JPS59152194A - Method of filling non-carbonated drink - Google Patents
Method of filling non-carbonated drinkInfo
- Publication number
- JPS59152194A JPS59152194A JP1915783A JP1915783A JPS59152194A JP S59152194 A JPS59152194 A JP S59152194A JP 1915783 A JP1915783 A JP 1915783A JP 1915783 A JP1915783 A JP 1915783A JP S59152194 A JPS59152194 A JP S59152194A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- filling
- pressure
- beverage
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B67—OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
- B67C—CLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
- B67C3/00—Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
- B67C3/02—Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23F—COFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF
- A23F5/00—Coffee; Coffee substitutes; Preparations thereof
- A23F5/24—Extraction of coffee; Coffee extracts; Making instant coffee
- A23F5/243—Liquid, semi-liquid or non-dried semi-solid coffee extract preparations; Coffee gels; Liquid coffee in solid capsules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B31/00—Packaging articles or materials under special atmospheric or gaseous conditions; Adding propellants to aerosol containers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B31/00—Packaging articles or materials under special atmospheric or gaseous conditions; Adding propellants to aerosol containers
- B65B31/006—Adding fluids for preventing deformation of filled and closed containers or wrappers
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Dispersion Chemistry (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Filling Of Jars Or Cans And Processes For Cleaning And Sealing Jars (AREA)
- Cleaning In General (AREA)
- Non-Alcoholic Beverages (AREA)
- Vacuum Packaging (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
技術分野
本発明は果汁、コーヒー、ワイン、ココア、乳酸飲料、
紅茶、日本酒、スープ、茶、麦茶、スポーツドリンク等
の非炭酸飲料、いわゆるノンガスの飲料をアルミ缶等の
軟質缶に充填する方法に関する。[Detailed Description of the Invention] Technical Field The present invention relates to fruit juice, coffee, wine, cocoa, lactic acid drinks,
The present invention relates to a method for filling non-carbonated beverages such as black tea, Japanese sake, soup, tea, barley tea, sports drinks, etc., so-called non-gas beverages, into soft cans such as aluminum cans.
従来技術
一般に、軟質缶、典型的にはアルミ製DI缶はスチール
缶に比べて缶型量が大幅に軽減され、また2ピ一ス缶に
よる積重ね形状(スタック。Prior Art In general, flexible cans, typically aluminum DI cans, have a significantly reduced can size compared to steel cans, and can also be stacked with two-piece cans.
イン)やネックイン加工が容易であり、回収再資源化の
効率が高く、さらには製品品質の向上が期待できるとこ
ろから、ビール、サイダー等の多量の炭酸ガスを含有す
る炭酸飲料用としてスチール、ブリキ製の缶にかわって
多用されている。しかしながら、これらアルミ缶等の軟
質缶は炭酸飲料を充填する場合にあつ、ではこれら飲料
中に多量に含まれる炭酸ガスの分圧により充填巻締後の
缶内圧力が飲用時の冷却温度においてもかなり高くなっ
ており、この炭酸ガスの分圧が大気圧に抗して缶の形状
を保持することができるが、非炭酸飲料用容器として使
用する場合には炭酸飲料におけるような8分圧が期待で
きないことから充填巻締後の冷却に伴って缶内圧力が明
らかに大気圧以下となってしまい、耐圧強度の小さいア
ルミ缶等の軟質缶の弱点が露呈され、缶形状を保持し得
なくなって変形が生じ、あるいは握持した時の指圧によ
り容易に変形する欠点を有するものである。従って、特
にアルミ缶等は種々の利点があるにも拘らず、非炭酸飲
料用容器として一般に使用されるまでには至っていない
現状にある。Steel is used for carbonated beverages containing a large amount of carbon dioxide such as beer and cider because it is easy to perform neck-in processing and has high recovery and recycling efficiency, and can also be expected to improve product quality. It is often used in place of tin cans. However, when these soft cans such as aluminum cans are filled with carbonated drinks, the partial pressure of carbon dioxide gas contained in large amounts in these drinks causes the pressure inside the can after filling and sealing to rise even at the cooling temperature for drinking. The partial pressure of this carbon dioxide gas is able to maintain the shape of the can against atmospheric pressure, but when used as a container for non-carbonated beverages, the partial pressure of carbon dioxide gas is As this could not be expected, the pressure inside the can clearly dropped below atmospheric pressure as it cooled down after filling and seaming, exposing the weak points of soft cans such as aluminum cans, which have low pressure resistance, and making it impossible to maintain the shape of the can. This has the disadvantage that it easily deforms due to manual pressure when gripped. Therefore, although aluminum cans and the like in particular have various advantages, they are not yet commonly used as containers for non-carbonated beverages.
これに対し、非炭酸飲料をアルミ缶等の軟質缶に充填す
るための試みが散見される。これらの試みとして例えば
、調合した非炭酸飲料を95C前後の温度で殺菌加熱し
た後、飲料を5C以下に冷却し、この冷却した湿度でN
、ガスを溶解せしめて充填巻締し、次いで607?に再
加熱してカビ、細菌を滅菌する方法が挙げられている(
特開昭56−7z67s号公報)。しかし、この発明は
飲料に当ガスを溶解せしめ、この飲料を缶に充填するの
に5C以下という極めて低い充填温度で行わなければな
らず、しかも充填巻締後に滅菌のため再加熱しなければ
ならず、省エネルギー的にもロスが大きく実用的なもの
ではない。In response to this, there have been some attempts to fill non-carbonated beverages into soft cans such as aluminum cans. In these attempts, for example, after sterilizing and heating a prepared non-carbonated beverage at a temperature of around 95C, the beverage is cooled to 5C or less, and at this cooled humidity, N
, gas is dissolved, filled and seamed, and then 607? There is a method of reheating to sterilize mold and bacteria (
JP-A-56-7Z67S). However, in this invention, the gas must be dissolved in the beverage and the beverage must be filled into cans at an extremely low filling temperature of 5C or less, and furthermore, it must be reheated for sterilization after filling and sealing. Also, it is not practical in terms of energy saving due to large losses.
また、飲料を充填した巻締前の缶体内へ液化 5 −
N2を滴下するとともにN、ガスを吹き付け、巻締する
方法も提案されている(特開昭56−4521@公報)
が、この発明では液化N!の制御か困IJfaであり、
当該技術分野において工業的には全〈実施されていない
。In addition, a method has been proposed in which liquefied 5-N2 is dropped into a can filled with a beverage before sealing, and N and gas are sprayed to seal the can (Japanese Unexamined Patent Publication No. 56-4521@publication).
However, in this invention, liquefaction N! It is difficult to control the
It has not been implemented industrially in this technical field.
さらに本件の発明者らの一部はN、ガスとともに極く微
量のCQ、ガスを混合した混合ガスを溶解せしめる充填
方法を先に提案した(特開昭52−99183号公報)
。しかしながら、この発明では単に飲料に溶解せしめる
ガスとしてN、ガスに微量のCO,ガスを混合した混合
ガスを用いることによりこの#量含有したCO,ガスに
よる分圧を利用して缶内圧力を高め、大気圧下でも缶体
の変形が防止し得るのではないかとの推測に基づく着想
の域を出ず、またこの方法ではその具体的充填条件、例
えば充填温度、混合ガス中のCO1比率、あるいは混合
ガスの溶解時における加圧力等については全く未知であ
り、工業的に実施し得るまでには至っていないものであ
る。Furthermore, some of the inventors of the present invention have previously proposed a filling method in which a mixed gas containing a very small amount of CQ and gas is dissolved together with N and gas (Japanese Unexamined Patent Publication No. 52-99183).
. However, in this invention, by simply using N as the gas to be dissolved in the beverage, and a mixed gas containing a small amount of CO and gas, the pressure inside the can is increased by utilizing the partial pressure caused by the CO and gas contained in this amount. This method is no more than an idea based on speculation that deformation of the can body can be prevented even under atmospheric pressure, and this method does not depend on the specific filling conditions, such as the filling temperature, the CO1 ratio in the mixed gas, or The pressure applied during dissolution of the mixed gas is completely unknown and has not yet been implemented industrially.
6−
発明の目的
しかして本発明は上述した如き現状に経み、非炭酸飲料
をアルミ缶等の軟質缶に充填するに際し、調合後、加熱
滅菌した飲料にN2ガスと加圧溶解後に非炭酸飲料の範
1fl=に入る味覚閾値内に収まる微量のCO2ガスと
を溶存させて充填することにより巻締後に缶体の形状を
深持し得る充填時の合目的条件並びにその方法を提供す
ることを目的とする。6- Purpose of the Invention The present invention has been developed based on the above-mentioned current situation, and when filling non-carbonated beverages into soft cans such as aluminum cans, the present invention is to solve the following problems: To provide purposeful conditions and a method for filling cans that can deeply maintain the shape of a can body after seaming by dissolving and filling a trace amount of CO2 gas that falls within the taste threshold that falls within the range of 1 fl = beverages. With the goal.
本発明の他の目的はより高温充填を可能ならしめ、それ
により加熱滅菌工程、充填巻締工程およびその後の後殺
菌工程における熱損失を可及的に少くし、省エネルギー
を図り得る方法を提供することにある。Another object of the present invention is to provide a method that enables higher temperature filling, thereby reducing heat loss as much as possible during the heat sterilization process, the filling and sealing process, and the subsequent post-sterilization process, thereby saving energy. There is a particular thing.
本発明の別の目的は特殊の設備を設けることなく、従来
の炭酸飲料充填機および充填ラインをそのまま利用し得
る方法を提供することにあり、それにより設備の有効利
用を図るとともに炭酸飲料および非炭酸飲料の充填ライ
ン並びに缶の統一を図るにある。Another object of the present invention is to provide a method in which conventional carbonated beverage filling machines and filling lines can be used as they are without the need for special equipment. The goal is to standardize carbonated beverage filling lines and cans.
構成
これら本発明の目的ないし課題は、調合後、加熱減菌し
た非炭酸飲料にN、ガスおよびCO,ガスをそのCO2
ガス量が飲料の重量比15/10000以下の量で加圧
溶解せしめた後、この飲料を軟質缶に充填するに際し、
充填巻締後の缶内圧力と温度とを軸とする座標にプロッ
トした場合の缶内圧力が5℃にて1.1 atm以上の
点を通る缶内圧一温度曲線以上であり、且つ後殺菌加熱
温度において缶内圧力が8 atmO点を通る缶内圧一
温度曲線以下の缶内圧一温度曲線範囲を設定し、充填前
に飲料中に溶解せし2めるN2に対するCO7比率およ
びこれらガスの飲料中への溶解時の加圧力を8 atm
を上限として変化させて充填巻締後の缶内圧力を前記座
標にプロットし、各充填温度における前記缶内圧一温度
曲線範囲内に収まるCO2比率および溶解時加圧力を予
め選定してこの各充填温度 ゛ ′にて充填
し、充填後、巻締工程までの間N2ガスもしくはC02
ガスを含む不活性ガスを借上面に吹き付はヘッドスペー
スの領域をこれらガスに置換後、巻締めする方法により
達成される。Structure The purpose or problem of the present invention is to add N, gas, and CO to a non-carbonated beverage that has been sterilized by heating after preparation.
After dissolving the gas under pressure in an amount that is less than 15/10000 by weight of the beverage, when filling this beverage into soft cans,
The can internal pressure after filling and seaming is plotted on a coordinate axis with the can internal pressure and temperature as the axes, and the can internal pressure is equal to or higher than the temperature curve passing through a point of 1.1 atm or higher at 5°C, and post-sterilization is not performed. At the heating temperature, the can pressure-temperature curve range is set below the can pressure-temperature curve passing through the 8 atmO point, and the ratio of CO7 to N2 dissolved in the beverage before filling and the ratio of these gases to the beverage are determined. Pressure force during dissolution into 8 atm
The can internal pressure after filling and seaming is plotted on the above coordinates by changing the can internal pressure with the upper limit of Fill at a temperature of
The blowing of an inert gas containing a gas onto the raised surface is achieved by replacing the head space area with the gas and then tightening it.
さらに、本発明では上記充填方法において、充填温度を
20〜81C1好ましくは50〜65Cの範囲、最適に
は60iCとするものである。Further, in the present invention, in the above-mentioned filling method, the filling temperature is in the range of 20 to 81C1, preferably 50 to 65C, and optimally 60iC.
構成の説明
本発明において、充填の対象とするのは果汁、−x−ヒ
ー、K茶、ココア、乳酸飲料、ワイン、日本酒、スープ
、茶、麦茶、スポーツドリンク等の非炭酸飲料、いわゆ
るノンガスの飲料である。そしてこれら非炭酸飲料は典
型的にはアルミ缶である軟質缶に充填する。Description of structure In the present invention, the objects to be filled are non-carbonated beverages such as fruit juice, -x-heat, K tea, cocoa, lactic acid drinks, wine, sake, soup, tea, barley tea, and sports drinks, so-called non-gas beverages. It's a drink. These non-carbonated beverages are then filled into soft cans, typically aluminum cans.
以下に本発明を実施する場合の一例を添付の概略工程説
明図に基づいて説明する。An example of carrying out the present invention will be described below based on the attached schematic process diagrams.
第1図において、果汁等の非炭酸飲料はデアレータ−1
から調合タンク2へ送られ、そこで調合された後、熱交
換器3等により、例えば果汁の場合には通常80〜95
tT程度の湿度範囲 9−
で加熱滅菌された後、サチュレータ−4へと送られる。In Figure 1, non-carbonated beverages such as fruit juice are represented by dealator-1.
For example, in the case of fruit juice, it is usually 80 to 95
After being heat sterilized at a humidity range of about tT, it is sent to the saturator 4.
一方、CO,発生器5およびN8発生器6から供給され
るCO,ガスおよびN、ガスは混合ガスとして供給され
る場合にはそれぞれ弁7,8および加温槽によりその温
度および量を調節され混合器9により所定割合に混合さ
れ、この混合ガスは自動圧力調節弁10により所定の圧
力が負荷されてサチュレータ−4へ送られる。またCO
!ガスおよびN、ガスがそれぞれ別個に供給される場合
にはそれぞれのガスに所定の圧力が負荷されてサチュレ
ータ−4へ送られる。なお、この場合当ガスはサチュレ
ータ−4より前段の適当な流路中に供給されてもよい。On the other hand, when the CO, gas and N gas supplied from the CO generator 5 and the N8 generator 6 are supplied as a mixed gas, their temperature and amount are adjusted by valves 7 and 8 and a heating tank, respectively. The mixed gas is mixed at a predetermined ratio by a mixer 9, and the mixed gas is loaded with a predetermined pressure by an automatic pressure control valve 10 and sent to the saturator 4. Also CO
! When gas, N, and gas are supplied separately, each gas is loaded with a predetermined pressure and sent to the saturator 4. In this case, the gas may be supplied into an appropriate flow path upstream of the saturator 4.
飲料中にCO,ガスおよびN、ガスが加圧溶解せしめら
れた飲料はサチュレータ−4からサージタンク13を経
てこの溶解時の加圧力を保持したまま充填機11にて充
填される。充填後、大気開放されて巻締機12により上
蓋が巻締められるまでの間、N、ガスもしくはCO2を
含む不活性ガスとの混合ガスが飲料の充填された借上面
に吹き付けられ、これにより缶上部のヘッドスペースの
領域がこれらガスにより空気と置換されることになり、
その後、巻締機12により缶蓋が巻i4+Wられる。こ
の缶上面に吹き付けるガスとしてはN。A beverage in which CO, gas, and N gas are dissolved under pressure is passed from a saturator 4 to a surge tank 13, and is filled in a filling machine 11 while maintaining the pressure applied during dissolution. After filling, a gas mixture of N, gas, or an inert gas containing CO2 is blown onto the upper surface of the can filled with beverages until the can is opened to the atmosphere and the top lid is tightened by the sealing machine 12. The upper headspace region will be replaced by air by these gases,
Thereafter, the can lid is wound i4+W by the seaming machine 12. The gas sprayed onto the top of the can is N.
ガス単独としてもよく、あるいはC02ガスを含む不活
性なガスとしてもよい。The gas may be used alone, or an inert gas containing CO2 gas may be used.
本発明では上記したような工程を経て充填が行われるも
のであるが、本発明で充填の対象とする飲料はあくまで
も非炭酸飲料であり、従って飲料中に加圧溶解せしめる
C02ガス値には自ずと制限がある。本発明は飲料中に
加圧溶解させるCO,ガスの飲料中への溶解量の上限を
味覚的に非炭酸飲料の範噛に入るtlすなわち飲料に対
し重量比15/10000とする。好ましくは重量比5
/10000以下とする。In the present invention, filling is performed through the steps described above, but the beverage targeted for filling in the present invention is a non-carbonated beverage, and therefore, the value of CO2 gas dissolved under pressure in the beverage naturally has a certain value. There is a limit. In the present invention, the upper limit of the amount of CO and gas dissolved in the beverage under pressure is set at tl, which falls within the category of non-carbonated beverages in terms of taste, that is, the weight ratio of the beverage is 15/10,000. Preferably a weight ratio of 5
/10000 or less.
また、かかるCO2ガスおよびN、ガスを溶解せしめた
飲料を充填巻締した後の缶内圧力の制限とし、本発明で
対象とする軟質缶のうち特に強度的に最も弱く、かつ実
用性の高い炭酸飲料用缶として多用されているアルミ製
DI缶(缶胴厚さO,14m、底板厚さ0.42祁)を
充填用容器として用い、これについて缶変形の有無を判
定する基準とした。このことは換言すれば、かかるアル
ミ製DI缶による缶変形が生じない条件設定を行えばア
ルミ製DI缶以外の通常の軟質缶を用いる場合には当然
に缶変形は生じないとの前提に立脚し検討を進めたもの
である。しかして上記の如きアルミ製DI缶において、
充填巻締後に殺菌機等により後殺菌される温度、例えば
果汁の場合には60C1コーヒーの場合にはtzocの
ように充填飲料によって決定される加熱温度において前
記アルミ製DI缶の缶内圧力が該缶の耐圧強度の限界で
ある8 atm以下となるように、かつ飲用に適した通
常5C程度の低温度にまで冷却した時に缶内圧力が大気
圧に抗して相形状を保持して指圧等によっても変形しな
い圧力、すなわち5Cにて1.1 atm以上、好まし
くは1.4 atm以上の缶内圧力を保持するようにし
なければならない。In addition, it limits the pressure inside the can after filling and sealing the beverage in which CO2 gas, N, and gas are dissolved, and is particularly suitable for soft cans that are the weakest in terms of strength and highly practical among the soft cans targeted by the present invention. An aluminum DI can (can body thickness O, 14 m, bottom plate thickness 0.42 m), which is often used as a can for carbonated beverages, was used as a filling container, and was used as a standard for determining the presence or absence of can deformation. In other words, this is based on the premise that if conditions are set so that such aluminum DI cans do not cause can deformation, can deformation will naturally not occur when ordinary soft cans other than aluminum DI cans are used. This is what we have been considering. However, in the aluminum DI can as mentioned above,
The internal pressure of the aluminum DI can is determined at the temperature at which the aluminum DI can is post-sterilized by a sterilizer or the like after filling and sealing, for example at the heating temperature determined by the filled beverage, such as 60C1 coffee in the case of fruit juice or tzoc in the case of coffee. When the can is cooled to a temperature below 8 atm, which is the limit of the pressure resistance of the can, and to a low temperature of about 5C, which is suitable for drinking, the pressure inside the can resists atmospheric pressure and maintains its phase shape, allowing it to be used with finger pressure, etc. It is necessary to maintain a pressure that does not cause deformation even when the cylinder is heated, that is, an internal pressure of 1.1 atm or more, preferably 1.4 atm or more at 5C.
今ここで、充填巻締後の缶内平衡圧力と温度とを軸とす
る座標に各温度における缶内圧力を算出し、プロットす
ると、第2図に示されるように圧力上限線を示す缶内圧
カ一温度的mA(後殺菌湿度120Cでレトルト殺菌し
た場合)および圧力下限線を示す缶内圧カ一温度的iB
が作図されることになる。なおり曲線は5Cにて1.4
atmの点を通る缶内圧一温度曲線である。Now, if we calculate and plot the can internal pressure at each temperature on the coordinates with the axes of internal equilibrium pressure and temperature after filling and seaming, we can see that the can internal pressure shows the pressure upper limit line as shown in Figure 2. Temperature mA (when retort sterilized at post-sterilization humidity of 120C) and can internal pressure temperature iB indicating the lower pressure limit line
will be drawn. Naori curve is 1.4 at 5C
It is a can internal pressure-temperature curve passing through the point atm.
この各圧力上限線および圧力下限線を作成する場合の各
プロットの算出例を示す。前提条件として飲料充填量が
500 ml用のアルミ缶にてヘッドスペースが27.
8 ml 、飲料中のC02#度は重量比5/1000
0以下、飲料充填後は缶内での化学変化はない、缶体は
内圧の変化により膨張、収縮しないものとする、充填後
、巻締までのN2ガスもしくはCO2ガスを含む不活性
ガスの缶上面への吹き付けにより20Cにおける残存空
気@ 3. Omlとしこの中のN、ガスはN2ガスと
して加算しその体積は空気の81!IJとする、また空
気中の0.は2割とし飲料中への溶解は無視する、かつ
充填工程と巻締工程の間で大気開放されて13−
も、加圧溶解されたガスは大気放出しない、ものとした
。An example of calculating each plot when creating each pressure upper limit line and pressure lower limit line will be shown. The prerequisite is that the head space is 27.0 ml for an aluminum can with a beverage filling volume of 500 ml.
8 ml, C02# degree in the drink is 5/1000 by weight
0 or less, there is no chemical change inside the can after filling the beverage, the can body shall not expand or contract due to changes in internal pressure, cans containing inert gas containing N2 gas or CO2 gas after filling and before seaming. Residual air @ 20C by blowing onto the top surface 3. Oml and the N and gas in this are added as N2 gas, and the volume is 81 of air! IJ, and 0. It was assumed that the dissolution into the beverage was ignored, and that the pressurized dissolved gas would not be released into the atmosphere even if it was opened to the atmosphere between the filling process and the seaming process.
このような前提のもとに缶内圧力上限線および圧力下限
線を算出する計算例を次に示す。A calculation example for calculating the in-can pressure upper limit line and the pressure lower limit line based on such a premise is shown below.
※ 計算に必要な諸要因(充填量20Cにて500祷、
空寸27.8ml、空気3 ml混入とする。)1−1
温度による体積変化
1−2 各湿度におけるブンゼン(BUNZEN )
吸収係数、水の蒸気圧、残存空気
の缶内02分圧
缶内ヘッドスペース中の02分圧計算例(20C)■
圧力下限線の算出例
圧力下限線とは5Cに冷却した場合に缶内圧により缶形
状を保持し得る充填巻締直後の湿度と缶内圧力との関係
を示し、ここでは5Cにて内圧が1.4atm以上を保
持し得る下限線を求める。またC02含量は重鼠比5/
10000とすることから、そのガスVol/Vol
(OC。* Various factors necessary for calculation (500 prayers at filling amount 20C,
The empty space is 27.8 ml, and 3 ml of air is mixed in. )1-1
Volume change due to temperature 1-2 Bunsen at each humidity
Absorption coefficient, water vapor pressure, residual air 02 partial pressure inside the can 02 partial pressure calculation example (20C) ■
Calculation example of the pressure lower limit line The pressure lower limit line indicates the relationship between the humidity and the can internal pressure immediately after filling and seaming, which can maintain the shape of the can due to the internal pressure when the can is cooled to 5C. . Find the lower limit line that can maintain 4 atm or higher. In addition, the C02 content is heavy rat ratio 5/
10000, the gas Vol/Vol
(OC.
15−
1 atmの換算値)は
= 0.2545 Vol/Vol
■−■ 次に5 C,1,4atmの缶内ガス状況を算
出する。15-1 atm conversion value) = 0.2545 Vol/Vol ■-■ Next, calculate the gas situation in the can of 5 C, 1,4 atm.
■CO,ガスの分圧
ヘンリーの法則から
0.254fi
1.424
= 0.179 atm
@N、ガスの分圧
N、ガス分圧=缶内圧−(co、十水蒸気十〇、)分圧
= 1.4−(0,179+0.006+0.020
)= 1.195 atm
16−
0缶内のN、総it (OC+ 1 atm換算)缶内
N、総量=液中溶解量十空寸中N2m1=45.558
rub
■−■ 密閉のままOCになった時の缶内ガスの状況を
算出する。■CO, partial pressure of gas From Henry's law, 0.254fi 1.424 = 0.179 atm @N, partial pressure of gas N, gas partial pressure = pressure inside the tank - (co, 10 water vapor, 10,) partial pressure = 1.4-(0,179+0.006+0.020
) = 1.195 atm 16-0 N in the can, total it (OC + 1 atm conversion) N in the can, total amount = amount dissolved in liquid N2m1 = 45.558
rub ■−■ Calculate the gas situation inside the can when it becomes OC while the can is sealed.
■CO,ガスの分圧 同様に
= 0.148 atm
@穐ガスの分圧
= 1.450 atm
■−璽 CO,総量の算定(OC、1atm換算)Co
、ガス総量=液中溶解量+空寸中ガ装置17−
(CO,ガス分圧)
=134.775rne
■−■ 温度変化に伴う缶内ガス圧の変化次に600に
おける缶内圧の算出例を示す。なお、温度を変えて下記
60Cの場合と同様にして缶内圧を算出することができ
、これら各プロットを結ぶことにより5c。■Partial pressure of CO, gas Similarly = 0.148 atm @Partial pressure of gas = 1.450 atm ■-Calculation of total amount of CO (OC, 1 atm conversion) Co
, Total amount of gas = Dissolved amount in liquid + Empty size Gas device 17- (CO, gas partial pressure) = 134.775rne ■-■ Change in gas pressure inside the can due to temperature change Next, an example of calculating the inside pressure in the can at 600. show. In addition, the internal pressure can be calculated in the same manner as in the case of 60C below by changing the temperature, and by connecting these plots, 5c.
1、4 atm f通る圧力下限線Bが得られる。A pressure lower limit line B passing through 1 and 4 atm f is obtained.
■CO,分圧
60CCOt分圧をq−eo、とすると、缶内co、g
は134.775mA’であるから、グ(!09 =
0.664 atm
ON!分圧
60 CN*分圧をVH2とすると、缶内穐童は45.
558m#であるから、
18−
?N2−1゜991atm
0缶内圧
60C缶内圧−=0.664+1.991+0.197
+0.032=2.88 atm
■ 圧力上限線
本発明によれば、加熱滅菌した非炭酸飲料を用いるので
、一般に果汁の場合の後殺菌は60Cでよく、従って6
0tl’で充填した場合には後殺菌工程を必要としない
ことになる。しかし、コーヒーの場合のようにtzot
l’(レトルト)殺菌を行うものにあっては、120C
で8 atmの点を通り、それぞれの場合の温度変化に
よる缶内圧力を前述した圧力下限線と同様の手法により
算出し、これらプロットを結んで得られる缶内圧−湿度
曲線Aを得る。■ CO, partial pressure 60C If partial pressure of COt is q-eo, then CO, g inside the can
is 134.775mA', so g(!09 =
0.664 atm ON! Partial pressure 60 CN
Since it is 558m#, 18-? N2-1゜991 atm 0 Can internal pressure 60C Can internal pressure - = 0.664 + 1.991 + 0.197
+0.032=2.88 atm ■ Pressure upper limit line According to the present invention, since heat-sterilized non-carbonated beverages are used, post-sterilization for fruit juices generally requires only 60C;
When filling at 0 tl', no post-sterilization step is required. But as in the case of coffee tzot
For those that perform l' (retort) sterilization, 120C
The pressure inside the can due to the temperature change in each case is calculated using the same method as for the pressure lower limit line described above, and the inside pressure-humidity curve A obtained by connecting these plots is obtained.
しかして充填に際してはこれらへ曲線および8曲線の間
の領域に収まるようにその他の充填条件、すなわち飲料
中に溶解せしめる飲料中のN、に対するCO1比率およ
びこれらガスの溶解時の加圧力、並びに充填温度を設定
しなければならない。Therefore, during filling, other filling conditions must be set so as to fit within the area between these curves and 8 curves. Temperature must be set.
特に本発明にあっては、上記飲料中のN、に対するCO
1比率および溶解時の加圧力についても条件を変化させ
て充填巻締後の缶内圧力と温度との前記圧力上下線を示
したと同様の座標にプロットし、そのCO7比率および
加圧力をパラメータとする圧カー湿度曲線を求め、表示
することが一つの大きな特徴といえる。In particular, in the present invention, CO for N in the above-mentioned beverage
1 ratio and the pressure applied during melting are also changed, and plotted on the same coordinates as the above-mentioned pressure line between the internal pressure and temperature after filling and seaming, and the CO7 ratio and pressure are used as parameters. One of its major features is the ability to determine and display the pressure/humidity curve.
ガスを飲料中に溶解させる時の加圧力は充填時にそのま
ま缶に負荷されることになるため、前記と同様に缶強度
の点からその上限を8atmとするが(後述のC曲線)
、それ以下の圧力である実用的な値(後述のC′〜C″
′曲線)についてそれぞれ圧力一温度曲線を求める。Since the pressurizing force when dissolving gas in the beverage is directly applied to the can during filling, the upper limit is set at 8 atm from the viewpoint of can strength as described above (C curve described below).
, a practical value that is a pressure lower than that (C′ to C″ described later)
′ curve), find the pressure-temperature curve for each.
なお、充填前に飲料中に加圧溶解されたN、ガスおよび
CO,ガスは前述したような第1図のフローシートにお
ける充填工程と巻締工程との間に大気開放することによ
っても、N2ガスもしくはCO,ガスを含む不活性ガス
を缶上面に吹き付け、ヘッドスペースの領域をこれらの
ガスにIFl換することにより飲料中から抜けにくいと
いう驚くべき知見を本発明者らは得ており、従って充填
巻締前に飲料中に溶解したCo、ガスおよびN、ガスは
充填巻締後においてもほとんどそのまま飲料中に溶解し
得るのである。Note that the N, gas, and CO gas dissolved under pressure in the beverage before filling can also be released to the atmosphere between the filling process and the seaming process in the flow sheet shown in Figure 1 as described above. The present inventors have obtained the surprising finding that by blowing gas or an inert gas containing CO or gas onto the top of the can and converting the head space area to IFL, it is difficult for the inert gas to escape from the beverage. Co, gas, and N gas dissolved in the beverage before filling and sealing can be dissolved in the beverage almost unchanged even after filling and sealing.
そこで、加圧溶解させるCO□ガスおよびN、ガスの溶
解量から導かれる分圧と、充填巻締後の缶内空寸中のN
1、水蒸気およびO7分圧の和を以下の方法で算出した
。Therefore, we calculated the partial pressure derived from the amount of CO□ gas and N dissolved under pressure, and the amount of N in the empty space inside the can after filling and sealing.
1. The sum of water vapor and O7 partial pressures was calculated using the following method.
充填巻締後の缶内圧の算出例
前項に示したとおり、充填巻締後の缶内圧はその時の温
度による圧力下限線以上で圧力上限線以下にする必要が
ある。Calculation example of can internal pressure after filling and seaming As shown in the previous section, the can internal pressure after filling and seaming must be above the lower pressure limit line and below the upper pressure line depending on the temperature at that time.
一方、充填機の充填圧力は前述したようにガスの溶解時
加圧力とほとんど等しく、従ってガスの溶解時加圧力、
換言すれば充填圧力は缶体の耐内圧に制約されることに
なるためその上限を8 atmとし、さらに7 atm
−s 6 atm、 5 atm。On the other hand, as mentioned above, the filling pressure of the filling machine is almost equal to the pressure applied when the gas is dissolved, and therefore the pressure applied when the gas is dissolved,
In other words, the filling pressure is limited by the internal pressure resistance of the can body, so the upper limit is set at 8 atm, and further 7 atm.
-s 6 atm, 5 atm.
4 atm、 3 atmについてそれぞれ計算した。Calculations were made for 4 atm and 3 atm, respectively.
21−
また、充填機を出た缶は、一度大気開放となり、巻締機
に入るが、この隊N2ガスによる吹き付けを行うので、
空寸部はN、ガス雰囲気となっている。ただし、この時
空寸部には3 rnlの残存空気が含まれるとする。21- Also, once the can leaves the filling machine, it is exposed to the atmosphere and then enters the seaming machine, where it is sprayed with N2 gas.
The empty space has a N gas atmosphere. However, it is assumed that this space-time portion contains 3 rnl of residual air.
■ 充填温度60Cの場合
■−1サチュレータ−の気相部のCO,ガス濃度の算出
前述の缶内CO,の総! 134.775TLlガ
ス加圧溶解時のCO,ガス濃度をXとすると、ヘンリー
の法則から以下の如
くなる。■ When the filling temperature is 60C ■ Calculate the gas concentration of CO in the gas phase of the -1 saturator Total of the CO in the can above! 134.775TLl When the CO and gas concentration at the time of pressurized dissolution is set to X, the following is obtained from Henry's law.
■−1−1
ガス溶解加圧力 8 atm
134.775=507.6X0.365X8Xxx=
0.091
■−1−2
ガス溶解加圧力 7 atm
134.775=507.6X0.365X7Xxx=
0.104
22−
■−1−3
以下1同様にして、6 atm ・・”・・x = 0
. l 21 z5 atm 曲・−x=0.146.
4a jm・・””x= 0.182.3atm・・・
・・・x=Q、243、となる。■-1-1 Gas dissolution pressure 8 atm 134.775=507.6X0.365X8Xxx=
0.091 ■-1-2 Gas dissolution pressure 7 atm 134.775=507.6X0.365X7Xxx=
0.104 22- ■-1-3 Following step 1, 6 atm...”...x = 0
.. l 21 z5 atm song・-x=0.146.
4a jm...""x= 0.182.3atm...
...x=Q, 243.
■−2それぞれの溶解加圧力下おけるN2ガスは各加圧
力下におけるN2ガス量は、液中のN! it 、空寸
中のN、量および混入空気中のN、全以下のように算出
して合算した。■-2 The amount of N2 gas under each dissolving pressure is the amount of N2 gas under each pressure. it, the amount of N in the empty space, and the N in the entrained air were all calculated and summed up as follows.
■−2−1 溶解時加圧力 8atm5o7.c+
xo、olozxsx(t−0,091)+(21,6
−3)X旦33
+(axo、s )X” = 5 ts e 7 mg
33
■−2−2 溶解時加圧力 7 atm507.6X
0.0102X7X(1−0,104)+(21,6−
a )xノlユ33
十(3刈8 )x帯= 49.6 s 9 mg■−2
−3溶解時加圧力 6atm
507.6X0.0102X6X(1−0,121)±
(21,6−3)X止33
+(3X0.8)X柑=44,522 ml■−2−4
〜6
同様にして溶解時加圧力が5atms4atm 、 3
atmの場合はそれぞれ39.324m1134−1
” 7 mlz 28.974 mlとなる。■-2-1 Pressure during melting 8atm5o7. c+
xo, olozxsx (t-0,091)+(21,6
-3)Xdan33 + (axo, s)
33 ■-2-2 Pressure force during melting 7 atm507.6X
0.0102X7X(1-0,104)+(21,6-
a) x no l 33 10 (3 cuts 8) x band = 49.6 s 9 mg■-2
-3 Pressure force during melting 6 atm 507.6X0.0102X6X (1-0,121)±
(21,6-3) X stop 33 + (3X0.8)
〜6 Similarly, the pressure during melting was 5 atms4 atm, 3
For ATM, it is 39.324m1134-1 respectively.
” 7 ml x 28.974 ml.
■−3缶内co、ガス分圧算出
缶内のCo1の体積(mlz OCS1 atm換算値
)は■−1に示すとおり134.775−であるから缶
内CO,ガス分圧Tcは次式から求まる。■-3 Calculation of CO and gas partial pressure in the can Since the volume of Co1 in the can (mlz OCS1 atm conversion value) is 134.775- as shown in ■-1, the CO and gas partial pressure Tc in the can can be calculated from the following formula. Seek.
73
134.775=507.6X0.365ytc+ 2
73+6゜N21.6X%g−c = 0.664 a
tm
■−4缶内N、ガス分圧算出
缶内のN、の体積(”% O0% 1 atm換算値)
はω−2に示すとおりであるから、缶内N。73 134.775=507.6X0.365ytc+2
73+6°N21.6X%g-c = 0.664 a
tm ■-4 N in the can, Gas partial pressure calculation Volume of N in the can ("% O0% 1 ATM conversion value)
is as shown in ω-2, so N in the can.
ガス分圧を?Nとすると次式が成り立つ。Gas partial pressure? When N is set, the following formula holds true.
■−4−1 溶解時加圧力 8atm73
54J367=507.6X0.0102−ン公+2□
3+、。X21.6FfN= 2.398 atm
■−4−2 溶解時加圧力 7atm73
49.689=507.6X0.0102i−N−2,
3+6oX 21.65./N俗= 2.171 at
m
■−4−3〜6
同様にして溶解時加圧力か6atm、5atm s
4 atm z 3 atmの場合の9Hはそれぞれ
1.945atm、 1.718atms 1.492
atms1.266 atmとなる。■-4-1 Pressure force during melting 8 atm73 54J367=507.6X0.0102-ton+2□
3+. X21.6FfN= 2.398 atm ■-4-2 Pressure during melting 7 atm73 49.689=507.6X0.0102i-N-2,
3+6oX 21.65. /N common = 2.171 at
m ■-4-3~6 Similarly, apply pressure during melting is 6 atm, 5 atm s
9H in case of 4 atm z 3 atm is 1.945 atm, 1.718 atms 1.492 respectively
ATMS1.266 ATM.
■−5缶内全圧の計算
缶内全圧は(〔■−3・・・CO,分圧〕十〔■−4・
・・当分圧) +(H,O分圧〕十〔02分圧〕)であ
るから、充填湿度60Cの場合、各溶解加圧力下におけ
る充填巻締直後の缶内平衡圧の全圧は以下のとおりとな
り、図(第2図)中にプロットする。■-5 Calculation of the total pressure inside the can The total pressure inside the can is ([■-3...CO, partial pressure] ten [■-4.
... Current partial pressure) + (H, O partial pressure] 10 [02 partial pressure]), so if the filling humidity is 60C, the total equilibrium pressure in the can immediately after filling and seaming under each melting pressure is as follows: and is plotted in the figure (Figure 2).
(以下余白)
25−
[′
■ 充填温度60Cの場合と同様にして各充填温度にお
ける溶解時加圧力の値を変えて充填巻締後の缶内圧力を
算出し、これらの値を前記座標にプロットし、これらプ
ロットを結ぶことによりC、C’、 C’、 C”、・
・・・・・曲線が得られる。(Left below) 25- [' ■ In the same way as when the filling temperature was 60C, calculate the pressure inside the can after filling and sealing by changing the value of the pressurizing force during melting at each filling temperature, and convert these values into the above coordinates. By plotting and connecting these plots, we can obtain C, C', C', C'', ・
...A curve is obtained.
■ ガス中CO!比率の圧力一温度曲線の算出また、飲
料中に加圧溶解される馬ガスおよびCO,ガスのco、
比率を一定とした場合の充填圧、充填温度から、充填巻
締後の缶内圧カ一温度曲線を算出した。その算出は前項
充填温度60Cにおける溶解加圧力に対するガス26−
のCO1比率の場合に準じて行った。■ CO in gas! Calculation of the pressure-temperature curve of the ratio Also, horse gas and CO dissolved under pressure in the beverage, gas co,
The can internal pressure and temperature curve after filling and seaming was calculated from the filling pressure and filling temperature when the ratio was kept constant. The calculation was carried out in accordance with the case of the CO1 ratio of gas 26- to the melting pressure at the filling temperature of 60C in the previous section.
一方、炭酸飲料用充填ラインによって柚々の条件下にお
いて、充填巻締を行って、缶内圧を測定し、上述の理論
的推測値が実質的に実用できることを確認した。On the other hand, the can internal pressure was measured by filling and sealing under various conditions on a carbonated beverage filling line, and it was confirmed that the above-mentioned theoretical estimated value was practically applicable.
その結果、充填巻締後の缶内平衡圧と充填に必要な条件
(充填温度、ガスのCO,ガスの比率、ガスの加圧溶解
圧)との関係を一目瞭然と示すことができる実用的な図
表を完成したのである。As a result, the relationship between the equilibrium pressure inside the can after filling and seaming and the conditions necessary for filling (filling temperature, gas CO, gas ratio, pressurized gas dissolution pressure) can be clearly shown in a practical manner. The diagram was completed.
かくして第2図に示されるような線図(以下これをKH
線図という)が作成されることになる。このような第2
図のKH線図は軟質缶の材質、寸法、それらに伴う缶強
度、容量、ヘッドスペースの容量等が設定されれば、上
記と同様にして各設定条件に対応してそれぞれのKH線
図が作成される。Thus, the diagram shown in Figure 2 (hereinafter referred to as KH)
(referred to as a line diagram) will be created. A second like this
In the KH diagram shown in the figure, once the soft can material, dimensions, associated can strength, capacity, head space capacity, etc. are set, each KH diagram can be created corresponding to each setting condition in the same way as above. Created.
この第2図のKH線図において缶内圧力上限線A1缶内
圧力下限線B1および8 atmの溶解時加圧力の缶内
圧カ一温度曲線Cで囲まれる範囲内の条件にて充填を行
えば充填巻締後の缶内圧力が倍変形を生じない所定範囲
となり、非炭酸飲料の軟質缶への充填が可能となる。In the KH diagram in Fig. 2, if filling is carried out under the conditions surrounded by the upper limit line A of can pressure, the lower limit line B1 of can internal pressure, and the internal pressure of melting pressure of 8 atm and temperature curve C. The pressure inside the can after filling and sealing is within a predetermined range that does not cause double deformation, making it possible to fill the soft can with non-carbonated beverages.
第2図を用いた実際の充填における合目的条件は、例え
ば充填温度を第1義的に規制する場合、第2図の特定の
温度の点を上方に延長し、曲線Aもしくは曲線Cのいず
れか下方の線と曲1lllilBとの曲線間において溶
解時加圧力の許容し得る範囲が求まり、この範囲のいず
れかの溶解加圧力を選定することによりその溶解加圧力
と温度との交点におけるガスのCO1比率が決定される
。あるいはまた前記特定の設定充填温度における曲mh
もしくは曲線Cと曲線Bとの曲線間においてガスのCO
7比率の許容し得る範囲が求まり、この範囲のいずれか
のCQ、比率を選定することにより溶解加圧力が求めら
れることになる。これら充填温度、溶解加圧力およびC
O。For example, when the filling temperature is primarily regulated, the appropriate conditions for actual filling using FIG. 2 are to extend the specific temperature point in FIG. The allowable range of the melting pressure is determined between the lower line and the curve 1llilB, and by selecting a melting pressure within this range, the gas flow at the intersection of the melting pressure and the temperature is determined. A CO1 ratio is determined. Alternatively, the song mh at the specific set filling temperature
Or between the curves C and B, the gas CO
An allowable range of seven ratios is determined, and by selecting any CQ and ratio within this range, the melting pressure can be determined. These filling temperature, melting pressure and C
O.
比率はいずれをも基準とすることができる。The ratio can be based on either.
上述の如きK)I線図から明らかなように、充填温度は
例えば第2図の前提条件である500mAアルミ缶にお
いて、20〜81Cと広範囲の温度に亘って選択し得る
ことがわかる。従って果汁を充填する場合には充填温度
を60C以上とすることにより後殺菌工程が省略し得る
という、従来全く考えられなかった効果を有するもので
ある。そして、このようなKH線図を予め作成すること
により、各充填条件が合目的的に得られることになり、
しかも従来例におけるよりも高温度での充填が可能であ
ることか本発明により初めて確認、実現され、その高温
充填に際しての溶解加圧力およびCO□比率もK)II
J図から極めて容易に決定することができることになる
。As is clear from the above-mentioned K)I diagram, the filling temperature can be selected over a wide range of temperatures from 20 to 81C, for example, for a 500 mA aluminum can, which is the prerequisite in Fig. 2. Therefore, when filling with fruit juice, the post-sterilization step can be omitted by setting the filling temperature to 60C or higher, which is an effect that has never been thought of in the past. By creating such a KH diagram in advance, each filling condition can be purposefully obtained.
Furthermore, it has been confirmed and realized for the first time by the present invention that filling at a higher temperature than in the conventional method is possible, and the melting pressure and CO□ ratio during high-temperature filling are also improved.
This can be determined quite easily from the J diagram.
効 果
以上のような本発明によれば、充填飲料、缶の材質、そ
の寸法、容量等が決定されることにより、各KH線図が
作成され、このKH線図により充填の合目的条件が容易
に決定され、特に高温充填が可能となり、省エネルギー
的に極めて有用であり、さらに従来の炭酸飲料の軟質缶
への充填ラインもしくは非炭酸飲料のスチール29−
缶等の硬質缶への充填ライン、装置をそのままもしくは
わずかの変更を行うことにより非炭酸飲料の軟質缶への
充填が可能であるのみならず、炭酸飲料および非炭酸飲
料共に同一の軟質缶、例えばアルミ製DI缶への充填が
可能となり、缶の統一が図れることになり、この点から
も省エネルギーとなる。Effects According to the present invention as described above, each KH diagram is created by determining the filling beverage, the material of the can, its dimensions, capacity, etc., and the purpose conditions for filling are determined by this KH diagram. It is easy to determine, in particular enables high-temperature filling, is extremely useful in terms of energy saving, and can be used in conventional filling lines for soft cans for carbonated beverages or for filling hard cans such as steel 29- cans for non-carbonated beverages. By using the device as is or with slight modifications, it is not only possible to fill soft cans with non-carbonated beverages, but it is also possible to fill both carbonated and non-carbonated beverages into the same soft can, such as an aluminum DI can. This means that the cans can be unified, which also results in energy savings.
実施例
缶胴厚さQ、14mm、底板厚さ0,42■のアルミ製
s OOml用DI缶に10%果汁を第1図に示される
ような装置を用いて図示の工程に従って充填した。この
ような前提条件におけるKH線図、すなわち第2図にお
いて、充填温度を600に設定し、その時の混合ガスの
溶解圧力を6 atmとし、従って混合ガス中のCO,
ガスを12%(飲料中のCO,ガスは重量比5/100
00 )として充填し、その後大気開放中にN、ガスを
缶上面に吹き付け、その後巻締した。充填巻締後の缶は
これを50まで冷却したが、指圧を加えても缶の変形は
全く生じなかった。EXAMPLE 10% fruit juice was filled into an aluminum sOOml DI can with a can body thickness Q of 14 mm and a bottom plate thickness of 0.42 mm using the apparatus shown in FIG. 1 according to the steps shown. In the KH diagram under these preconditions, that is, Fig. 2, the filling temperature is set to 600, and the dissolution pressure of the mixed gas at that time is 6 atm, and therefore the CO in the mixed gas,
12% gas (CO in beverages, gas is 5/100 by weight)
00), and then N and gas were sprayed onto the top surface of the can while it was open to the atmosphere, and then the can was sealed. After the can was filled and sealed, the can was cooled to a temperature of 50°C, but no deformation of the can occurred even when finger pressure was applied.
30− また上記と全く同様にしてN2ガスおよびCO。30- In addition, N2 gas and CO were added in exactly the same manner as above.
ガスを別個にサチュレータ−へ供給して加圧溶解させた
場合にも同様の結果か得られた。Similar results were obtained when the gas was separately supplied to the saturator and dissolved under pressure.
第1図は本発明を実施する場合の概略工程説明図である
。
第2図は各条件を変化させた場合の缶内圧力と温度との
関係図である。
1・・・デアレータ−2・・・調合タンク3・・・熱交
換器 4・・・サチュレータ−5・・・CO,発
生機 6・・・N6発生機。
7.8・・・弁 9・・・混合器10・・・
自動圧力調節弁 11・・・充填機12・・・巻締機
13・・・サージタンク31−
手続補正書(自発)
昭和58年4月11日
1、事件の表示
昭和58年 特 許 願第19157号2、発明の名称
非炭酸飲料の充填方法
東京都中央区京橋3丁目7番1号
(005) 朝日麦酒株式会社(外1名)代表者村 井
勉
4、代理 人
5、補正の対象
明細書の「特許請求の範囲」および「発明の詳細な説明
」の各欄
6、補正の内容
(1) 特許請求の範囲を別紙のように補正する。
(2)第3頁第17行目および第9頁第11行目の「ス
ポーツドリンク」を「スポーツドリンク、ミネラルウォ
ーター」と補正する。
7、添付書類の目録
(1)別 紙 1通
別 紙
特許請求の範囲
1、 調合後加熱滅菌した非炭酸飲料にN2ガスおよび
C02ガスをそのCO,ガス量が飲料の重量比15/1
0000以下の量で加圧溶解せしめた後、この飲料を軟
質缶に充填するに際し、充填巻締後の缶内圧力と温度と
を軸とする座標にプロットした場合の缶内圧力が5℃に
て1、1 atm以上の点を通る缶内圧一温度曲線以上
であり、且つ後殺菌加熱温度において缶内圧力が8 a
tmの点を通る缶内圧一温度曲線以下の缶内圧一温度曲
線範囲を設定し、充填前に飲料中に溶解せしめるN2に
対するCO□比率およびこれらガスの飲料中への溶解時
の加圧力を8 atmを上限として変化させて充填巻締
後の缶内圧力を前記座標にプロットし、各充填温度にお
ける前記缶内圧一温度曲線範囲内に収まるCOt比率お
よび溶解時加圧力を予め選定してこの各充填温度にて充
填し、充填後、巻締工程までの間N2ガスもしくはCO
2ガスを1−
含む不活性ガスを缶上面に吹き付はヘッドスペースの領
域をこれらガスに置換後、巻締めすることを特徴とする
非炭酸飲料の充填方法。
2、 非炭酸飲料が果汁、コーヒー、紅茶、ココア、乳
酸飲料、ワイン、日本酒、スープ、茶、麦茶、スポーツ
ドリンク、ミネラルウォーターのいずれかである特許請
求の範囲第1項記載の方法。
3、飲料中に加圧溶解されるCO,ガス量が飲料の重量
比5/10000以下の量である特許請求の範囲第1項
記載の方法。
生 飲料中に加圧溶解されるN2ガスおよびCO。
ガスが混合ガスとされる特許請求の範囲第1項記載の方
法。
5、 前記缶内圧一温度曲線範囲における圧力下限線が
5℃にて1.4 atmの点を通る缶内圧一温度曲線以
上である特許請求の範囲第1項記載の方法。
6、軟質缶がアルミ缶である特許請求の範囲第1項記載
の方法。
2−
7、 充填温度が20〜81℃である特許請求の範囲第
1項記載の方法。
8、 溶解せしめるガスの002比率が5〜13%であ
る特許請求の範囲第6項記載の方法。
9、 混合ガスの溶解時加圧力が3〜8 atmである
特許請求の範囲第6項記載の方法。
10、 充填温良が60℃である特許請求の範囲第6
項記載の方法。
11、 充填後、巻締工程までの間に缶上面に吹き付
けるガスがN、ガスとCO□ガスとの混合ガスである特
許請求の範囲第1項記載の方法。
3−FIG. 1 is a schematic process explanatory diagram for carrying out the present invention. FIG. 2 is a diagram showing the relationship between can pressure and temperature when various conditions are changed. 1... Dealator - 2... Preparation tank 3... Heat exchanger 4... Saturator - 5... CO, generator 6... N6 generator. 7.8... Valve 9... Mixer 10...
Automatic pressure control valve 11...Filling machine 12...Sealing machine 13...Surge tank 31- Procedural amendment (voluntary) April 11, 1981 1, Indication of case 1982 Patent Application No. No. 19157 No. 2, Title of Invention Method for filling non-carbonated beverages 3-7-1 Kyobashi, Chuo-ku, Tokyo (005) Asahi Beer Co., Ltd. (1 other person) Representative Tsutomu Murai 4, Agent 5, Subject of amendment Column 6 of "Claims" and "Detailed Description of the Invention" of the specification, contents of amendment (1) The claims are amended as shown in the attached sheet. (2) "Sports drink" on page 3, line 17 and page 9, line 11 is corrected to "sports drink, mineral water." 7. List of Attached Documents (1) Attachment 1 Attachment Paper Claim 1: N2 gas and CO2 gas are added to a non-carbonated beverage that has been heat sterilized after preparation, and the amount of gas is 15/1 by weight of the beverage.
After dissolving under pressure in an amount of 0,000 or less, when filling this beverage into a soft can, the pressure inside the can after filling and sealing is plotted on a coordinate axis with the inside pressure and temperature at 5°C. The can internal pressure is higher than the temperature curve passing through the point of 1, 1 atm or higher, and the can internal pressure is 8 a at the post-sterilization heating temperature.
Set the can internal pressure-temperature curve range below the can internal pressure-temperature curve passing through the point tm, and set the CO□ ratio to N2 dissolved in the beverage before filling and the pressurizing force when these gases are dissolved in the beverage to 8. The can internal pressure after filling and seaming is plotted on the above coordinates by varying the ATM as the upper limit, and the COt ratio and melting pressure that fall within the range of the can internal pressure-temperature curve at each filling temperature are selected in advance, and each of these is determined by Fill at the filling temperature and use N2 gas or CO after filling until the seaming process.
A method for filling a non-carbonated beverage, which comprises spraying an inert gas containing two gases onto the top surface of the can, replacing the head space area with the gas, and then sealing the can. 2. The method according to claim 1, wherein the non-carbonated beverage is any one of fruit juice, coffee, black tea, cocoa, lactic acid drinks, wine, sake, soup, tea, barley tea, sports drinks, and mineral water. 3. The method according to claim 1, wherein the amount of CO and gas dissolved under pressure in the beverage is less than 5/10000 by weight of the beverage. N2 gas and CO dissolved under pressure into the raw beverage. 2. The method according to claim 1, wherein the gas is a mixed gas. 5. The method according to claim 1, wherein the lower limit line of the pressure in the can internal pressure-temperature curve range is equal to or higher than the can internal pressure-temperature curve passing through a point of 1.4 atm at 5°C. 6. The method according to claim 1, wherein the flexible can is an aluminum can. 2-7. The method according to claim 1, wherein the filling temperature is 20 to 81°C. 8. The method according to claim 6, wherein the 002 ratio of the gas to be dissolved is 5 to 13%. 9. The method according to claim 6, wherein the applied pressure during dissolution of the mixed gas is 3 to 8 atm. 10. Claim 6 in which the filling temperature is 60°C
The method described in section. 11. The method according to claim 1, wherein the gas blown onto the top surface of the can after filling and before the seaming process is a mixed gas of N gas and CO□ gas. 3-
Claims (1)
CO,ガスをそのCO!ガス量か飲料の重量比15/1
0000以下の量で加圧溶解せしめた後、この飲料を軟
質缶に充填するに際し、充填巻締後の缶内圧力と湿度と
を軸とする座標にプロットした場合の缶内圧力が5Cに
て1、 l atm以上の点を通る缶内圧一温度曲線以
上であり、且つ後殺菌加熱温度において缶内圧力が8
atmの点を通る缶内圧一温度曲線以下の缶内圧一温度
曲線範囲を設定し、充填前に飲料中に溶解せしめるN、
に対するCO8比率およびこれらガスの飲料中への溶解
時の加圧力を8 atmを上限として変化させて充填巻
締後の缶内圧力を前記座標にプレットし、各充填温度に
おける前記缶内圧一温度曲線範囲内に収まるCO1比率
および溶解時加圧力を予め 1− 選定してこの各充填温度にて充填し、充填後、巻締工程
までの間N、ガスもしくはCO,カスを含む不活性ガス
を缶上面に吹き付はヘッドスペースの領域をこれらガス
に置換後、巻締めすることを特徴とする非炭酸飲料の充
填方法02、 非炭酸飲料が果汁、コーヒー、紅茶、コ
コア、乳酸飲料、ワイン、日本酒、スープ、茶)麦茶、
スポーツドリンクのいずれかである特許請求の範囲第1
項記載の方法。 3、 飲料中に加圧溶解されるCO,ガス量が飲料の重
量比5/10000以下の量である特許請求の範囲第1
項記載の方法。 4、飲料中に加圧溶解されるN、ガスおよびCO。 ガスが混合ガスとされる特許請求の範囲第1項記載の方
法。 5、前記缶内圧一温度曲線範囲における圧力下限線が5
Cにて1.4atmO点を通る缶内圧一温度曲線以上で
ある特許請求の範囲第1項記載の方法。 6、 軟質缶がアルミ缶である特許請求の範囲第1項記
載の方法。 7. 充填湿度が20〜81Gである特許請求の範囲第
1項記載の方法。 8、 溶解せしめるガスのCO1比率が5〜13%であ
る特許請求の範囲第6項記載の方法。 9、混合ガスの溶解時加圧力が3〜8 atmである特
許請求の範囲第6項記載の方法。 10、 充填湿度が60Cである特許請求の範囲第6
項記載の方法。 11、 充填後、巻締工程までの間に缶上面に吹き付
けるガスがN、ガスとCO2ガスとの混合ガスである特
許請求の範囲第1項記載の方法。[Claims] 1. Add N, gas, and CO to a non-carbonated beverage that has been heat sterilized after preparation. Gas amount or beverage weight ratio 15/1
After dissolving under pressure in an amount of 0,000 or less, when filling this beverage into a soft can, the pressure inside the can after filling and sealing is plotted on a coordinate axis with the humidity and the inside pressure at 5C. 1. The can internal pressure is higher than the temperature curve passing through the point equal to or higher than 1 atm, and the can internal pressure is 8 at the post-sterilization heating temperature.
Set the can internal pressure-temperature curve range below the can internal pressure-temperature curve passing through the point of ATM, and dissolve N in the beverage before filling.
The can internal pressure after filling and seaming is plotted on the above coordinates by changing the CO8 ratio and the pressurizing force when these gases are dissolved in the beverage with an upper limit of 8 atm, and the can internal pressure-temperature curve at each filling temperature is plotted. 1- Select in advance the CO1 ratio and melting pressure that fall within the range, fill at each filling temperature, and after filling, inert gas containing N, gas or CO, and scum can Filling method for non-carbonated beverages 02, characterized in that spraying on the top surface replaces the head space area with these gases and then tightening. , soup, tea) barley tea,
Claim 1 which is any sports drink
The method described in section. 3. Claim 1, wherein the amount of CO and gas dissolved under pressure in the beverage is less than 5/10000 of the weight ratio of the beverage.
The method described in section. 4. N, gas and CO dissolved under pressure in beverages. 2. The method according to claim 1, wherein the gas is a mixed gas. 5. The pressure lower limit line in the can internal pressure-temperature curve range is 5.
The method according to claim 1, wherein the internal pressure of the can is equal to or higher than the temperature curve passing through the 1.4 atmO point at C. 6. The method according to claim 1, wherein the flexible can is an aluminum can. 7. The method according to claim 1, wherein the filling humidity is 20 to 81G. 8. The method according to claim 6, wherein the CO1 ratio of the gas to be dissolved is 5 to 13%. 9. The method according to claim 6, wherein the applied pressure during dissolution of the mixed gas is 3 to 8 atm. 10. Claim 6 in which the filling humidity is 60C
The method described in section. 11. The method according to claim 1, wherein the gas sprayed onto the top surface of the can after filling and before the seaming process is a mixed gas of N gas and CO2 gas.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1915783A JPS59152194A (en) | 1983-02-08 | 1983-02-08 | Method of filling non-carbonated drink |
GB08328973A GB2134496A (en) | 1983-02-08 | 1983-10-31 | Method of filling cans with substantially non-carbonated drinks |
DE19833339839 DE3339839A1 (en) | 1983-02-08 | 1983-11-04 | METHOD FOR FILLING CARBONIC-FREE DRINKS |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1915783A JPS59152194A (en) | 1983-02-08 | 1983-02-08 | Method of filling non-carbonated drink |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59152194A true JPS59152194A (en) | 1984-08-30 |
JPH0314719B2 JPH0314719B2 (en) | 1991-02-27 |
Family
ID=11991570
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1915783A Granted JPS59152194A (en) | 1983-02-08 | 1983-02-08 | Method of filling non-carbonated drink |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPS59152194A (en) |
DE (1) | DE3339839A1 (en) |
GB (1) | GB2134496A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013062055A1 (en) * | 2011-10-27 | 2013-05-02 | 大日本印刷株式会社 | Water-filling method, water-filling system, and water-filling bottle |
CZ306404B6 (en) * | 2007-06-19 | 2017-01-11 | Květoslav Hanel | A device for packaging of especially drinking water |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4856680A (en) * | 1985-10-09 | 1989-08-15 | Sitton Robert E | Method and apparatus for dispensing beverages |
GB8724281D0 (en) * | 1987-10-16 | 1987-11-18 | Continental Wine Experts Ltd | Canning soft drinks |
FR2636918B1 (en) * | 1988-09-26 | 1991-01-11 | Air Liquide | PROCESS AND INSTALLATION FOR PACKAGING A NON-CARBONATE LIQUID IN PACKAGING |
JPH0712281B2 (en) * | 1989-06-27 | 1995-02-15 | ザ・コカ‐コーラ・カンパニー | Coffee can beverage manufacturing method |
EP0447103A1 (en) * | 1990-03-12 | 1991-09-18 | The BOC Group plc | Dissolving gas in a liquid |
EP0447104A1 (en) * | 1990-03-12 | 1991-09-18 | The BOC Group plc | Dissolving a gas in a liquid |
GB9026385D0 (en) * | 1990-12-05 | 1991-01-23 | Boc Group Plc | Dissolving a gas in a liquid |
GB9114503D0 (en) * | 1991-07-04 | 1991-08-21 | Cmb Foodcan Plc | Filling cans |
NL1000450C2 (en) * | 1995-05-29 | 1996-12-02 | Sara Lee De Nv | Carbonated drink. |
DE19917944A1 (en) * | 1999-04-21 | 2000-11-23 | Messer Austria Gmbh Gumpoldski | Process for stabilizing the pressure of PET drinks bottles filled with still beverages |
FR2815937B1 (en) * | 2000-10-26 | 2003-01-24 | Carboxyque Francaise | PROCESS AND INSTALLATION AND PACKAGING OF LIQUID PRODUCT IN A PACKAGE |
EP2508447A1 (en) * | 2011-04-08 | 2012-10-10 | Crown Packaging Technology, Inc. | Self-dispensing container |
IL222023B (en) * | 2012-09-20 | 2020-01-30 | The Central Bottling Company Ltd | A method for filling bottles |
DE102018119519A1 (en) * | 2018-08-10 | 2020-02-13 | Khs Corpoplast Gmbh | Increasing the top load resistance of light plastic containers |
-
1983
- 1983-02-08 JP JP1915783A patent/JPS59152194A/en active Granted
- 1983-10-31 GB GB08328973A patent/GB2134496A/en not_active Withdrawn
- 1983-11-04 DE DE19833339839 patent/DE3339839A1/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CZ306404B6 (en) * | 2007-06-19 | 2017-01-11 | Květoslav Hanel | A device for packaging of especially drinking water |
WO2013062055A1 (en) * | 2011-10-27 | 2013-05-02 | 大日本印刷株式会社 | Water-filling method, water-filling system, and water-filling bottle |
Also Published As
Publication number | Publication date |
---|---|
DE3339839A1 (en) | 1984-08-09 |
JPH0314719B2 (en) | 1991-02-27 |
GB2134496A (en) | 1984-08-15 |
GB8328973D0 (en) | 1983-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS59152194A (en) | Method of filling non-carbonated drink | |
US4347695A (en) | Beverage bottling method | |
CN1116209C (en) | Assembly containing container and instant beverage | |
US20070248719A1 (en) | Process for producing beer | |
JPS6312582B2 (en) | ||
CA2037998A1 (en) | Dissolving a gas in a liquid | |
JP2002264912A (en) | Method of filling content liquid and beverage in closure device | |
JPS6058114B2 (en) | Filling method for non-sparkling beverages | |
US4775538A (en) | Preparation of alcohol free wine | |
JP2575952B2 (en) | Production method of oxygen-containing mineral water in closed container | |
JPS6214777A (en) | Canned drink and production thereof | |
JPS63273460A (en) | Production of beverage containing small quantity of gaseous carbon dioxide | |
JPS6023193A (en) | Method of thermally filling non-carbonated beverage | |
JP7250046B2 (en) | Method for dealcoholization of beverages | |
CA1320934C (en) | Gas dissolving method | |
CN1092622A (en) | Carbonate food and improving one's methods | |
JPS6384466A (en) | Canning method | |
CN112646685A (en) | Soda wine and preparation method thereof | |
JPS63207351A (en) | Apple tea contained in hermetically sealed container containing small volume of gaseous carbon dioxide | |
Girardon | Gases in Enology | |
JPH0471772B2 (en) | ||
JPH0358778A (en) | Storing and aging method of wines | |
JPS62135124A (en) | Method of filling can | |
EP3498817B1 (en) | Beverage product, and system and method for manufacturing the same | |
US20040107839A1 (en) | Method of serving heated beverages |