JPS5917403B2 - Camera with automatic focus adjustment device - Google Patents
Camera with automatic focus adjustment deviceInfo
- Publication number
- JPS5917403B2 JPS5917403B2 JP10579477A JP10579477A JPS5917403B2 JP S5917403 B2 JPS5917403 B2 JP S5917403B2 JP 10579477 A JP10579477 A JP 10579477A JP 10579477 A JP10579477 A JP 10579477A JP S5917403 B2 JPS5917403 B2 JP S5917403B2
- Authority
- JP
- Japan
- Prior art keywords
- scanning
- lens
- focus adjustment
- camera
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/28—Systems for automatic generation of focusing signals
- G02B7/30—Systems for automatic generation of focusing signals using parallactic triangle with a base line
- G02B7/305—Systems for automatic generation of focusing signals using parallactic triangle with a base line using a scanner
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Focusing (AREA)
- Automatic Focus Adjustment (AREA)
- Measurement Of Optical Distance (AREA)
Description
【発明の詳細な説明】
本発明は、撮影レンズの焦点調節が、精度よく行なわれ
るようになしたカメラの自動焦点調節装置の改良に関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an automatic focus adjustment device for a camera that allows focus adjustment of a photographic lens to be performed with high precision.
光電測距装置の走査機構を正逆方向に1往復の作動をさ
せて、正方向走査段階で検出した光電信号の内の最大値
か最小値(これは回路の設計によつて選択される値であ
る。The scanning mechanism of the photoelectric distance measuring device is operated once in the forward and reverse directions, and the maximum value or minimum value (this value is selected according to the circuit design) of the photoelectric signals detected in the forward direction scanning stage is determined. It is.
)を回路に記憶させた後、逆方向走査段階で前記正方向
段階で記憶した最大値又は最小値とほぼ等しい光電信号
が来た時、検出信号により焦点調節のため移動状態にあ
る撮影レンズを停止せしめる形式の自動焦点調節装置フ
を有するカメラは知られている。その様なカメラの自
動焦点調節装置においては、光電測距装置の走査機構の
走査速度が遅い程焦点調節精度が向上する。なぜなら、
通常撮影レンズは走査機構等に連動して動き、測距装置
からの最大値(又は最小5 値)の検出信号にてその動
きを停止させられるのであるが、その検出信号を受けて
何らかの停止装置(例えばマグネット)が働き撮影レン
ズの動きを停止させるまでには当然いくらかのタイムラ
グが存在するため、走査機構の走査速度が遅ければフ
それに連動する撮影レンズの移動速度も遅くなり撮影レ
ンズの停止位置のズレが少なくなるからでぁる。また、
被写体の主要照明光が蛍光灯のような場合、受光素子か
らの出力に蛍光灯の放電サイクルが重畳されるが、その
ために最大値(又は最5 小値)の位置がズレてその検
出信号の発信時刻に誤差が生じることになる。そして、
鋸歯状の制止部に爪状部材を突入させて撮影レンズを係
止するような場合、1つの鋸歯の谷間のいかなる部分に
爪状部材が突入しても同一箇所に撮影レンズが設フ 定
される訳であるが、この様に撮影レンズの停止位置が段
階的に決定されるものでは、本発明のように撮影レンズ
の移動速度を遅くすれば前述のような螢光灯光による検
出信号の発信時刻の誤差は十分小さいから1つの鋸歯の
谷間内の範囲となり、; 撮影レンズを正確な段階部、
つまり検出信号が決定した撮影レンズ位置に係止させる
ことが出来るという効果も有している。さらに、撮影レ
ンズはかなり重いものであるから、いかなる方法(ばね
またはモータ等)で作動させるにしても、動力源に大き
な慣性がかかる。そのため、その作動が不安定なものと
なる上、撮影レンズを停止させる場合も振動等による撮
影ブレの問題が生じる。本発明によれば、撮影レンズの
移動速度を撮影レンズの焦点設定段階に遅く出来るので
上記のような欠点を解消することができる。以上述べた
如く、焦点調節は光電測距装置の走査機構の走査速度及
びその作動に連動する撮影レンズの速度が遅ければ遅い
程、その精度が上ると云えるが、撮影者は、シヤツタチ
ヤンスをねらつてシヤツタレリーズする訳であるから、
自動焦点調節に要する時間に自ずと限界がある。) is stored in the circuit, and when a photoelectric signal approximately equal to the maximum or minimum value stored in the forward scanning stage comes in the backward scanning stage, the detection signal causes the photographing lens in the moving state to adjust the focus. Cameras are known that have an automatic focusing device of the stop type. In such an automatic focusing device for a camera, the slower the scanning speed of the scanning mechanism of the photoelectric distance measuring device, the better the focusing accuracy is. because,
Normally, the photographing lens moves in conjunction with a scanning mechanism, etc., and its movement is stopped by the detection signal of the maximum value (or minimum 5 values) from the distance measuring device. Naturally, there is some time lag before the camera (for example, a magnet) works and stops the movement of the photographic lens, so if the scanning speed of the scanning mechanism is slow, the lens will stop moving.
This is because the moving speed of the photographing lens linked to this decreases, and the deviation of the stopping position of the photographing lens is reduced. Also,
When the main illumination light of the subject is a fluorescent lamp, the discharge cycle of the fluorescent lamp is superimposed on the output from the light receiving element, which shifts the position of the maximum value (or minimum value) and distorts the detection signal. This will cause an error in the transmission time. and,
When locking a photographic lens by inserting a claw-like member into a sawtooth-like stop, the photographic lens will be set at the same location no matter what part of the valley of one sawtooth the claw-like member enters. However, in a system where the stop position of the photographic lens is determined in stages, if the moving speed of the photographic lens is slowed down as in the present invention, the detection signal can be transmitted by the fluorescent light as described above. The time error is sufficiently small that it falls within the valley of one sawtooth;
In other words, it also has the effect of being able to lock the photographing lens at the position determined by the detection signal. Furthermore, since the photographic lens is quite heavy, no matter how it is actuated (spring, motor, etc.), a large amount of inertia is placed on the power source. As a result, the operation becomes unstable, and even when the photographic lens is stopped, the problem of photographic blur due to vibration etc. occurs. According to the present invention, since the moving speed of the photographic lens can be slowed down during the focus setting stage of the photographic lens, the above-mentioned drawbacks can be solved. As mentioned above, it can be said that the accuracy of focus adjustment increases as the scanning speed of the scanning mechanism of the photoelectric distance measuring device and the speed of the photographic lens linked to its operation are slower. This means that the shutter will be released.
There is naturally a limit to the time required for automatic focus adjustment.
それは経験的にほぼ100ms程度と考えられる。つま
り普通の撮影者は、シャツタレリーズボタンを押して1
00ms程はカメラを撮影状態に保持していが、それ以
上の時間がたつと撮影し終つたものと考えるのである。
勿論、焦点調節にこれ以上の時間を必要とすれば、シャ
ッタチャンスをのがし、所望の写真が撮れないことにな
る。そのため光電測距装置の走査機構の走査速度を一定
以下に落せないという限界が生じる。本発明は以上のよ
うな限界を克服して、より高い精度の自動焦点調節装置
をめざしたもので、そのため光電式測距装置の逆方向の
走査速度を正方向の走査速度に比べ遅くすることにより
制限時間を有効に利用したものである。以下、図面に基
いて本発明を説明する。第1図は走査光路の正逆走査の
機構の1例を示す概要図、第2図は自動焦点調節装置の
作動回路図、第3図は被写体位置検出信号の特性図であ
る。It is considered from experience to be about 100 ms. In other words, an ordinary photographer can press the shirt release button and
The camera is held in the shooting state for about 00ms, but if any longer than that, the camera is considered to have finished shooting.
Of course, if focus adjustment requires more time than this, the shutter opportunity will be missed and the desired photograph will not be taken. Therefore, there is a limit that the scanning speed of the scanning mechanism of the photoelectric distance measuring device cannot be lowered below a certain level. The present invention aims to overcome the above-mentioned limitations and to provide an automatic focusing device with higher precision.For this purpose, the scanning speed in the reverse direction of the photoelectric distance measuring device is made slower than the scanning speed in the forward direction. This makes effective use of the time limit. The present invention will be explained below based on the drawings. FIG. 1 is a schematic diagram showing an example of a mechanism for forward and reverse scanning of a scanning optical path, FIG. 2 is an operating circuit diagram of an automatic focus adjustment device, and FIG. 3 is a characteristic diagram of a subject position detection signal.
図において、1は回動ミラー、2は固定ミラー3はミラ
ープリズム、4,5はそれぞれレンズ、6,7はそれぞ
れフオトダイオードアレイよりなる受光素子である。回
動ミラー1よりミラープリズム3およびレンズ4を経て
受光素子6に導かれる光路が走査光路で、回動ミラー1
の左右往復回動によつて正方向と逆方向の往復走査をす
る。固定ミラー2よりミラープリズム3およびレンズ5
を経て受光素子7に導かれる光路は固定光路である。図
示の態様は走査光路と固定光路を用いた測距装置を示し
ているが、両光路が共に走査光路であつても本発明ぱ実
施でき、また走査機構にはミラーを用いる代りにプリズ
ムやレンズを用いることもできる。回動ミラー1を左右
回動させる手段の1具体例は第1図に示す通りであり、
図示せざるレリーズボタンを押すことによつて制御部材
8は係止を外されてばね9に引かれ左行し、カム8aに
よつてカムリンク10を介し回動ミラー1を左右回動さ
せる。カム8aは初めの急勾配のカム面で回動ミラー1
を急速に右回動させ、続く戻しの緩勾配のカム面で回動
ミラー1を緩速度で左回動させる。一方、制御部材8に
はレンズ駆動部8bが設けられていて、該駆動部8bに
はレンズ鏡胴11に植設された被動ピン11aが係合し
ており、制御部材8が左行する場合、回動ミラー1を急
速に右回動させている間はレンズ駆動部8bは被動ピン
11aに作用せず、回動ミラー1を戻り回動させる時点
で被動ピン11aに係接し、その時からレンズ11bを
回動ミラー1の走査回動と対応させて動かすことになる
。ここで、レンズ11bの動きは、被動ピン11aが制
御部材8のレンズ駆動部8bに係接して動かされ、それ
に伴つてレンズ?1111111が動いて、レンズ鏡胴
に植設したカムピン11cがカメラ本体に固定して設け
たカムスリーブ12のカム溝内を摺動することによつて
なされる。また、制御部材8にはエナーブルスィッチ1
3の閉成を行なうスイツチングカム8cが設けられてお
り、制御部材8が回動ミラー1を戻り回動させる時点で
スイツチングカム8cはエナーブルスイツチ13を閉成
し、引続き該閉成状態を保たしめる。更に、制御部材8
には制止部8dが設けられていて、回動ミラー1が戻り
回動に入りエナーブルスイツチ13が閉成された状態で
受光素子6,7の受光による出力が最も一致すると即ち
、測距装置が走査光路の逆方向走査する間に再び被写体
位置を把えると、ソレノイド14にソレノイド停止信号
が人り、係止爪15が制止部8dに係合して制御部材8
を停止させることになり、従つて、回動ミラー1もレン
ズ11bも被写体位置を把えた状態で停止する。そこで
図示せざる公知の手段が働いてシヤツタレリーズが行な
われ正確な距離設定による撮影がなされることになる。
測距装置が走査光路の逆方向走査の間に被写体位置を把
えてソレノイドを働かす作動回路の例は第2図に示す通
りである。前述の如く、回動ミラー1が急速な往回動し
ている間即ち、走査光路が正方向走査している間にエナ
ーブルスイツチ13は開かれており、従つてその間の受
光素子6,7の出力は比較されて加算演算器SA、最大
値検出回路PD、増幅器AMPl、および微分回路を経
て焦点位置検出信号VDを与えるが、該信号VDはスイ
ツチ13で遮断されてソレノイド14を作動させること
はない。受光素子6,7はそれぞれフオトダイオードア
レイより構成されており、受光素子6,7上の被写体の
光学像は光電的な比較信号として加算演算器SAで演算
され、受光素子6,7の出力が全体的に一致する程高い
電圧を示すコリレーシヨン信号V。Oとして加算演算器
SAより出力される。最大値検出回路PDはこのコリレ
ーシヨン信号VcOより最大値信号・V,Dを取り出す
回路であり、自己の出力信号を整流素子Dに通してコメ
デ/丈C1をチヤージした検出電圧VDTとコリレーシ
ヨン信号VcOの電圧を比較してCOの電圧がVDT以
上のときはVcOの電圧を出力し、VcOの電圧がVD
Tの電圧より低いときは低レベルの電圧を出力すること
によつて最大値信号PDを出力している。増幅器AMP
lは最大値信号VpOを波形整形して自動焦点検出信号
VAFとする。In the figure, 1 is a rotating mirror, 2 is a fixed mirror 3 is a mirror prism, 4 and 5 are lenses, and 6 and 7 are light receiving elements each consisting of a photodiode array. The optical path guided from the rotating mirror 1 to the light receiving element 6 via the mirror prism 3 and the lens 4 is a scanning optical path.
Reciprocating scanning in the forward and reverse directions is performed by the left and right reciprocating rotations of the . Mirror prism 3 and lens 5 from fixed mirror 2
The optical path guided to the light-receiving element 7 via is a fixed optical path. Although the illustrated embodiment shows a distance measuring device using a scanning optical path and a fixed optical path, the present invention can also be carried out even if both optical paths are scanning optical paths, and the scanning mechanism may include a prism or lens instead of using a mirror. You can also use A specific example of the means for rotating the rotating mirror 1 left and right is as shown in FIG.
By pressing a release button (not shown), the control member 8 is unlocked and moved to the left by the spring 9, causing the rotating mirror 1 to be rotated left and right by the cam 8a via the cam link 10. Cam 8a rotates with rotating mirror 1 on the first steeply sloped cam surface.
is rapidly rotated to the right, and then the rotating mirror 1 is slowly rotated to the left by a cam surface with a gentle slope during return. On the other hand, the control member 8 is provided with a lens drive section 8b, and a driven pin 11a implanted in the lens barrel 11 is engaged with the drive section 8b, so that when the control member 8 moves to the left, , while the rotating mirror 1 is being rapidly rotated clockwise, the lens drive section 8b does not act on the driven pin 11a, and when the rotating mirror 1 is rotated back, it engages with the driven pin 11a, and from that point on, the lens drive section 8b does not act on the driven pin 11a. 11b is moved in correspondence with the scanning rotation of the rotating mirror 1. Here, the movement of the lens 11b is caused by the driven pin 11a being engaged with the lens drive section 8b of the control member 8, and the lens 11b being moved accordingly. 1111111 moves, and the cam pin 11c installed in the lens barrel slides in the cam groove of the cam sleeve 12 fixedly provided to the camera body. The control member 8 also includes an enable switch 1.
3, the switching cam 8c closes the enable switch 13 when the control member 8 returns and rotates the rotating mirror 1, and continues to maintain the closed state. keep it. Furthermore, the control member 8
is provided with a stopper 8d, and when the rotary mirror 1 enters return rotation and the enable switch 13 is closed, the outputs from the light received by the light receiving elements 6 and 7 are the most coincident, that is, the distance measuring device When the object position is grasped again while scanning in the reverse direction of the scanning optical path, a solenoid stop signal is sent to the solenoid 14, the locking pawl 15 engages with the stop portion 8d, and the control member 8
Therefore, both the rotary mirror 1 and the lens 11b are stopped with the subject position known. Thereupon, a known means (not shown) is activated to release the shutter and photograph with accurate distance setting.
FIG. 2 shows an example of an operating circuit in which the distance measuring device grasps the position of the object and activates the solenoid while scanning the scanning optical path in the reverse direction. As mentioned above, the enable switch 13 is open while the rotary mirror 1 is rapidly rotating forward, that is, while the scanning optical path is scanning in the forward direction, and therefore the light receiving elements 6 and 7 between them are open. The outputs of are compared and passed through an adder SA, a maximum value detection circuit PD, an amplifier AMPl, and a differentiation circuit to provide a focus position detection signal VD, which signal VD is cut off by a switch 13 to operate a solenoid 14. There isn't. The light-receiving elements 6 and 7 are each composed of a photodiode array, and the optical images of the subject on the light-receiving elements 6 and 7 are calculated as photoelectric comparison signals by an adder SA, and the outputs of the light-receiving elements 6 and 7 are Correlation signals V showing voltages so high that they match overall. It is output as O from the adder SA. The maximum value detection circuit PD is a circuit that extracts the maximum value signals V and D from this correlation signal VcO, and passes its own output signal through a rectifier D to detect the detection voltage VDT obtained by charging the comedy/length C1 and the correlation signal VcO. When the voltages are compared and the voltage of CO is higher than VDT, the voltage of VcO is output, and the voltage of VcO is equal to VD.
When the voltage is lower than the voltage of T, the maximum value signal PD is output by outputting a low level voltage. amplifier AMP
l waveform-shapes the maximum value signal VpO to form an automatic focus detection signal VAF.
コンデンサーC2、抵抗R3よりなる微分回路はこの自
動焦点検出信号VAFをパルス状の焦点位置を示す焦点
位置検出信号VDに変換する。第3図は回動ミラー1に
より走査している位置と対応した各信号の状態を示して
おり、正走査時間t1の範囲が回動ミラー1の急速往回
動する間の状態、逆走査時間T2の範囲が回動ミラー1
の緩速復回動する間の状態でぁる。コリレーション信号
VcOは図示の如く最大値が多く現われるため片道走査
では誤つたレンズの停止信号を出すことになり易いので
、正逆即ち、往復走査による方法が採られる訳である。
籾て、回動ミラー1が緩速の復回動に入ると工ナーブル
スイツチ13は閉成されており、受光素子6,7の出力
が比較されて加算演算器SAより出力されたコリレーシ
ヨン信号VcOは最大値検出回路PDにおいて先の回動
ミラーの往回動時にコンデンサーC1をチヤージした最
大電圧と比較され、コリレーシヨン信号VcOの電圧が
該最大電圧以上となつている間のみコリレーシヨン信号
と同じ電圧をとる最大値信号V,Oに変換される。コリ
レーシヨン信号電圧VcOが回動ミラーの往回動におけ
る最大電圧以上となるのはコンデンサーC1のチヤージ
の減衰が極めて少ないから測距装置が被写体位置を把え
たときよりなく、従つて、最大値信号VPDは測距装置
が精確に被写体位置を把えたときを与える。そして、最
大値信号VPDが増幅器AMPlにより整形されて自動
焦点検出信号VAFとなり、更に微分回路によつて焦点
位置検出信号Dに変換されてエナーブルスイツチ13を
通り増幅器AMP2に入力される。増幅器AMP2は焦
点位置検出信号V。を正方向のパルス立上りのみが利用
されるステツプ信号に変換し、該ステツプ信号をソレノ
イド停止信号としソレノイド14に入力して、第2図示
の如くレンズ鏡胴を直接または、第1図の如く制御部材
を介して間接に停止させる。尚、図のSはフイルム面、
第2図のR1〜R3は抵抗である。本発明は以上述べた
如く、測距装置が走査光路の正逆方向の走査によつて被
写体位置を把える焦点検出信号の精度が正逆方向走査の
時間配分、即ち、正逆の速度比の影響を殆んど受けない
ことから、逆方向走査の速度とそれに対応するレンズの
移動速度を遅して、精度の高い焦点検出信号に基づく焦
点位置でのレンズの停止が正確に行なわれるようにした
ものである。A differentiating circuit including a capacitor C2 and a resistor R3 converts this automatic focus detection signal VAF into a focus position detection signal VD indicating a pulsed focus position. FIG. 3 shows the state of each signal corresponding to the position being scanned by the rotating mirror 1, and the range of the forward scanning time t1 is the state during the rapid forward rotation of the rotating mirror 1, and the state during the reverse scanning time. T2 range is rotating mirror 1
It is in a state where it is slowly rotating back and forth. As shown in the figure, the maximum value of the correlation signal VcO often appears, and one-way scanning tends to generate an erroneous lens stop signal. Therefore, a forward and reverse scanning method is used.
When the rotating mirror 1 enters slow backward rotation after husking paddy, the rotary switch 13 is closed, and the outputs of the light receiving elements 6 and 7 are compared and a correlation signal is output from the adder SA. VcO is compared with the maximum voltage that charged the capacitor C1 during the previous forward rotation of the rotating mirror in the maximum value detection circuit PD, and the voltage is the same as that of the correlation signal only while the voltage of the correlation signal VcO is equal to or higher than the maximum voltage. It is converted into maximum value signals V and O that take the following values. The reason why the correlation signal voltage VcO exceeds the maximum voltage during the forward rotation of the rotary mirror is because the attenuation of the charge in the capacitor C1 is extremely small, so the correlation signal voltage VcO does not exceed the maximum voltage when the distance measuring device grasps the subject position. Therefore, the maximum value signal VPD indicates when the distance measuring device has accurately determined the subject position. Then, the maximum value signal VPD is shaped by the amplifier AMP1 to become an automatic focus detection signal VAF, which is further converted into a focus position detection signal D by a differentiation circuit, and is inputted to the amplifier AMP2 through the enable switch 13. Amplifier AMP2 receives focus position detection signal V. is converted into a step signal in which only the rising edge of the pulse in the positive direction is used, and the step signal is input to the solenoid 14 as a solenoid stop signal to control the lens barrel directly as shown in Figure 2 or as shown in Figure 1. It is stopped indirectly via a member. In addition, S in the figure is the film surface,
R1 to R3 in FIG. 2 are resistors. As described above, the present invention provides that the accuracy of the focus detection signal used by the distance measuring device to grasp the subject position by scanning in the forward and reverse directions of the scanning optical path is determined by the time distribution of the forward and reverse scans, that is, the speed ratio of the forward and reverse directions. Since this effect is almost unaffected, the reverse scanning speed and the corresponding lens movement speed are slowed down to ensure that the lens is accurately stopped at the focal position based on a highly accurate focus detection signal. It is something.
従つて、本発明によれば、測距装置の正逆全走査時間を
長くすることなく即ち、シャツタチャンスを失なわしめ
ることなく、正確な自動焦点調節を行なうことができる
。本発明において、測距装置の走査は無限遠距離より最
至近距離に往き無限遠距離に復るものであつても、その
逆になされるものであつてもよく、また、受光素子のそ
れぞれに実施例のような複数の組み合せ素子でなく単一
構成のものを用いたり、焦点位置検出信号を最小値検出
によつて求め信号の立下りを利用してソレノイドを作動
させたりするような回路構成の変更を行なつてもよい。
さらに、光電式測距装置の走査機構はその光学系を撮影
レンズと別体とする必要はなくTTL式の走査機構にし
て撮影レンズの移動速度を変えてやれば本発明を容易に
一眼レフカメラにも応用出来る。Therefore, according to the present invention, accurate automatic focus adjustment can be performed without increasing the total forward and reverse scanning time of the range finder, that is, without losing the shutter chance. In the present invention, the distance measuring device may scan from an infinite distance to the closest distance and return to an infinite distance, or vice versa. A circuit configuration in which a single configuration is used instead of multiple combined elements as in the embodiment, or a focus position detection signal is determined by minimum value detection and a solenoid is activated using the fall of the signal. may be changed.
Furthermore, the scanning mechanism of the photoelectric distance measuring device does not need to have its optical system separate from the photographing lens, and the present invention can be easily applied to a single-lens reflex camera by using a TTL type scanning mechanism and changing the moving speed of the photographing lens. It can also be applied to
第1図は走査光路の正逆走査の機構の1例を示す概要図
、第2図は自動合焦装置の作動回路図、第3図は被写体
位置検出信号の特性図である。
1:回動ミラー、2:固定ミラー、3:ミラ一プリズム
、4,5:レンズ、6,7:受光素子、8:制御部材、
8a:カム、8b:レンズ駆動部、8c:スイツチング
カム、8d:制止部、10:カムリンク、11:レンズ
鍵眠11a:被動ピン、11b:レンズ、12:カムス
リーブ、13:エナーブルスイツチ、14:ソレノイド
、15:係止爪、SA:加算演算器、PD:最大値検出
回路、AMPl,AMP2:増幅器、Cl,C2:コン
デンサ一、R1〜R3:抵抗、S:フィルム面、T,:
正走査時間、T2:逆走査時間、VcO:コリレーシヨ
ン信号、VDT:検出電圧、VPD:最大値信号、VA
F:自動焦点検出信号、VD:焦点位置検出信号。FIG. 1 is a schematic diagram showing an example of a mechanism for forward and reverse scanning of a scanning optical path, FIG. 2 is an operating circuit diagram of an automatic focusing device, and FIG. 3 is a characteristic diagram of a subject position detection signal. 1: rotating mirror, 2: fixed mirror, 3: mirror prism, 4, 5: lens, 6, 7: light receiving element, 8: control member,
8a: Cam, 8b: Lens drive section, 8c: Switching cam, 8d: Stopping section, 10: Cam link, 11: Lens lock 11a: Driven pin, 11b: Lens, 12: Cam sleeve, 13: Enable switch , 14: Solenoid, 15: Locking claw, SA: Addition unit, PD: Maximum value detection circuit, AMPl, AMP2: Amplifier, Cl, C2: Capacitor 1, R1 to R3: Resistor, S: Film surface, T, :
Forward scanning time, T2: Reverse scanning time, VcO: Correlation signal, VDT: Detection voltage, VPD: Maximum value signal, VA
F: automatic focus detection signal, VD: focus position detection signal.
Claims (1)
範囲に亘つて先ず正方向に走査し、前記一対の光学系の
像の合致時における信号値を記憶し、続く逆方向の走査
段階で発生する信号値が前記記憶した信号値に達したと
きの検出信号を利用して焦点調節のための移動状態にあ
る撮影レンズを停止せしめる自動焦点調節装置を有する
カメラにおいて、前記逆方向の走査速度を正方向の走査
速度よりも遅くしたことを特徴とする自動焦点調節装置
を有するカメラ。1 Using a photoelectric distance measuring device having a pair of optical systems, first scan in the forward direction over the distance measurement range, store the signal value when the images of the pair of optical systems match, and then scan in the reverse direction. In a camera having an automatic focus adjustment device that stops a photographing lens in a moving state for focus adjustment using a detection signal when a signal value generated in a step reaches the stored signal value, A camera having an automatic focus adjustment device, characterized in that the scanning speed is slower than the scanning speed in the forward direction.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10579477A JPS5917403B2 (en) | 1977-09-05 | 1977-09-05 | Camera with automatic focus adjustment device |
GB7835483A GB2004076B (en) | 1977-09-05 | 1978-09-04 | Camera having an automatic focus control apparatus |
DE19782838546 DE2838546C3 (en) | 1977-09-05 | 1978-09-04 | Automatic focus control device |
HK68283A HK68283A (en) | 1977-09-05 | 1983-12-15 | Camera having an automatic focus control apparatus |
SG24184A SG24184G (en) | 1977-09-05 | 1984-03-19 | Camera having an automatic focus control apparatus |
MY8500562A MY8500562A (en) | 1977-09-05 | 1985-12-30 | Camera having an automatic focus control apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10579477A JPS5917403B2 (en) | 1977-09-05 | 1977-09-05 | Camera with automatic focus adjustment device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5448530A JPS5448530A (en) | 1979-04-17 |
JPS5917403B2 true JPS5917403B2 (en) | 1984-04-21 |
Family
ID=14417025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10579477A Expired JPS5917403B2 (en) | 1977-09-05 | 1977-09-05 | Camera with automatic focus adjustment device |
Country Status (6)
Country | Link |
---|---|
JP (1) | JPS5917403B2 (en) |
DE (1) | DE2838546C3 (en) |
GB (1) | GB2004076B (en) |
HK (1) | HK68283A (en) |
MY (1) | MY8500562A (en) |
SG (1) | SG24184G (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2595318A (en) | 2020-10-23 | 2021-11-24 | Pss Belgium Nv | Loudspeaker arrangement |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3783269A (en) * | 1972-06-05 | 1974-01-01 | Honeywell Inc | Automatic focus positioning circuit |
JPS5932762B2 (en) * | 1974-02-16 | 1984-08-10 | 旭光学工業 (株) | focus detection device |
US3958117A (en) * | 1975-07-15 | 1976-05-18 | Honeywell Inc. | Distance determining and automatic focusing apparatus |
-
1977
- 1977-09-05 JP JP10579477A patent/JPS5917403B2/en not_active Expired
-
1978
- 1978-09-04 DE DE19782838546 patent/DE2838546C3/en not_active Expired
- 1978-09-04 GB GB7835483A patent/GB2004076B/en not_active Expired
-
1983
- 1983-12-15 HK HK68283A patent/HK68283A/en not_active IP Right Cessation
-
1984
- 1984-03-19 SG SG24184A patent/SG24184G/en unknown
-
1985
- 1985-12-30 MY MY8500562A patent/MY8500562A/en unknown
Also Published As
Publication number | Publication date |
---|---|
MY8500562A (en) | 1985-12-31 |
HK68283A (en) | 1983-12-23 |
SG24184G (en) | 1985-02-15 |
JPS5448530A (en) | 1979-04-17 |
DE2838546B2 (en) | 1980-05-08 |
GB2004076A (en) | 1979-03-21 |
DE2838546A1 (en) | 1979-03-08 |
DE2838546C3 (en) | 1984-10-11 |
GB2004076B (en) | 1982-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6223573B2 (en) | ||
US5355166A (en) | Image sensing apparatus | |
US3842424A (en) | Exposure control device in single-lens reflex camera | |
US4660954A (en) | Automatic focusing device equipped with close-up range focal control | |
JPH0321886B2 (en) | ||
US4460261A (en) | Automatic focusing device | |
JPH0226207B2 (en) | ||
US4688914A (en) | Camera system | |
JPS63144330A (en) | Automatic focusing device for camera | |
US4238154A (en) | Camera having too close/too far indication | |
USRE35963E (en) | Automatic focusing camera | |
US4217043A (en) | Camera having an automatic focus control apparatus | |
JPS5917403B2 (en) | Camera with automatic focus adjustment device | |
US4374613A (en) | Auto/manual camera employing common lens focusing data | |
US4289388A (en) | Automatic focus adjusting device of a camera having a self-timer | |
US5548370A (en) | Vibration compensation device for a camera | |
JPS59191020A (en) | Automatic focusing camera | |
US4816858A (en) | Automatic focusing cameras | |
JP2622305B2 (en) | Electronic still camera | |
JPS6360416A (en) | Automatic focusing device | |
JP2767108B2 (en) | Auto focus camera | |
JPS5928404Y2 (en) | Camera with photoelectric ranging device | |
JPH03184028A (en) | Still video camera | |
JPH02684B2 (en) | ||
JPH055828A (en) | Focus detector for camera |