の一部にP型不純物をド
ープしてP型の不純物を含む領域21を一定の間隔を置
いて形成する(A)。このP型の領域21は後に絶縁領
域となる部分に形成するもので、底面のシリコン窒化膜
22に到達するように形成しなければならない。このP
型の不純物を含む領域の形成は、拡散イオン注入のいず
れによつても良い。
A portion of an N-type single crystal silicon substrate 20 is doped with a P-type impurity to form regions 21 containing P-type impurities at regular intervals (A). This P-type region 21 is formed in a portion that will later become an insulating region, and must be formed so as to reach the silicon nitride film 22 on the bottom surface. This P
The region containing type impurities may be formed by any method of diffusion ion implantation.

なお、P型の不純物を含む領域21を形成するのは、後
の陽極化成を容易にするためであシ、基板がP型である
場合、および光を轟ててN型のまま陽極化成する場合に
は形成する必要はない。
Note that the reason for forming the region 21 containing P-type impurities is to facilitate the subsequent anodization.If the substrate is P-type, and if the substrate is anodized while remaining N-type by emitting light, In some cases, it is not necessary to form.

次に、P型の不純物を含む領域21以外の部分をシリコ
ン窒化膜23で覆って、陽極化成処理を行う(B)。陽
極化成処理はフッ化水素(HF)溶液中で行なうので、
シリコン窒化膜23はシリコン酸化嘆や単結晶シリコン
が侵されることを防ぐだめに形成されたものである。フ
ッ化水素溶液中で陽極化成処理されたP型の単結晶シリ
コンは多孔質シリコ724となる。
Next, a portion other than the region 21 containing P-type impurities is covered with a silicon nitride film 23, and anodization treatment is performed (B). Since anodization treatment is performed in a hydrogen fluoride (HF) solution,
The silicon nitride film 23 is formed to prevent silicon oxidation and single crystal silicon from being attacked. P-type single crystal silicon subjected to anodization treatment in a hydrogen fluoride solution becomes porous silicon 724.

多孔質シリコン24にN型の不純物を高濃度にドープす
る(C)。このドープは通常は真空ドーピング法で行う
Porous silicon 24 is doped with N-type impurities at a high concentration (C). This doping is usually done by vacuum doping.

多孔質シリコンは酸化され易い性質を有している。した
がって、酸素雰囲気中で高温で処理すると、多孔質シリ
コンは二酸化シリコン25に変化する(D)。このとき
、多孔質シリコン内に高濃度にドープされていたN型の
不純物は周囲の単結晶シリコン20内に拡散される。こ
の拡散によって二酸化シリコン25の底面、上面を除く
周囲にN型の不純物を高濃度に含む領域26.2’7が
形成される。単結晶シリコン内のN型の不純物を高濃度
に含む領域26と二酸化シリコン25&、25b間の領
域27とは同じ深さとJ4度分布で拡散され ”る。
Porous silicon has the property of being easily oxidized. Therefore, when processed at high temperature in an oxygen atmosphere, porous silicon changes to silicon dioxide 25 (D). At this time, the N-type impurity doped in the porous silicon at a high concentration is diffused into the surrounding single crystal silicon 20. This diffusion forms a region 26.2'7 containing a high concentration of N-type impurities around the silicon dioxide 25 except for the bottom and top surfaces. The region 26 containing a high concentration of N-type impurities in the single crystal silicon and the region 27 between the silicon dioxide 25&, 25b are diffused to the same depth and with a J4 degree distribution.

二酸化シリコン25a、2Sb間に形成される二つのN
型の不純物を高濃度に含む領域27a。
Two N atoms formed between silicon dioxide 25a and 2Sb
A region 27a containing a high concentration of type impurities.

27bは少くともその一部が当接し重なり合うように形
成される。そのために、二酸化シリコン25a、25b
の間隔と酸化の時間(これによって拡散距離が決定され
る)を調整しておかなければならない。
27b are formed so that at least a portion thereof abuts and overlaps. For that purpose, silicon dioxide 25a, 25b
and the oxidation time (which determines the diffusion distance) must be adjusted.

N型の不純物を高濃度に含む領域は、深さ方向に一足の
濃度分布を有している。したがって、どの部分において
も高導電率となっているので、単結晶シリコンの島はシ
リコン酸化物の誘電体層で囲まれるとともに導電層で囲
まれていることにもなる。このことから、N型の不純物
を高濃度に含む領域のうち、シリコン酸化物の間に存在
する部分に電極を形成し、この電極を第3図のように接
地電位に接続すれば、単結晶シリコンの島を取シ囲むシ
ールド層として利用することができる。
The region containing a high concentration of N-type impurities has a concentration distribution in the depth direction. Therefore, since the conductivity is high in all parts, the island of single crystal silicon is surrounded by a dielectric layer of silicon oxide and also by a conductive layer. Therefore, if an electrode is formed between the silicon oxides in the region containing a high concentration of N-type impurities and this electrode is connected to the ground potential as shown in Figure 3, it is possible to form a single crystal. It can be used as a shield layer surrounding the silicon island.

なお、基板や不純物の導電型は上記の例に限られるもの
ではなく、池の組み合わせが可能であるのはいうまでも
ない。
Note that the conductivity types of the substrate and impurities are not limited to the above examples, and it goes without saying that combinations of cells are possible.

本発明によれば、素子を形成1する単結晶シリコンの島
と島の間をシールドすることができ、素子の特性を大幅
に向上させることのできる半導体集積回路装置が得られ
る。
According to the present invention, it is possible to provide a semiconductor integrated circuit device in which it is possible to shield between the islands of single crystal silicon forming the element 1, and the characteristics of the element can be significantly improved.

また、シールド層の形成は分離のだめの誘電体層の形成
と同時にできるので、特にシールド層の形成のための工
程を必要としない利点もある。
Furthermore, since the shield layer can be formed at the same time as the separate dielectric layer, there is an advantage that no special process for forming the shield layer is required.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による半導体集積回路装置の一例を示す
正面断面図、第2図は本発明による半導体集積回路装置
の製造方法の要部を示す正面断匍図、第31図は本発明
による半導体集積回路装置の肋の例の一部を示す正面断
面図である。 12・13・・・・・・シリコン酸化物。 14・15・・・・・・N型高濃度領域。 24・・・・・・多孔質シリコン。 25・・・・・・二酸化シリコン。 26.27・・・・・・N型高濃度領域特許出願人 東光株式会社
FIG. 1 is a front cross-sectional view showing an example of a semiconductor integrated circuit device according to the present invention, FIG. 2 is a front cross-sectional view showing main parts of a method for manufacturing a semiconductor integrated circuit device according to the present invention, and FIG. 31 is a front cross-sectional view showing an example of a semiconductor integrated circuit device according to the present invention. FIG. 2 is a front sectional view showing a part of an example of a rib of a semiconductor integrated circuit device. 12/13...Silicon oxide. 14・15...N-type high concentration region. 24...Porous silicon. 25...Silicon dioxide. 26.27・・・N-type high concentration region patent applicant Toko Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] (1)一枚の基板内に複数の回路素子が形成されるとと
もに該回路素子部に分離領域を具えた半導集積回路装置
において、該分離領域が多孔質シリコンを酸化した近接
する二つの絶縁層から成シ、該二つの絶縁層の間に高濃
度に不純物を含むシールド層を具えだことを特徴とする
半導体集積回路装置。
(1) In a semiconductor integrated circuit device in which a plurality of circuit elements are formed within a single substrate and a separation region is provided in the circuit element portion, the separation region is formed by oxidizing porous silicon between two adjacent insulators. What is claimed is: 1. A semiconductor integrated circuit device comprising a shield layer comprising a plurality of layers and comprising a shield layer containing impurities at a high concentration between the two insulating layers.
(2)該シールド層に接続された配線を接地電位と接続
することを特徴とする特許請求の範囲第1項記載の半導
体集積回路装置。
(2) The semiconductor integrated circuit device according to claim 1, wherein the wiring connected to the shield layer is connected to a ground potential.
(3)集積回路用基板の分離領域となる部分の並列して
所定の間隔を有する二つの領域を陽極化成処理によって
多孔質化し、該多孔質化された領域に不純物を高濃度に
ドープし、該多孔質化された領域を酸素雰囲気中で酸化
処理することによってシリコシ酸化物とするとともに該
シリコン酸化物の周囲に不純物を拡散してシールド層を
形成することを特徴とする特許請求の範囲第1項記載の
半導体集積回路装置の製造方法。
(3) making two parallel regions at a predetermined distance apart from each other in a portion of the integrated circuit substrate that will become the separation region porous by anodization treatment, and doping the porous regions with impurities at a high concentration; Claim 1, characterized in that the porous region is oxidized in an oxygen atmosphere to form a silicon oxide, and an impurity is diffused around the silicon oxide to form a shield layer. A method for manufacturing a semiconductor integrated circuit device according to item 1.
(4)該多孔質シリコンを酸化した二つの絶縁層に接し
てその間に形成される二つの拡散層の少くとも一部を当
接させることを特徴とする特許請求の範囲第6項記載の
半導体集積回路装置の製造方法。
(4) The semiconductor according to claim 6, characterized in that the porous silicon is in contact with two insulating layers formed by oxidizing the porous silicon, and at least a portion of two diffusion layers formed therebetween are in contact with the two insulating layers. A method of manufacturing an integrated circuit device.
JP4752183A 1983-03-22 1983-03-22 Semiconductor integrated circuit device and manufacture thereof Pending JPS59172739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4752183A JPS59172739A (en) 1983-03-22 1983-03-22 Semiconductor integrated circuit device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4752183A JPS59172739A (en) 1983-03-22 1983-03-22 Semiconductor integrated circuit device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS59172739A true JPS59172739A (en) 1984-09-29

Family

ID=12777414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4752183A Pending JPS59172739A (en) 1983-03-22 1983-03-22 Semiconductor integrated circuit device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59172739A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50120280A (en) * 1974-03-05 1975-09-20
JPS50120781A (en) * 1974-03-08 1975-09-22
JPS5199984A (en) * 1975-02-28 1976-09-03 Nippon Electric Co Handotaisochi oyobi sonoseizohoho
JPS5263685A (en) * 1975-11-20 1977-05-26 Matsushita Electric Ind Co Ltd Production of semiconductor device
JPS5353971A (en) * 1976-10-26 1978-05-16 Matsushita Electric Ind Co Ltd Production of semiconductor device
JPS53127282A (en) * 1977-04-13 1978-11-07 Shindengen Electric Mfg Semiconductor
JPS55111154A (en) * 1979-02-21 1980-08-27 Hitachi Ltd Integrated insulated coupler
JPS5615141A (en) * 1979-07-17 1981-02-13 Tokyo Shibaura Electric Co Large dc current power supply
JPS5615574A (en) * 1979-07-06 1981-02-14 Du Pont Zero input type tottle link connector

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50120280A (en) * 1974-03-05 1975-09-20
JPS50120781A (en) * 1974-03-08 1975-09-22
JPS5199984A (en) * 1975-02-28 1976-09-03 Nippon Electric Co Handotaisochi oyobi sonoseizohoho
JPS5263685A (en) * 1975-11-20 1977-05-26 Matsushita Electric Ind Co Ltd Production of semiconductor device
JPS5353971A (en) * 1976-10-26 1978-05-16 Matsushita Electric Ind Co Ltd Production of semiconductor device
JPS53127282A (en) * 1977-04-13 1978-11-07 Shindengen Electric Mfg Semiconductor
JPS55111154A (en) * 1979-02-21 1980-08-27 Hitachi Ltd Integrated insulated coupler
JPS5615574A (en) * 1979-07-06 1981-02-14 Du Pont Zero input type tottle link connector
JPS5615141A (en) * 1979-07-17 1981-02-13 Tokyo Shibaura Electric Co Large dc current power supply

Similar Documents

Publication Publication Date Title
US5323055A (en) Semiconductor device with buried conductor and interconnection layer
US3826699A (en) Method for manufacturing a semiconductor integrated circuit isolated through dielectric material
US3411051A (en) Transistor with an isolated region having a p-n junction extending from the isolation wall to a surface
US4343080A (en) Method of producing a semiconductor device
JPH06334030A (en) Semiconductor device and its manufacture
US20030193077A1 (en) Bipolar transistor and method of fabricating the same
EP0051534A2 (en) A method of fabricating a self-aligned integrated circuit structure using differential oxide growth
JP2654607B2 (en) Method for manufacturing semiconductor device
US4692784A (en) Dielectric insulation type semiconductor integrated circuit having low withstand voltage devices and high withstand voltage devices
JPS59172739A (en) Semiconductor integrated circuit device and manufacture thereof
US4546537A (en) Method for producing a semiconductor device utilizing V-groove etching and thermal oxidation
JPS6095969A (en) Manufacture of semiconductor integrated circuit
JPS61172346A (en) Semiconductor integrated circuit device
JP2615652B2 (en) Manufacturing method of bipolar transistor
JPS5850752A (en) Manufacture of semiconductor device
JP3157595B2 (en) Dielectric separation substrate
JPS60244036A (en) Semiconductor device and manufacture thereof
JPS59175746A (en) Manufacture of semiconductor integrated circuit device
JP3128818B2 (en) Semiconductor integrated circuit
JPS61180449A (en) Dielectric-isolated semiconductor integrated circuit substrate and manufacture thereof
JPS6123659B2 (en)
JPS61177744A (en) Manufacture of semiconductor ic substrate
JPH06151447A (en) Semiconductor device and its manufacture
JPH05136157A (en) Semiconductor device and its manufacture
JPH04280423A (en) Manufacture of semiconductor device