[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5916951A - Fe-based sintered material excellent in wear resistance - Google Patents

Fe-based sintered material excellent in wear resistance

Info

Publication number
JPS5916951A
JPS5916951A JP12626382A JP12626382A JPS5916951A JP S5916951 A JPS5916951 A JP S5916951A JP 12626382 A JP12626382 A JP 12626382A JP 12626382 A JP12626382 A JP 12626382A JP S5916951 A JPS5916951 A JP S5916951A
Authority
JP
Japan
Prior art keywords
carbides
sintered material
wear resistance
area ratio
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12626382A
Other languages
Japanese (ja)
Other versions
JPH0115578B2 (en
Inventor
Masayuki Iijima
正幸 飯島
Hidetoshi Akutsu
阿久津 英俊
Kazuyuki Hoshino
和之 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP12626382A priority Critical patent/JPS5916951A/en
Publication of JPS5916951A publication Critical patent/JPS5916951A/en
Publication of JPH0115578B2 publication Critical patent/JPH0115578B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain the Fe-based sintered material useful as a structural element provided with excellent wear resistance, high strength and high toughness, by specifying the contents of Cr and C as main components, and the surface ratio, particle size and density ratio of carbides. CONSTITUTION:The Fe-based sintered material comprising 4-25wt% Cr, 1.5- 5% C and the balance Fe and inevitable impurities. It has the structure that carbides having Vickers hardness above 1,200 are dispersed in the martensite-based matrix at a surface ratio above 15%. Said carbides are controlled so that a part having an average particle size above 5mu occupies 10% or more, by surface ratio, of the entire boy of the carbides and that a density ratio above 92% is held. This sintered material is let optionally contain 0.1-2.0% one or more of Mo, W, Nb, Ti, V and Zr or further 0.1-10% one or more of Ni, Co, Cu and Mn. This sintered material when being used as the structural element of a construction or mining machinery exhibits excellent properties.

Description

【発明の詳細な説明】 この発明は、すぐれた耐摩耗性を有し、特に苛酷な摩耗
条件である土砂摩耗や混抄摩耗にさらされる建設機械や
鉱山機械の構造部材の製造に用いるのに適したFe基焼
結拐材料関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention has excellent wear resistance and is suitable for use in manufacturing structural members of construction machines and mining machines that are exposed to particularly severe wear conditions such as sand abrasion and mixed paper abrasion. The present invention relates to Fe-based sintered materials.

従来、この種の構造部拐の製造には、クロム鋳鉄やQr
−MO鋳鉄、さらKCr −MO−V鋳鉄などの白銑系
鋳鉄が使用されているが、これらの白銑系鋳鉄は、いず
れも硬くて脆い炭化物が針状、板状。
Traditionally, chrome cast iron or Qr was used to manufacture this type of structural part.
White pig iron cast irons such as -MO cast iron and KCr -MO-V cast iron are used, but these white pig iron cast irons all have hard and brittle carbides in the form of needles or plates.

あるいは網目状に析出した組織をもつものであるため、
高硬度をもつものの強度および靭性が著しく劣り、この
結果実用に際しては比較的短かい使用寿命しか示さず、
また鋳造性もきわめて悪く、巣の発生の著しいものであ
るため、安定的量産性に欠けるという問題点があるもの
である。
Or, because it has a network-like precipitated structure,
Although it has high hardness, its strength and toughness are significantly inferior, and as a result, it has a relatively short service life in practical use.
Furthermore, the castability is extremely poor, and the formation of cavities is significant, so there is a problem that stable mass production is lacking.

一方、これら構造部拐の製造に際して、摩耗部分に耐摩
耗性のすぐれた炭化タングステン基超硬合金や炭化チタ
ン基サーメットなどのチップをろう付けする試みもなさ
れているが、これらの材料は高価であるばかりでなく、
耐衝撃性などに問題があり、さらにろう伺は強度にも問
題があって十分満足する信頼性が得られていないのが現
状である。
On the other hand, when manufacturing these structural parts, attempts have been made to braze chips made of highly wear-resistant tungsten carbide-based cemented carbide or titanium carbide-based cermet to the worn parts, but these materials are expensive and Not only is there
Currently, there are problems with impact resistance, etc., and there are also problems with the strength of the soldering material, making it difficult to achieve sufficient reliability.

そこで、本発明者等は、上述のような観点から、すぐれ
た耐摩耗性を有し、特に土砂摩耗や混抄摩耗などの苛酷
な摩耗条件にさらされる構造部材の製造に適した材料を
安定的量産性の可能な粉末冶金法を用いて、コスト安く
得べく研究を行なった結果、焼結材料を、重量係で、C
!r:4〜25係。
Therefore, from the above-mentioned viewpoint, the present inventors have developed a stable material that has excellent abrasion resistance and is suitable for manufacturing structural members that are particularly exposed to severe abrasion conditions such as sand abrasion and paper mixed abrasion. As a result of conducting research to obtain a low-cost product using a powder metallurgy method that can be mass-produced, we have found that sintered materials can be made by weight, C.
! r: Section 4-25.

0:1.5〜5%を含有し、さらに必要に応じてMo、
 W 、 Nbl Ti、 V l およびZrのうち
の1種または2種以上:0.1〜20%と、Ni、 C
o、 Ou、およびMnのうちの1種または2種以上:
 O,1〜10%のいずれか、または両方を含有し、残
りがFeと不可避不純物からなる組成を有すると共に、
主としてマルテンサイトからなる素地にビッカース硬さ
で1200以上を有する炭化物が面積比で15係以上分
散した組織を有し、かつ前記炭化物のうち、炭化物全体
に対する面積比で10係以上が平均粒径:5μm以上を
有する炭化物で占められ、さらに9z係以上の密度比を
有するもので構成すると、前記Fe基焼結材料において
は、上記炭化物によってすぐれた耐摩耗性が確保され、
また上記マルテンサイト素地および密度比によって高強
度および高靭性が確保されるようになシ、したがって、
とのFe基焼結材料を上記のような苛酷な摩耗環境下で
使用した場合、著しく長期に亘ってすぐれた性能を発揮
するようになるという知見を得たのであり− る。
0:1.5 to 5%, and optionally Mo,
One or more of W, Nbl, Ti, Vl and Zr: 0.1 to 20%, and Ni, C
One or more of o, Ou, and Mn:
Contains O, 1 to 10%, or both, with the remainder consisting of Fe and unavoidable impurities,
It has a structure in which carbides having a Vickers hardness of 1200 or more are dispersed in a matrix mainly composed of martensite, and the area ratio of the carbides to the whole carbide is 10 or more having an average particle size: When the Fe-based sintered material is composed of carbides having a diameter of 5 μm or more and a density ratio of 9z coefficient or more, excellent wear resistance is ensured by the carbides,
Furthermore, the martensitic matrix and density ratio ensure high strength and high toughness.
We have obtained the knowledge that when the Fe-based sintered material is used under the above-mentioned severe wear environment, it exhibits excellent performance over a long period of time.

この発明は、上記知見にもとづいてなされたものであっ
て、成分組成、炭化物の面積比、および密度比を上記の
通シに限定した理由を以下に説明する。
This invention has been made based on the above findings, and the reason why the component composition, the area ratio of carbides, and the density ratio are limited to the above-mentioned values will be explained below.

A、成分組成 (a)  O C成分には、素地に固溶して、これを強化すると共に、
Or、さらに必要に応じて含有されたMo。
A. Ingredient composition (a) The O C component includes solid solution in the base material to strengthen it,
Or, and Mo contained as needed.

W、 Nb、 Ti、 V、およびZrと結合してビッ
カース硬さで1200以上を有する硬い炭化物を形成し
て材料の耐摩耗性を向上させる作用があるが、その含有
量が1.5%未満では、素地中に分散析出する炭化物の
量が少なすぎて、全体面積比で15eI)未満となると
共に、5μm以上の平均粒径をもった炭化物の量も炭化
物全体に対する面積比で10男未満となつ−r Lまい
、土砂などによる摩耗が著しく、所望のすぐれた耐摩耗
性を確保することができず、さらに素地を構成するマル
テンサイトの割合も全体面積比で70%未満となってし
まって所望の強度および耐摩耗性を確保することができ
ず、一方5気を越えて含有させると、桐材が極端に脆化
するようになって所望−の強度および靭性を確保するの
が困難になることがら、その含有量を]5〜5%と定め
た。
It combines with W, Nb, Ti, V, and Zr to form a hard carbide with a Vickers hardness of 1200 or more and improves the wear resistance of the material, but its content is less than 1.5%. In this case, the amount of carbides dispersed and precipitated in the matrix is so small that the total area ratio is less than 15 eI), and the amount of carbides with an average grain size of 5 μm or more is also less than 10 eI in terms of area ratio to the total carbide. The abrasion caused by dirt, sand, etc. was significant, making it impossible to secure the desired excellent abrasion resistance, and furthermore, the proportion of martensite that made up the base material was less than 70% of the total area. It is not possible to secure the desired strength and wear resistance, and on the other hand, if the content exceeds 5%, the paulownia wood becomes extremely brittle, making it difficult to secure the desired strength and toughness. Therefore, the content was determined to be 5 to 5%.

(+))Or cr酸成分は、素地に固溶して、これを強化すると共に
、上記のようにCと結合して高硬度を有するOr炭化物
全形成し、かつMo、 W 、 Nb、 Ti、 V 
The (+)Or cr acid component is dissolved in the base material to strengthen it, and as described above, combines with C to form a highly hard Or carbide, and also contains Mo, W, Nb, Ti. , V
.

およびZrを含有する場合には、これと複炭化物を形成
し、もって材料の耐摩耗性を向上させる作用があるが、
その含有量が4係未満では、C成分の場合と同様に所定
の炭化物を所定の量、分散析出させることができず、一
方25%を越えて含有させると、C成分の場合と同様に
口材が脆化するよう[なることから、その含有量′ff
:4〜25チと定めた。
When Zr is contained, it forms a double carbide with Zr, which has the effect of improving the wear resistance of the material.
If the content is less than 4%, it will not be possible to disperse and precipitate the desired carbide in the desired amount, as in the case of the C component, while on the other hand, if the content exceeds 25%, as in the case of the C component, Since the material becomes brittle, its content 'ff
: 4 to 25 inches.

(c)  Mo、 Vlf 、 Nb、 Ti、 V 
、およびZrこれらの成分には、素地に固溶して、これ
を強化するほか、Cと結合してきわめて硬い炭化物およ
び複炭化物を形成し、もって桐材の耐摩耗性を一段と向
上させる作用があるので、必要に応じて含有させるが、
その含有量が01%未満では所望の耐摩耗性向上効果が
得られず、一方20係を越えて含有させると桐材に脆化
傾向が現われるようになることから、その含有量を01
〜20%と定めた。
(c) Mo, Vlf, Nb, Ti, V
, and Zr These components not only solidly dissolve in the base material and strengthen it, but also combine with C to form extremely hard carbides and double carbides, thereby further improving the wear resistance of paulownia wood. Since there is, it may be included as necessary, but
If the content is less than 0.1%, the desired effect of improving wear resistance cannot be obtained, while if the content exceeds 20%, the paulownia wood will tend to become brittle.
It was set at ~20%.

(d)  Ni、 Co、 Ou、およびMnこれらの
成分には、素地に固溶して、これを一段と強化し、かつ
材料の靭性を著しく向上させる作用があるので、特に強
度および靭性が要求される場合に必要に応じて含有させ
るが、その含有量が01係未満では前記作用に所望の向
上効果が得られず、一方10係を越えて含有させてもよ
り一層の向上効果は現われないことから、経済性をも考
慮して、その含有量全0.1〜10係と定めた。
(d) Ni, Co, Ou, and Mn These components have the effect of forming a solid solution in the base material, further strengthening it, and significantly improving the toughness of the material, so strength and toughness are particularly required. However, if the content is less than 01 parts, the desired effect of improving the above action cannot be obtained, and on the other hand, if the content exceeds 10 parts, no further improvement effect will be obtained. Therefore, considering economic efficiency, the total content was determined to be 0.1 to 10.

B、密度比 密度比が92係未満では、空孔寝過に原因する剥離摩耗
が生ずるようになるばかりでなぐ、所望の高強度を確保
することが困難となることから、密度比の下限値を92
%と定めた。
B. Density Specificity If the density ratio is less than 92 coefficients, not only will peeling wear caused by oversizing of pores occur, but it will also be difficult to secure the desired high strength, so the lower limit of the density ratio 92
%.

つぎに、この発明のFe基焼結拐桐材実施例により具体
的に説F−jAする。
Next, a detailed explanation will be given using an example of the Fe-based sintered paulownia material of the present invention.

実施例 原料粉末として、粒度−100meshのFe粉末、い
ずれも粒度−100mesh f有し、かつCr含有量
がそれぞれ5係、13%、25%、35%、および65
係の5種のFe−Cr合金粉末、同一100 mesh
のカーボン粉末、いずれも平均粒径:3μmを有するM
o粉末、Ni粉末、W粉末、およびco粉末、いずれも
粒度−150meshのTic粉末、VC粉末、NbC
粉末、およびW C粉末、同一100 meshノcu
粉末、同一100 meshのFe−Cr −Mo −
Nb合金(Cr:13%、Mo:1%、Nbニア%含含
有粉粉末同一100meshのFe−Zr合金(Zr:
6096含有)粉末、同100 mesbのFe−Mn
合金(MnnニアS金含有粉末。
Examples of raw material powders include Fe powder with a particle size of -100 mesh, all of which have a particle size of -100 mesh f, and Cr contents of 5%, 13%, 25%, 35%, and 65%, respectively.
5 kinds of Fe-Cr alloy powders, same 100 mesh
carbon powder, all of which have an average particle size of 3 μm
o powder, Ni powder, W powder, and co powder, all with particle size -150 mesh Tic powder, VC powder, NbC
Powder, and W C powder, same 100 mesh cu
Powder, same 100 mesh Fe-Cr-Mo-
Nb alloy (Cr: 13%, Mo: 1%, Fe-Zr alloy (Zr:
6096 containing) powder, 100 mesb of Fe-Mn
Alloy (Mnn near S gold-containing powder.

および同一1. OOmeshのFe −Cr−Mn−
Mo−Ni合金(Cr:10%、Mn: 1%、Mo:
1%、Ni:3%含有)粉末を用意し、これら原料粉末
をそれぞれ第1表に示される配合組成に配合し、湿式ボ
ールミルにて混合し、乾燥した後、4〜6ton/ff
lの圧力にて圧粉体に成形し、ついでこの圧粉体を真空
中、1150〜1350℃の温度範囲内の所定温度で焼
結し、引続いて焼結後850〜1050℃の温度範囲内
の所定温度から油焼入れし、最終的に150〜250℃
の温度範囲内の所定温度で焼戻し処理を行なうことによ
って、実質的に配合組成と同一の成分組成をもった本発
明焼結合金]〜34をそれぞれ製造した。
and same 1. OOmesh Fe-Cr-Mn-
Mo-Ni alloy (Cr: 10%, Mn: 1%, Mo:
1%, Ni: 3%) powder is prepared, these raw material powders are blended into the composition shown in Table 1, mixed in a wet ball mill, dried, and then processed at 4 to 6 ton/ff.
The green compact is then sintered in a vacuum at a predetermined temperature within the temperature range of 1150 to 1350°C, and subsequently, after sintering, the compact is formed into a compact at a temperature of 850 to 1050°C. Oil quenching starts at a specified temperature within the
By performing a tempering treatment at a predetermined temperature within the temperature range, sintered alloys of the present invention] to 34 having substantially the same composition as the blended composition were manufactured.

つぎに、この結果得られた本発明焼結合金1〜34につ
いて、密度比、炭化物面積比、平均粒径:5μm以上を
有する炭化物の炭化物全体に占める面積比およびビッカ
ース硬さを測定すると共に、共づり形式で1粒度−3Q
 meshの土砂を25容量係含有する泥水中、荷重:
4Kg/crd、回転速度:180 r、p、m、、試
験時間:25時間の条件で摩耗試験を行ない、その摩耗
深さを測定した。これらの測定結果を第今表に示した。
Next, for the resulting sintered alloys 1 to 34 of the present invention, the density ratio, carbide area ratio, area ratio of carbide having an average particle size of 5 μm or more to the entire carbide, and Vickers hardness were measured, 1 grain size - 3Q in joint format
In muddy water containing 25 volumes of mesh earth and sand, load:
A wear test was conducted under the conditions of 4 Kg/crd, rotational speed: 180 r, p, m, and test time: 25 hours, and the wear depth was measured. The results of these measurements are shown in Table 1.

!、た、第2表には比較の目的で従来Or鋳鉄(C:3
.4%、Si:2.1% 、 Mn : 0.7%、C
r:0.9cI)含有)の同一条件による摩耗試験結果
も示した。
! , Table 2 shows the conventional Or cast iron (C: 3
.. 4%, Si: 2.1%, Mn: 0.7%, C
The results of the abrasion test under the same conditions are also shown.

第2表に示される結果から、本発明焼結合金1〜34は
、いずれも従来Cr鋳鉄に比して著しくすぐれた耐摩耗
性と有し、〃・つ高強度、高硬度、および高靭性をもつ
ことが明らかである。
From the results shown in Table 2, all of the sintered alloys 1 to 34 of the present invention have significantly superior wear resistance compared to conventional Cr cast iron, and have high strength, high hardness, and high toughness. It is clear that

上述のように、この発明の焼結桐材は、すぐれた耐摩耗
性を有し、かつ高強度および高靭性を有するので、これ
らの特性が要求される分野での使用は勿論のこと、特に
土砂摩耗や混抄摩耗などの苛酷な摩耗環境にさらされる
建設機械や鉱山機械の構造部拐として使用した場合にも
著しく長期に面ってすぐれた性能を発揮するのである。
As mentioned above, the sintered paulownia material of the present invention has excellent wear resistance, high strength, and high toughness, so it can of course be used in fields that require these properties, and especially It also exhibits excellent long-term performance even when used as structural parts for construction machinery and mining machinery that are exposed to severe abrasion environments such as soil abrasion and mixed paper abrasion.

出願人 三菱金属株式会社Applicant: Mitsubishi Metals Corporation

Claims (4)

【特許請求の範囲】[Claims] (1)  Cr: 4〜25%、 O: 1.5〜5%
’i含有し、残9がFeと不可避不純物からなる組成(
以上重量%)を有すると共に、主としてマルテンサイト
からなる素地にビッカース硬さで1200以上を有する
炭化物が面積比で15係以上分散した組織を有し、かつ
前記炭化物のうち、炭化物全体に対する面積比で10%
以上が平均粒径:5μm以上を有する炭化物で占められ
、さらに92%以上の密度比を有することを特徴とする
耐摩耗性にすぐれたFe基焼結材料。
(1) Cr: 4-25%, O: 1.5-5%
'i, and the remaining 9 is Fe and inevitable impurities (
% by weight or more), and has a structure in which carbides having a Vickers hardness of 1200 or more are dispersed in an area ratio of 15 or more in a matrix mainly consisting of martensite, and among the carbides, the area ratio to the whole carbide is 10%
An Fe-based sintered material with excellent wear resistance characterized by being dominated by carbides having an average particle size of 5 μm or more and further having a density ratio of 92% or more.
(2)  Or : 4〜.25%、 c : 1.5
〜5%に含有し、さらにMo、  W、 Nb、 Ti
、  V、およびZrのうちの1種または2種以上:0
.1〜20係を含有し、残りがFeと不可避不純物から
なる組成(以上重量幅〕を有すると共に、主としてマル
テンサイトからなる素地にビッカース硬さで1200以
上を有する炭化物が面積比で15%以上分散した組織を
有し、かつ前記炭化物のうち、炭化物全体に対する面積
比で10係以上が平均粒径:5μm以上を有する炭化物
で占められ、さらに92%以上の密度比を有することを
特徴とする耐摩耗性にすぐれたFe基焼結材料。
(2) Or: 4~. 25%, c: 1.5
~5%, and further contains Mo, W, Nb, Ti
, V, and Zr: 0
.. 1 to 20, with the remainder consisting of Fe and unavoidable impurities (weight range above), and carbide having a Vickers hardness of 1200 or more dispersed in an area ratio of 15% or more in a matrix mainly consisting of martensite. The carbide has a microstructure, and among the carbides, an area ratio of 10 or more to the whole carbide is occupied by carbides having an average particle size of 5 μm or more, and further has a density ratio of 92% or more. Fe-based sintered material with excellent wear resistance.
(3)  Or: 4〜25 %、 O: 1.5〜5
 %f金含有、さらにNi、 C!o、 C!u、およ
びMnのうちの1種または2種以上:01〜10%を含
有し、残シがFeと不可避不純物からなる組成C以上重
量幅)を有すると共に、主としてマルテンサイトからな
る素地にビッカース硬さで1200以上を有する炭化物
が面積比で15%以上分散した組織を有し、かつ前記炭
化物のうち、炭化物全体に対する面積比で10係以上が
平均粒径:5μm以上を有する炭化物で占められ、さら
に92チ以上の密度比を有することを特徴とする耐摩耗
性にすぐれたFe基焼結1i’ l’)。
(3) Or: 4-25%, O: 1.5-5
%f gold content, as well as Ni, C! o, C! Contains one or more of u and Mn: 01 to 10%, and has a composition C or more (weight range) with the remainder consisting of Fe and unavoidable impurities, and has a Vickers hardness on a substrate mainly made of martensite. has a structure in which carbides having a diameter of 1,200 or more are dispersed in an area ratio of 15% or more, and among the carbides, an area ratio of 10 or more to the entire carbide is occupied by carbides having an average particle size of 5 μm or more, Furthermore, Fe-based sintered 1i'l') with excellent wear resistance is characterized by having a density ratio of 92 inches or more.
(4)  Cr: 4〜25%、 O: 1.5〜59
1に含有し。 さらにMo、 W 、 Nb、 Ti、 V 、および
Zrのうちの1種捷たは2種以上:0.1〜20%と、
Ni、 Co、 Ou 。 およびMnのうちの1種または2種以上二0.1〜10
%とを含有し、残りがFeと不可避不純物からなる組成
(以上重量係)を有すると共に、主としてマルテンサイ
トからなる素地にピンカース硬さで1200以上を有す
る炭化物が面積比で15%以上分散した組織を有し、か
つ前記炭化物のうち、炭化物全体に対する面積比で10
%以上が平均粒径: 57z m以上を有する炭化物で
占められ、さらに9zチ以上の密度比を有することを特
徴とする耐摩耗性にすぐれたFe基焼結材料。
(4) Cr: 4-25%, O: 1.5-59
Contained in 1. Furthermore, one or more of Mo, W, Nb, Ti, V, and Zr: 0.1 to 20%;
Ni, Co, Ou. and one or more of Mn20.1-10
%, with the remainder consisting of Fe and unavoidable impurities (weight ratio), and a structure in which carbides having a Pinkers hardness of 1200 or more are dispersed in an area ratio of 15% or more in a matrix mainly consisting of martensite. and among the carbides, the area ratio to the whole carbide is 10
An Fe-based sintered material having excellent wear resistance, characterized in that at least % is occupied by carbides having an average particle size of at least 57zm, and further has a density ratio of at least 9zm.
JP12626382A 1982-07-20 1982-07-20 Fe-based sintered material excellent in wear resistance Granted JPS5916951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12626382A JPS5916951A (en) 1982-07-20 1982-07-20 Fe-based sintered material excellent in wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12626382A JPS5916951A (en) 1982-07-20 1982-07-20 Fe-based sintered material excellent in wear resistance

Publications (2)

Publication Number Publication Date
JPS5916951A true JPS5916951A (en) 1984-01-28
JPH0115578B2 JPH0115578B2 (en) 1989-03-17

Family

ID=14930851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12626382A Granted JPS5916951A (en) 1982-07-20 1982-07-20 Fe-based sintered material excellent in wear resistance

Country Status (1)

Country Link
JP (1) JPS5916951A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63266047A (en) * 1987-04-22 1988-11-02 Mitsubishi Metal Corp Carbide dispersion type fe based sintered alloy having excellent wear resistance
JP2012087340A (en) * 2010-10-18 2012-05-10 Taiwan Powder Technologies Co Ltd Alloy steel metal powder and sintered compact thereof
JP2020523479A (en) * 2017-06-13 2020-08-06 エリコン メテコ(ユーエス)インコーポレイテッド High hard phase fraction non-magnetic alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5387912A (en) * 1977-01-13 1978-08-02 Toshiba Corp Wear-resisting sintered alloy
JPS5486410A (en) * 1977-12-23 1979-07-10 Nippon Piston Ring Co Ltd Ferrous sintered alloy material for valve seat

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5387912A (en) * 1977-01-13 1978-08-02 Toshiba Corp Wear-resisting sintered alloy
JPS5486410A (en) * 1977-12-23 1979-07-10 Nippon Piston Ring Co Ltd Ferrous sintered alloy material for valve seat

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63266047A (en) * 1987-04-22 1988-11-02 Mitsubishi Metal Corp Carbide dispersion type fe based sintered alloy having excellent wear resistance
JP2012087340A (en) * 2010-10-18 2012-05-10 Taiwan Powder Technologies Co Ltd Alloy steel metal powder and sintered compact thereof
JP2020523479A (en) * 2017-06-13 2020-08-06 エリコン メテコ(ユーエス)インコーポレイテッド High hard phase fraction non-magnetic alloy

Also Published As

Publication number Publication date
JPH0115578B2 (en) 1989-03-17

Similar Documents

Publication Publication Date Title
JPS5916952A (en) Fe-based sintered material excellent in wear resistance
JPS6011096B2 (en) Composite made of sintered charcoal alloy and cast iron
GB1597715A (en) Cemented carbidesteel composites their manufacture and use
JP4439591B2 (en) Stainless steel powder and products made by powder metallurgy from the powder
JPH055152A (en) Hard heat resisting sintered alloy
US5223020A (en) Hard-metal body
JPS5822359A (en) Iron base sintered alloy for structural member of fuel supply apparatus
JP2837798B2 (en) Cobalt-based alloy with excellent corrosion resistance, wear resistance and high-temperature strength
JPS5916951A (en) Fe-based sintered material excellent in wear resistance
JPS5940217B2 (en) Fe-based sintered alloy with wear resistance
JPH073357A (en) High hardness cemented carbide excellent in oxidation resistance
US3450511A (en) Sintered carbide hard alloy
JPS61295302A (en) Low-alloy iron powder for sintering
JPH0768600B2 (en) Compound boride sintered body
JPH09157806A (en) High-strength ferrous sintered alloy
JPS5937742B2 (en) High wear resistance sintered high speed steel
JPS5937735B2 (en) Wear-resistant sintered alloy
JPH05302101A (en) Mixed powder for powder metallurgy/and its sintered compact
JPS61261455A (en) Wire for dot printer
JPH07118775A (en) Production of tough cermet with low coefficient of thermal expansion
JPS5816055A (en) Material for structural member of fuel feeder
JPS59222556A (en) Wear resistant sintered iron alloy with superior workability and its manufacture
JPS60215742A (en) Special wear-resistant sintered alloy of high strength
JPS613861A (en) Sintered heat-and wear-resistant hard alloy for hot working tool
JP2859891B2 (en) Cemented carbide