JPS59162997A - Organic filthy water disposal - Google Patents
Organic filthy water disposalInfo
- Publication number
- JPS59162997A JPS59162997A JP58038673A JP3867383A JPS59162997A JP S59162997 A JPS59162997 A JP S59162997A JP 58038673 A JP58038673 A JP 58038673A JP 3867383 A JP3867383 A JP 3867383A JP S59162997 A JPS59162997 A JP S59162997A
- Authority
- JP
- Japan
- Prior art keywords
- acid
- tank
- anaerobic treatment
- treatment
- organic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y02W10/12—
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は有機性汚水、例えばし尿、下水、その他の産
業廃水、あるいは、し尿処理場などから発生する汚泥そ
の他の有機性廃棄物(以下これらを単に「汚水」という
)を生物学的に処理する方法に関するもので、特に嫌気
的処理方法に関するものである。[Detailed Description of the Invention] This invention deals with organic sewage, such as human waste, sewage, other industrial wastewater, or sludge and other organic waste generated from human waste treatment plants (hereinafter simply referred to as "sewage"). It relates to a biological treatment method, particularly an anaerobic treatment method.
本出願人らは、先に汚水の嫌気性処理に際し、ア、。The present applicants previously conducted anaerobic treatment of wastewater, a.
、:−アヌルホビプリオ(Desulfovibrio
)などの硫酸塩還、鴫“ζ
冗細菌を用いてプロピオン酸や酪酸などを酢酸・までに
効率よく転換させることにより、効果的な嫌気性処理方
法を提案した。また、汚水中に窒素成分を含む場合に汚
水の嫌気性処理によって発生する硫化水素をチオバシル
スデニトリフイカンス(Th1obac i l lu
s dent tr if jeans )などの自栄
養性の脱窒細菌に対する水素供与体として利用する脱窒
処理方法も提案した。ここにおける硫化水素の利用方法
は嫌気槽からの硫化水素ガスを捕集する設備を設けて再
び嫌気槽に導いたり、脱窒槽に導くようにするが硫化水
素は悪臭を有するとともに有毒物質である。したがって
危険物質を取扱わなければならないという運転上の不便
があった。:-Desulfovibrio
), we proposed an effective anaerobic treatment method by efficiently converting propionic acid and butyric acid to acetic acid using bacteria. Hydrogen sulfide generated by anaerobic treatment of wastewater when containing
We also proposed a denitrification treatment method that uses hydrogen as a hydrogen donor for autotrophic denitrifying bacteria such as s dent trif jeans. The method for utilizing hydrogen sulfide here is to install equipment to collect hydrogen sulfide gas from the anaerobic tank and guide it back to the anaerobic tank or to the denitrification tank, but hydrogen sulfide has a bad odor and is a toxic substance. Therefore, there was an operational inconvenience in that dangerous substances had to be handled.
本発明はこのような欠点を除去するものであって、有機
性汚水を嫌気性処理するに際しpHを7.5〜9.0に
調整して嫌気性処理による硫化水素ガスの発生を防止し
ながら嫌気処理を行うことを特徴とするものである。The present invention is intended to eliminate such drawbacks, and when treating organic wastewater anaerobically, the pH is adjusted to 7.5 to 9.0 to prevent the generation of hydrogen sulfide gas due to the anaerobic treatment. It is characterized by performing anaerobic treatment.
上述した硫酸塩還元細菌は、絶対嫌気性細菌であって硫
酸塩の結合酸素を水素受容体として有機物を酸化分解す
る。しかし、この反応は一般に不完全で酢酸の形に蓄積
する傾向にある。したがって、嫌気性処理の反応律速と
なっているプロピオン酸などが酢酸の形にまで分解され
るので、メタン生成反応が速やかに進行して、嫌気性処
理を効率よく行うことができる。The sulfate-reducing bacteria described above are obligate anaerobic bacteria and oxidize and decompose organic matter using the bound oxygen of sulfate as a hydrogen acceptor. However, this reaction is generally incomplete and tends to accumulate in the form of acetic acid. Therefore, propionic acid and the like, which are rate-limiting for the reaction of anaerobic treatment, are decomposed into acetic acid, so the methane production reaction proceeds quickly and anaerobic treatment can be carried out efficiently.
さらに、自栄養細菌を利用した脱窒処理は、(j)
硫化水素(H2S)、硫化ソーダ(NazS)、イオウ
(So)などのイオウ化合物を水素供与体として利用し
、硝酸性あるいけ亜硝酸性窒素を窒素ガスにまで還元し
て脱窒を行う。Furthermore, denitrification treatment using autotrophic bacteria uses (j) sulfur compounds such as hydrogen sulfide (H2S), sodium sulfide (NazS), and sulfur (So) as hydrogen donors, Denitrification is performed by reducing nitrogen to nitrogen gas.
さて、本発明における嫌気処理はpH7,5〜9.0好
ましくは8.5付近に調整して行うことにより従来硫化
水素ガスとして発生していた分を溶解性の硫化水素や硫
化カルシウムなどのイオウ化合物の形にして液中に保持
させる。とのpHが7.0より小さいときは硫化水素を
液中に固定すないが酸生成菌あるいはメタン生成菌の活
動が阻害されるのでpHは上述した範囲が適当である。Now, the anaerobic treatment in the present invention is carried out by adjusting the pH to 7.5 to 9.0, preferably around 8.5, so that what was conventionally generated as hydrogen sulfide gas is converted into soluble hydrogen sulfide and sulfur such as calcium sulfide. Form a compound and keep it in the liquid. When the pH is less than 7.0, hydrogen sulfide is not fixed in the liquid, but the activity of acid-producing bacteria or methanogens is inhibited, so the pH range mentioned above is appropriate.
このpH調整には苛性ソーダや生石灰などの中和剤を用
いることができる。このような中和剤を用いるときは薬
注装置などの設備を必要とするが、後述するようにカル
シウム含有の粒状物からなる充填層を用いる場合はpH
調整の役目と微生物を固定する役目を有するので特に好
(4)
ましい。壕だ、嫌気性処理は酸生成相及びメタン生成相
からなる二相方式、または、混相式のいずれの形式も採
用できる。本発明のこの嫌気処理のpH調整の一方法と
して、カルシウムを含む粒状物、例えば石灰岩(石)、
大理石、サンゴなどのCaCO3を主成分とする岩石を
粒径5〜50鴎程度に調整したものをカラムに充填して
汚水を通過させることにより行うことができる。なお、
この粒状物は、天然のものに限らず炭酸カルシウムを上
記した粒径に人工的に製造と同じでよく、カラムに礫及
び砂利で支持床を構成し、この上に上記した粒状物の層
を積層して簡単に作ることができる。A neutralizing agent such as caustic soda or quicklime can be used for this pH adjustment. When using such a neutralizing agent, equipment such as a chemical dosing device is required, but as described later, when using a packed bed consisting of calcium-containing granules, the pH
Particularly preferred (4) is because it has the role of regulation and the role of immobilizing microorganisms. For anaerobic treatment, either a two-phase system consisting of an acid-generating phase and a methane-generating phase, or a mixed-phase system can be adopted. As one method for adjusting the pH of this anaerobic treatment of the present invention, calcium-containing granules, such as limestone (stone),
This can be carried out by filling a column with rocks containing CaCO3 as a main component, such as marble and coral, adjusted to a particle size of about 5 to 50 grains, and allowing the wastewater to pass through the column. In addition,
The granules are not limited to natural ones, but may be the same as artificially manufactured calcium carbonate to the above particle size.A support bed of gravel and gravel is formed in the column, and a layer of the above granules is placed on top of this. It can be easily made by laminating layers.
通水方向は、下向流又は上向流のいずれでもよいが目詰
りが生じたときに逆洗を施こせるようにしておく。また
、粒状物の充填量は嫌気処理水のpHが7,5〜9.0
1好ましくは8.5近辺になるように汚水と粒状物の接
触時間から決定する。The direction of water flow may be either downward flow or upward flow, but it should be possible to perform backwashing when clogging occurs. In addition, the amount of granules packed is determined by the pH of the anaerobically treated water being 7.5 to 9.0.
1 It is determined from the contact time of waste water and particulate matter so that it is preferably around 8.5.
したがって、カラム径及び通水線速度を決めると充填高
さが決定される。もちろん充填高さを最初に決め後にカ
ラム径等を決定してもよい。Therefore, the filling height is determined by determining the column diameter and water flow linear velocity. Of course, the column diameter etc. may be determined after first determining the packing height.
なお、汚水と粒状物との接触時間は粒状物径によって大
きく左右される。すなわち、粒径が小さくなればなるほ
ど接触面積が増大し、短い時間で所定のpHに達するか
らである。しかし、粒径が小さすぎると目詰まりによる
損失水頭が早く生じ逆洗洗浄を頻繁に行わなければなら
ないので粒径は逆洗洗浄がしやすく、また目詰まりの発
生がしにくい2〜50−程度が良い。Note that the contact time between wastewater and particulate matter is largely influenced by the diameter of the particulate matter. That is, the smaller the particle size is, the larger the contact area becomes, and the predetermined pH is reached in a shorter time. However, if the particle size is too small, water head loss due to clogging will occur quickly and backwashing must be performed frequently, so the particle size is about 2 to 50 - which makes backwashing easy and prevents clogging from occurring. is good.
なお、所定のpHになるまで、または所定の接触時間を
得るだめに、汚水を充填層に循環させるようにしてもよ
い。この場合、循環路中に原水を供給するとともに循環
路中から一部を処理水として抜き出すようにすることに
より連続処理を可能とすることができる。Note that the waste water may be circulated through the packed bed until a predetermined pH is reached or a predetermined contact time is obtained. In this case, continuous treatment can be made possible by supplying raw water into the circulation path and extracting a portion of the water from the circulation path as treated water.
このように、本発明における嫌気処理はカルシウムを含
有する粒状物の充填層からなる浸漬p床を通過させなが
ら行うので、粒状物表面に生物膜層が生成され、スラッ
ジブランケット形式よりも微生物の保有量を高く維持す
ることができるので、処理効率が優れる。そして、有機
物の嫌気性処理によって生じる酢酸などの有機酸がカル
シウム塩を溶解する。すなわち、粒状物から溶出した水
酸化カルシウムによって中和が進行して汚水を所定のp
Hまで高めることができる。pHが8.5近辺に維持さ
れて嫌気処理を行うと酸生成反応を良好に維持しなから
イオウ成分を硫化水素ガスとして発生させずに溶解性の
硫化水素イオン(H2Nあるいは硫化カルシウム(Ca
S )などのイオウ化合物の形にして汚水中に保持す
ることができる。さらに、p、F(8,5付近ではメタ
ン生成菌が活発に活動することができるので、メタン生
成反応が効率よく行うことができるという利益が得られ
る。また、液中のイオウ化合物はSの量で200mg/
#以下ならば実用上問題がなく、特に1004αならば
メタン生成反応に悪影響を及ぼさないことが確められて
いる。したがって、このような範囲であ(7〕
る下水の場合は、本発明の好適表原水と言える。As described above, since the anaerobic treatment in the present invention is carried out while passing through an immersed bed consisting of a packed bed of calcium-containing granules, a biofilm layer is generated on the surface of the granules, and the anaerobic treatment is more effective at retaining microorganisms than in the sludge blanket format. Since the amount can be maintained high, processing efficiency is excellent. Then, organic acids such as acetic acid produced by anaerobic treatment of organic matter dissolve calcium salts. In other words, calcium hydroxide eluted from the granules progresses neutralization and brings the wastewater to a predetermined pH level.
It can be raised up to H. If the pH is maintained around 8.5 and anaerobic treatment is performed, the acid production reaction will not be maintained well, and the sulfur component will not be generated as hydrogen sulfide gas, but soluble hydrogen sulfide ions (H2N or calcium sulfide (Ca)
S) can be retained in wastewater in the form of sulfur compounds. Furthermore, since methanogens can be active in the vicinity of p, F (8,5), the methane production reaction can be carried out efficiently.In addition, the sulfur compounds in the liquid are 200mg/
It has been confirmed that if it is less than #, there is no practical problem, and in particular, if it is 1004α, it will not have an adverse effect on the methane production reaction. Therefore, sewage with a concentration within this range (7) can be said to be suitable raw water for the present invention.
なお、嫌気処理工程において、硫化水素が発生するのは
、有機酸生成までの反応であるから嫌気処理工程が二相
方式の場合は酸生成相のみをpH調整するだけでよい。Note that in the anaerobic treatment process, hydrogen sulfide is generated during the reaction up to the production of organic acid, so if the anaerobic treatment process is a two-phase system, it is only necessary to adjust the pH of the acid generation phase.
したがって、上述した充填層を用いて処理するのけ酸生
成相のみでよく、次のメタン生成相はスラッジブランケ
ット形式あるいは流動床方式などの公知の反応槽を用い
ることができる。Therefore, only the silicic acid production phase is required, which is treated using the above-mentioned packed bed, and a known reaction tank such as a sludge blanket type or a fluidized bed type can be used for the next methane generation phase.
この嫌気処理を硫酸塩還元細菌を利用して行う場合はイ
オン化合物を添加して行うが添加するイオウ化合物は嫌
気性処理により発生するHasを酸化することによって
得られる硫酸塩を利用することができる。すなわち嫌気
性処理により発生するガス中には、硫化水素が存在して
いるので、この発生ガスをオゾン触媒燃焼あるいは生物
によるイオウ酸化法などの酸化処理によシ硫酸を得、こ
れを用いることができる。When performing this anaerobic treatment using sulfate-reducing bacteria, it is performed by adding an ionic compound, but the sulfur compound to be added can be sulfate obtained by oxidizing Has generated during anaerobic treatment. . In other words, since hydrogen sulfide is present in the gas generated by anaerobic treatment, it is possible to obtain cisulfuric acid by oxidizing the generated gas, such as ozone catalytic combustion or biological sulfur oxidation method, and use it. can.
汚水、特に下水や工場廃水で窒素成分を含む場合はこれ
らのものも除去しなければ完全な処(8)
理とは言えない。したがってこれらの汚水を嫌気性処理
するには、嫌気性処理水をさらに脱窒処理する必要があ
る。例えば先ず汚水を嫌気性の脱窒槽で処理し、次いで
好気性の硝化槽に順次通水するとともに、硝化槽からの
硝化液のかなりの量を脱窒槽に循環する方式が挙げられ
る。When wastewater, especially sewage or industrial wastewater, contains nitrogen components, the treatment cannot be considered complete unless these substances are also removed (8). Therefore, in order to anaerobically treat these wastewaters, it is necessary to further denitrify the anaerobically treated water. For example, there is a method in which wastewater is first treated in an anaerobic denitrification tank, then sequentially passed through an aerobic nitrification tank, and a considerable amount of the nitrified liquid from the nitrification tank is circulated to the denitrification tank.
この硝化脱窒方式の場合、前段の嫌気性処理がpH7,
5〜9.0で行なわれるためにその処理水中には、すな
わち脱窒処理の原水中にけイオウ化合物が存在している
ので脱窒槽内ではチオバシルステニトリフィカンスのよ
うな自栄性脱窒細菌によって脱窒反応が効果的に進めら
れる。In the case of this nitrification and denitrification method, the anaerobic treatment in the first stage is performed at a pH of 7.
5 to 9.0, sulfur compounds are present in the treated water, that is, in the raw water for denitrification. The denitrification reaction is effectively promoted by nitrifying bacteria.
また、嫌気処理水中にはBOD成分が存在するのでこれ
を水素供与体としてシーードモナスディニトロフィカン
ス(Pseudomonas denitrifica
ns )のような従属栄譬性の脱窒細菌による脱窒反応
も促進され、良好に脱窒処理が行なわれる。In addition, since BOD components are present in anaerobically treated water, Pseudomonas denitrificans (Pseudomonas denitrificans) is grown using this as a hydrogen donor.
The denitrification reaction by heterotrophic denitrifying bacteria such as ns) is also promoted, and the denitrification process is carried out satisfactorily.
この脱窒反応は、原水のpHが高いため、脱窒細菌が活
動しやすい中性付近のpHに維持されるので脱窒反応が
良好に進行することができる。In this denitrification reaction, since the pH of the raw water is high, the pH is maintained near neutral where denitrifying bacteria are likely to be active, so that the denitrification reaction can proceed favorably.
以下に、窒素成分を含む汚水の場合の本発明を実施する
ために好適な処理フローを図示する。A suitable treatment flow for carrying out the present invention in the case of wastewater containing nitrogen components is illustrated below.
この処理フローにおいてlは嫌気性処理部、1′は窒素
除去部である。先ず汚水は嫌気性処理部lの酸生成反応
槽2の下部に汚水流入管3を介して導入される。酸生成
反応槽2には石灰岩を直径2〜50m+前後の粒状に調
整した粒状物の充填層4が支持床4′上に積層されてお
り槽上部には酸生成液取出管5が設けられている。しだ
がって、汚水は充填層4を上向流し、この間より、汚水
中の有機物が効率よく酢酸などの有機酸に交換される。In this processing flow, 1 is an anaerobic treatment section, and 1' is a nitrogen removal section. First, wastewater is introduced into the lower part of the acid production reaction tank 2 of the anaerobic treatment section 1 via the wastewater inlet pipe 3. In the acid production reaction tank 2, a packed bed 4 of granular material prepared by adjusting limestone into particles with a diameter of about 2 to 50 m+ is stacked on a support bed 4', and an acid production liquid extraction pipe 5 is provided at the top of the tank. There is. Therefore, the wastewater flows upward through the packed bed 4, and during this time, organic substances in the wastewater are efficiently exchanged into organic acids such as acetic acid.
これと同時に充填物からカルシウム分が溶出して上述の
反応はp)(8,0〜8.5付近で進められる。このp
H調整は充填高さや後述の循環量によって行なわれる。At the same time, the calcium content is eluted from the packed material, and the above-mentioned reaction proceeds at around p) (8.0 to 8.5.
H adjustment is performed by the filling height and the circulation amount, which will be described later.
壕だ一定の酸生成反応を行なわせるための有効接触時間
の調整のために管5から汚水流入管3に循環ポンプPを
介在させた循環路5′を設けである。A circulation path 5' with a circulation pump P interposed therebetween is provided from the pipe 5 to the sewage inlet pipe 3 in order to adjust the effective contact time for carrying out a certain acid production reaction.
寿お、充填層は長期間の使用により目詰まりが発生する
ので通常のSSを除去する目的で使用される濾過装置の
逆洗洗浄と同様に逆洗洗浄操作が施こされるが、このだ
めの配管機器等は省略しである。Since the packed bed becomes clogged after long-term use, a backwash cleaning operation is performed in the same way as the backwash cleaning of a filtration device used for the purpose of removing ordinary SS. Piping equipment, etc. are omitted.
酸生成反応槽2からの反応液は管5からスラッジブラン
ケット形式あるいは、固着生物形式のメタン生成反応槽
6に送られる。メタン生成反応槽6では、受は入れられ
る原水がpH8,0〜8.5付近であるので効率よくメ
タン生成反応が進行する。なお、との原水中には、酸生
成反応で2で生成硫化水素がガスにならないためにイオ
ウ化合物が存在する。しかし、これはS濃度1として2
00 m976以下であればメタン生成反応に影響を及
ばずことはない。The reaction liquid from the acid production reaction tank 2 is sent through a pipe 5 to a methane production reaction tank 6 of either a sludge blanket type or a sessile organism type. In the methane production reaction tank 6, the raw water received has a pH of around 8.0 to 8.5, so the methane production reaction proceeds efficiently. In addition, sulfur compounds are present in the raw water of 2 because the hydrogen sulfide produced in step 2 does not become a gas in the acid production reaction. However, this is 2 if the S concentration is 1.
If it is less than 00 m976, it will not affect the methane production reaction.
なお、とのメタン生成反応槽6にはメタンガス捕集機構
を設けてエネルギー回収する設備を省略して図示しであ
る。Note that the methane generation reaction tank 6 is provided with a methane gas collection mechanism and equipment for energy recovery is omitted from the illustration.
次に嫌気性処理部lからの嫌気性処理液は窒素除去部1
′に送られる。すなわち、嫌気性処理液は先ず管7から
脱Isに受は入れられる。脱(11)
窒素には後述の硝化槽10からの硝化液がv13を経て
受は入れられるとともに沈殿槽12からの返送汚泥が管
14を経て受は入れられる。脱窒槽は嫌気的な混合攪拌
手段(図示せず)により攪拌される。このため脱窒槽8
ではイオウ化合物、BOD成分を含む嫌気性処理水と硝
酸性または、亜硝酸性窒素が混合状態になり自栄養性脱
窒細菌及び従(他)栄養性脱窒細菌により脱窒反応が促
進される。なお、この反応は原水に当る嫌気処理水が高
pHに維持されているため、脱窒菌が活動しゃすいpH
状態になってい脱窒槽8からの脱窒処理水は管9を経て
硝化槽10に受は入れて空気による気曝手段(図示せず
)により窒素成分は硝酸または亜硝酸性窒素まで酸化処
理される。Next, the anaerobic treatment liquid from the anaerobic treatment section 1 is transferred to the nitrogen removal section 1.
’. That is, the anaerobic treatment liquid is first introduced into the de-Is via the pipe 7. Nitrification liquid from a nitrification tank 10 (described later) is sent to the denitrogen tank via v13, and sludge returned from the settling tank 12 is sent to the tank via pipe 14. The denitrification tank is stirred by an anaerobic mixing and stirring means (not shown). Therefore, denitrification tank 8
In this case, anaerobic treated water containing sulfur compounds and BOD components is mixed with nitrate or nitrite nitrogen, and the denitrification reaction is promoted by autotrophic denitrifying bacteria and oligotrophic denitrifying bacteria. . Note that this reaction occurs because the anaerobic treated water, which is the raw water, is maintained at a high pH, so the pH is low enough for denitrifying bacteria to become active.
The denitrified water from the denitrification tank 8 is received through the pipe 9 into the nitrification tank 10, where the nitrogen components are oxidized to nitric acid or nitrite nitrogen by air aeration means (not shown). Ru.
硝化槽10からの硝化液の大部分は前述したように管1
3を経て脱窒槽8に返送循環され残部は管11を経て沈
殿槽12に受は入れられて(12)
固液分離処理される。沈殿槽12の上澄水け、処理水と
して管15から排出される。一方固形分は一部を前述し
たように菅14を経て脱晶に返送汚泥として返送される
。Most of the nitrification liquid from the nitrification tank 10 is transferred to the pipe 1 as described above.
3, it is returned and circulated to the denitrification tank 8, and the remainder is sent to the precipitation tank 12 via the pipe 11 (12), where it is subjected to solid-liquid separation treatment. The supernatant water of the settling tank 12 is drained from the pipe 15 as treated water. On the other hand, a portion of the solid content is returned to decrystallization as return sludge through the pipe 14 as described above.
上記したフローにおいてメタン生成槽6は省略してもよ
い。また脱窒槽8及び硝化槽10を固着生物型処理とし
て利用される回転円板法や流動床とすることも可能であ
る。この流動床式にした場合は沈殿槽12を省略できる
利益がある。In the above-described flow, the methane generation tank 6 may be omitted. Further, the denitrification tank 8 and the nitrification tank 10 can be formed using a rotating disk method or a fluidized bed method, which is used as a fixed biological type treatment. When this fluidized bed type is used, there is an advantage that the settling tank 12 can be omitted.
実施例1
グルコースを200119713を含む合成汚水に芒1
硝を汚水中の有機炭素(TOC)に対し硫酸イオ/(8
01−)を約1.5 tymg)/13 (TOC対t
り5O4−)になるように添加し二相方式の嫌気性処理
で処理した。Example 1 Glucose was added to synthetic wastewater containing 200119713.
Nitrogen to organic carbon (TOC) in wastewater
01-) to about 1.5 tymg)/13 (TOC vs. t
5O4-) and treated with a two-phase anaerobic treatment.
先ず汚水を石灰石粒子(粒径的3〜5 mm )を径1
00IIII+のカラムに高さ2000m積層して充填
層を構成させて酸生成槽(有効容積11.8[)を構成
しこれに下向流(LV9m/h−DT=IOam)で通
水して酸生成処理を行った。このときの酸生成処理水の
温度は室温(18〜20C)であ1lllpHけ約8.
5で一定していた。次いで酸生成処理水をスラッジブラ
ンケットタイプのメタン生成槽(有効容積75β)に投
入し室温で滞留時間1時間の条件でメタン生成反応を行
った。First, sewage is mixed with limestone particles (3 to 5 mm in diameter).
00III+ columns are stacked to a height of 2000 m to form a packed bed to form an acid generation tank (effective volume 11.8 [)]. The generation process was performed. At this time, the temperature of the acid-generated treated water is room temperature (18-20C) and pH is about 8.
It remained constant at 5. Next, the acid production treated water was put into a sludge blanket type methane production tank (effective volume 75β), and a methane production reaction was carried out at room temperature with a residence time of 1 hour.
以上の処理において、酸生成槽からの硫化水素ガスの発
生は認められなかった。In the above treatment, no hydrogen sulfide gas was observed to be generated from the acid generation tank.
実施例2
実施例1の条件のうち酸生成槽をスラッジブランケット
タイプの槽(有効容積15B)とし、0.1N1のN
a OH溶液を中和剤として添加してpHを約8.5に
調整し滞留時間15分にした他は実施例1と同じ条件で
処理した。Example 2 Among the conditions of Example 1, the acid generation tank was a sludge blanket type tank (effective volume 15B), and 0.1N1 of N
The treatment was carried out under the same conditions as in Example 1, except that an OH solution was added as a neutralizing agent to adjust the pH to about 8.5 and the residence time was 15 minutes.
以上の処理において、酸生成槽からは硫化水素ガスの発
生は認められなかった。In the above treatment, no hydrogen sulfide gas was observed to be generated from the acid generation tank.
比 較 例
実施例2においてpHを7.0になるように中和剤を添
加して処理したところ酸生成槽からは硫化水素臭が認め
られた。Comparative Example In Example 2, when a neutralizing agent was added to adjust the pH to 7.0, a hydrogen sulfide odor was observed from the acid generation tank.
(15)
て処理したところ酸生成槽からの硫化水素ガスの発生は
なかったがグルコースの1モル当りのメタンガス発生域
約1モルを得るまでの嫌気性処理時間(二相の合計滞留
時間)がpH8,5のときよりも約lO倍要した。これ
はこのpHでは酸生成細菌及びメタン生成細菌の活動が
阻害されたことを倉味している。(15) Although no hydrogen sulfide gas was generated from the acid generation tank, the anaerobic treatment time (total residence time of two phases) required to obtain approximately 1 mole of methane gas generation per mole of glucose. Approximately 10 times more was required than at pH 8.5. This indicates that the activities of acid-producing bacteria and methanogenic bacteria were inhibited at this pH.
実施例3
汚水として下水(BOD 120m9/p)全窒素CT
−N)32189/13)を図示のフローで処理した。Example 3 Sewage (BOD 120m9/p) total nitrogen CT as wastewater
-N) 32189/13) was processed according to the illustrated flow.
酸生成反応槽2には石炭石粒子(粒径約5 +m )を
径11001I1のカラムに高さ2000m+a積層し
て充填層を構成させ、ここに前記下水をLV2?n/h
の上向流で通過させた2、このときの酸生成反応槽から
の流出液である。酸生成反応液のpHは、約8.5で一
定していた。なお酸生成反応槽内の温度は18Cであっ
た。また、このとき酸生成反応槽からの硫化水素ガスの
発生は叛いて酸生成反応槽からの液をメタン生成反応槽
6(有効(16)
容積50k)に投入し、温度isCで滞留時間0.3日
条件でメタン生成反応を行った。このメタン生成反応槽
からの流出液である嫌気性処理液のpHは約8.7であ
った。In the acid production reaction tank 2, coal stone particles (particle size approximately 5 + m) are stacked in a column with a diameter of 11001I1 to a height of 2000 m + a to form a packed bed, and the sewage is poured into the LV2? n/h
This is the effluent from the acid production reaction tank at this time, which was passed through in an upward flow. The pH of the acid production reaction solution was constant at about 8.5. Note that the temperature inside the acid production reaction tank was 18C. At this time, the generation of hydrogen sulfide gas from the acid production reaction tank is stopped, and the liquid from the acid production reaction tank is charged into the methane production reaction tank 6 (effective (16) volume 50K), and the residence time is 0. The methane production reaction was carried out for 3 days. The pH of the anaerobically treated liquid, which was the effluent from this methane production reaction tank, was about 8.7.
以上の嫌気性処理液lに対し5倍量の硝化槽からの返送
液と0.3倍量の沈殿槽からの返送汚泥を脱窒槽8に導
いて嫌気的に混合攪拌した。Returned liquid from the nitrification tank and 0.3 times the amount of returned sludge from the settling tank were introduced into the denitrification tank 8 and mixed and stirred anaerobically with respect to the above anaerobically treated liquid l.
この脱窒槽における滞留時間は3時間であすpHは約7
,2であった。The residence time in this denitrification tank is 3 hours, and the pH is approximately 7.
,2.
脱窒槽からの混合液を次の硝化槽10で好気的に硝化率
97チまで処理し、前述のように一部は脱窒槽へ残部は
沈殿槽12を介して排出した。The mixed liquid from the denitrification tank was aerobically treated in the next nitrification tank 10 to a nitrification rate of 97 cm, and as described above, a portion was discharged into the denitrification tank and the remainder was discharged through the sedimentation tank 12.
このときの処理水水質はBOD12■/8、T−N5ダ
/にであった。The quality of the treated water at this time was BOD 12/8 and T-N 5 da/.
上述のように本発明によれば嫌気性処理から硫化水素ガ
スを発生させることなく、また脱窒処理にメタノール等
の添加を必要とすることなく良質の処理水を得ることが
できる。As described above, according to the present invention, high-quality treated water can be obtained without generating hydrogen sulfide gas during anaerobic treatment and without requiring addition of methanol or the like during denitrification treatment.
図面は本発明を実施するのに好適な処理フローを示すも
のであって、1は嫌気処理部、2は酸生成反応槽、6は
メタン生成反応槽、8は脱窒槽、10は硝化槽及び12
は沈殿層を示す。
特許出願人 松 井 三 部
栗田工業株式会社The drawing shows a process flow suitable for carrying out the present invention, in which 1 is an anaerobic treatment section, 2 is an acid production reaction tank, 6 is a methane production reaction tank, 8 is a denitrification tank, 10 is a nitrification tank and 12
indicates a precipitated layer. Patent applicant Mibe Matsui Kurita Industries Co., Ltd.
Claims (1)
〜9.0に調整して硫化水素ガスの発生を防止しながら
嫌気性処理を行うことを特徴とする有機性汚水の処理方
法 2) pH+J整は、カルシウム含有の粒状物からな
る充填層に有機性汚水を通過させて行うことを特徴とす
る特許請求の範囲第1項記載の有機性汚水の処理方法 3)カルシウム含有の粒状物は石灰石粒であることを特
徴とする特許請求の範囲第2項記載の有機性汚水の処理
方法 4)嫌気性処理は、硫酸塩を添加して行うことを特徴と
する特許請求の範囲第1ないし3項記載のいずれか一つ
に記載の有機性汚水の処理方法 5)硫酸塩は、嫌気性処理により発生するH2Sを酸化
処理して得ることを特徴とする特許請求の範囲第4項記
載の有機性汚水の処理方法。 6)有機性汚水には窒素成分を含み、該汚水を嫌気性処
理に続いて窒素除去処理を行うに際し、前記嫌気性処理
をpH7,5〜9.0に調整して硫化水素ガスの発生を
防止しながら行うとともに、前記窒素除去処理を嫌気性
処理から発生するイオウ化合物を利用する自栄養性の脱
窒細菌で窒素除去を行うことを特徴とする有機性汚水の
処理方法 7)pH調整は、カルシウム含有の粒状物からなる充填
層に有機性汚水を通過させて行うことを特徴とする特許
請求の範囲第6項記載の有機性汚水の処理方法 8)カルシウム含有の粒状物は、石灰石粒であ)r−) 9)窒素除去処理は、硝化及び脱窒の二つの処理工程か
らなることを特徴とする特許請求の有機性汚水の処理方
法[Claims] 1) When organic wastewater is treated anaerobically, the pH is adjusted to 7.5.
2) A method for treating organic sewage characterized by adjusting the pH to 9.0 and performing anaerobic treatment while preventing the generation of hydrogen sulfide gas. 3) The method for treating organic sewage according to claim 1, which is carried out by passing organic sewage through the process. 3) The second claim, wherein the calcium-containing granules are limestone particles. 4) The method for treating organic wastewater according to any one of claims 1 to 3, wherein the anaerobic treatment is carried out by adding sulfate. Treatment method 5) The method for treating organic wastewater according to claim 4, wherein the sulfate is obtained by oxidizing H2S generated by anaerobic treatment. 6) Organic wastewater contains nitrogen components, and when performing nitrogen removal treatment on the wastewater following anaerobic treatment, the anaerobic treatment is adjusted to pH 7.5 to 9.0 to prevent the generation of hydrogen sulfide gas. 7) A method for treating organic wastewater, characterized in that the nitrogen removal treatment is carried out while preventing the nitrogen from being removed, and the nitrogen removal treatment is performed using autotrophic denitrifying bacteria that utilizes sulfur compounds generated from anaerobic treatment. 7) pH adjustment 8) A method for treating organic sewage according to claim 6, which is carried out by passing the organic sewage through a packed bed consisting of calcium-containing granules. 8) The calcium-containing granules are limestone particles. 9) A method for treating organic wastewater as claimed in a patent, characterized in that the nitrogen removal treatment consists of two treatment steps: nitrification and denitrification.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58038673A JPS59162997A (en) | 1983-03-09 | 1983-03-09 | Organic filthy water disposal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58038673A JPS59162997A (en) | 1983-03-09 | 1983-03-09 | Organic filthy water disposal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59162997A true JPS59162997A (en) | 1984-09-13 |
JPH0253117B2 JPH0253117B2 (en) | 1990-11-15 |
Family
ID=12531788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58038673A Granted JPS59162997A (en) | 1983-03-09 | 1983-03-09 | Organic filthy water disposal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59162997A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001276880A (en) * | 2000-03-31 | 2001-10-09 | Ataka Construction & Engineering Co Ltd | Waste treatment method and device therefor |
JP2005279405A (en) * | 2004-03-29 | 2005-10-13 | Cosmo Oil Co Ltd | Method for removing nitrogen in wastewater |
WO2010042982A1 (en) * | 2008-10-14 | 2010-04-22 | Armtech Holdings Pty Ltd | Treatment of water containing dissolved mineral species |
CN102276118A (en) * | 2011-07-21 | 2011-12-14 | 农业部沼气科学研究所 | Method for simultaneously removing nitrogen in waste water and sulfur in sewage gas |
WO2013137322A1 (en) * | 2012-03-13 | 2013-09-19 | 株式会社ダイセル | Waste water treatment method |
-
1983
- 1983-03-09 JP JP58038673A patent/JPS59162997A/en active Granted
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001276880A (en) * | 2000-03-31 | 2001-10-09 | Ataka Construction & Engineering Co Ltd | Waste treatment method and device therefor |
JP2005279405A (en) * | 2004-03-29 | 2005-10-13 | Cosmo Oil Co Ltd | Method for removing nitrogen in wastewater |
JP4523786B2 (en) * | 2004-03-29 | 2010-08-11 | コスモ石油株式会社 | How to remove nitrogen from wastewater |
WO2010042982A1 (en) * | 2008-10-14 | 2010-04-22 | Armtech Holdings Pty Ltd | Treatment of water containing dissolved mineral species |
CN102276118A (en) * | 2011-07-21 | 2011-12-14 | 农业部沼气科学研究所 | Method for simultaneously removing nitrogen in waste water and sulfur in sewage gas |
WO2013137322A1 (en) * | 2012-03-13 | 2013-09-19 | 株式会社ダイセル | Waste water treatment method |
JPWO2013137322A1 (en) * | 2012-03-13 | 2015-08-03 | 株式会社ダイセル | Wastewater treatment method |
Also Published As
Publication number | Publication date |
---|---|
JPH0253117B2 (en) | 1990-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5288407A (en) | Denitrification system | |
JP2005238166A (en) | Anaerobic ammonoxidation treatment method | |
JP2002166293A (en) | Method to remove nitrogen and phosphor simultaneously from waste water | |
CA2245719A1 (en) | Anoxic biotreatment cell | |
JP3653392B2 (en) | Waste water treatment method and waste water treatment equipment | |
JP2009136725A (en) | Ammonia-containing waste water treatment apparatus | |
KR100643775B1 (en) | Treatment hybrid process for remove nutrient using floating microorganism | |
JP5900098B2 (en) | Nitrogen and phosphorus removal apparatus and method | |
JP3202510B2 (en) | Equipment for treating wastewater containing nitrogen and fluorine | |
JPS59162997A (en) | Organic filthy water disposal | |
JP3799557B2 (en) | Wastewater treatment method | |
JP2002172399A (en) | Denitrification treatment method | |
JPS6317513B2 (en) | ||
JPH05228493A (en) | Method for treating waste water using sulfur bacterium and apparatus therefor | |
JP3377346B2 (en) | Organic wastewater treatment method and apparatus | |
JP4642635B2 (en) | High concentration organic waste liquid treatment method and apparatus | |
JP2002018479A (en) | Method for removing nitrogen from water | |
JP3819457B2 (en) | Biological denitrification of wastewater | |
JP2000024687A (en) | Treatment of waste nitric acid | |
JP2002177986A (en) | Biological denitrification equipment | |
JPS6345275B2 (en) | ||
JP2554687B2 (en) | Biological nitrogen removal method | |
JP4390959B2 (en) | Wastewater treatment equipment | |
KR100202066B1 (en) | Wastewater treatment method using biological 3 step digestion process in one reactor | |
JP7398601B1 (en) | Organic wastewater treatment equipment and organic wastewater treatment method |