[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS59150467A - Manufacture of complementary type semiconductor device - Google Patents

Manufacture of complementary type semiconductor device

Info

Publication number
JPS59150467A
JPS59150467A JP58018534A JP1853483A JPS59150467A JP S59150467 A JPS59150467 A JP S59150467A JP 58018534 A JP58018534 A JP 58018534A JP 1853483 A JP1853483 A JP 1853483A JP S59150467 A JPS59150467 A JP S59150467A
Authority
JP
Japan
Prior art keywords
film
substrate
well
oxide film
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58018534A
Other languages
Japanese (ja)
Inventor
Eizo Hokkezu
法華津 栄三
Takeo Kondo
近藤 健夫
Takao Adachi
足立 隆夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58018534A priority Critical patent/JPS59150467A/en
Publication of JPS59150467A publication Critical patent/JPS59150467A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To form a well diffused layer of small substrate effect by reducing impurity concentration and thus contrive to increase the operating speed by ion- implanting an impurity through an oxidation resistant film in addition to an oxide film. CONSTITUTION:An Si oxide film 22 is formed by thermally oxidizing the surface of an n type Si substrate 21, and then an Si nitride film pattern 23' covering an n type active region scheduled part and a p type one is formed. The substrate surface at the part for forming a field oxide film is exposed by forming an SiO2 film 25 and a resist pattern 26 and then etching them, boron is ion-implanted, and thermal oxidation treatment is performed, and accordingly a p-well 27 is formed. Boron concentration is low and diffusion depth is shallow in the p type active region scheduled part covered with said pattern 23', and a field oxide film forming scheduled part in the periphery is formed with a high boron concentration and a deep diffusion depth. Since said concentration in the active region is small, the substrate effect of an n-MOSFET formed in the p-well 27 can be reduced.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は相補型半導体装置の製造方法に関し、特にウェ
ル拡散層を形成する方法の改良に係る◎〔発明の技術的
背景〕 相補型半導体装置(以下C−MO8という)はpチャン
ネル絶縁グー) 14昇効果トランジスタ(以下p−M
O8FETという)およびnチャンネル絶縁ゲート電界
効果トランジスタ(以下n −MOS F ETという
)を同一の半導体基板上に形成した構造を治している。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for manufacturing a complementary semiconductor device, and particularly relates to an improvement in a method for forming a well diffusion layer. [Technical Background of the Invention] A complementary semiconductor device ( (hereinafter referred to as C-MO8) is a p-channel insulation group) 14 rising effect transistor (hereinafter referred to as p-M
A structure in which an n-channel insulated gate field effect transistor (hereinafter referred to as an n-MOS FET) and an n-channel insulated gate field effect transistor (hereinafter referred to as an n-MOS FET) are formed on the same semiconductor substrate is being developed.

第1図は上記C−MO8の一例を示す説明図で、同図に
おいてlはn型のシリコン基板である。該シリコン基板
lにはp型のウェル拡散層(以下p−ウェルという)2
が形成されている。シリコン基板Iの表面には、そのn
型領域とp−ウェル2との境界部分において両者にまた
がるフィールド酸化膜3が形成され、該フィールド酸化
膜3によりp−MO8FjW用のn型活性領域およびn
−MOSFET用のp型活性領域が分離されている。そ
して、n型活性領域表層にはp十型のソース領域4およ
びドレイン領域5、並びにそのチャンネル領域上にはゲ
ート酸化膜6を介してゲート′咀極7が形成され、これ
らがp−MOSFETを構成している。他方、p型活性
領域表層には11+Wのソース領域4′ およびドレイ
ン領域5′、並びにそのチャンネル領域上にはゲート酸
化膜6′を介してゲート電@A7′が形成され”Cいて
、これらがn −M、08FE’l’を栴成している。
FIG. 1 is an explanatory diagram showing an example of the above-mentioned C-MO8, in which l represents an n-type silicon substrate. The silicon substrate 1 has a p-type well diffusion layer (hereinafter referred to as p-well) 2.
is formed. On the surface of the silicon substrate I, the n
A field oxide film 3 is formed at the boundary between the type region and the p-well 2, and the field oxide film 3 forms an n-type active region for the p-MO8FjW and an n-type active region for the p-MO8FjW.
- The p-type active region for the MOSFET is separated. A p-type source region 4 and a p-type drain region 5 are formed on the surface layer of the n-type active region, and a gate electrode 7 is formed on the channel region with a gate oxide film 6 interposed therebetween. It consists of On the other hand, a source region 4' and a drain region 5' of 11+W are formed in the surface layer of the p-type active region, and a gate voltage @A7' is formed on the channel region through a gate oxide film 6'. n-M, 08FE'l' was created.

なお、8.8’はチャンネルストッパ領域である。Note that 8.8' is a channel stopper area.

上記第1図の例から理解できるように、−心電型の半尋
体基板にC−MO8を形成するためには、基板に対して
逆導電型のウェル拡散層を形成し1.cけれはならない
。このウェル拡散層の従来の形成方法をp−ウェルを例
に説明1゛れは次の辿りである。
As can be understood from the example shown in FIG. 1 above, in order to form C-MO8 on an electrocardiogram type semicircular substrate, a well diffusion layer of the opposite conductivity type is formed on the substrate.1. c. The conventional method for forming this well diffusion layer will be explained below using a p-well as an example.

(1)  まt 、n型シリコン基板11の表面を高温
で熱1枝化することにより、シリコン基板11の全曲を
榎う熱1)り化膜12を形成する(第2図(5)図示)
0 (11)次に、p−ウェル予定部上に開孔を廟するレジ
ストパターン13を形成しく第2図CB)図示)、続い
て該レジストパターン13をマスクとし、熱酸化膜12
を通してボロン等のp型不純物なp−ウェル予定部に選
択的にイオン注入する(第2図(C”)図示)。
(1) By heating the surface of the n-type silicon substrate 11 at a high temperature, a heat oxide film 12 is formed that absorbs the entire surface of the silicon substrate 11 (as shown in FIG. 2 (5)). )
(11) Next, a resist pattern 13 is formed to form an opening on the planned p-well portion (as shown in FIG.
Through the process, ions of p-type impurity such as boron are selectively implanted into the planned p-well area (as shown in FIG. 2(C'')).

このとき、熱酸化%H2+i、メfオン注入時の衝撃か
らシリコン基板11表向を保峨するための緩衝膜として
の作用を果たす。
At this time, it acts as a buffer film to protect the surface of the silicon substrate 11 from the impact of thermally oxidized %H2+i and mefon implantation.

(111)次に、レジストパターン13をマスクとして
熱酸化膜12をエツチングし、p−ウェル予定部のシリ
コン基板表面をjh出させる(第2図(IJ)図示)。
(111) Next, the thermal oxide film 12 is etched using the resist pattern 13 as a mask to expose the surface of the silicon substrate in the planned p-well area (as shown in FIG. 2 (IJ)).

続いて、レジストノくター/13および熱酸化膜12を
すべて除去した後、シリコン基板lを高温で熱処理して
イオン注入されたp型不Δ律物のドライブインを行ない
、p−ウェル14を形成1−る。この熱処理によってシ
リコン基&Iの表面は新lζな熟眠化膜15で榎わ牙(
る(第2区1(絢図示)。
Subsequently, after removing the resist nozzle 13 and the thermal oxide film 12, the silicon substrate 1 is heat-treated at high temperature to drive-in the ion-implanted p-type impurities, thereby forming the p-well 14. 1-ru. As a result of this heat treatment, the surface of the silicon base &
(Second ward 1 (illustrated by Ayan).

なお、第2図(C)のようにp−ウェル予定部上の熱酸
化膜12だけを先にI&j?去しているから、再瓜熱岐
化jJ1tzをエツチングするとシリコン基板11の表
面Kpp−フェル4の形跡が残り、この形跡はその後の
C−MO8製造工程においてマスク合わせ等の基準とし
て用いられる。
In addition, as shown in FIG. 2(C), only the thermal oxide film 12 on the planned p-well portion is first formed into I&J? Therefore, when etching the curdled jJ1tz, traces of the Kpp-fer 4 remain on the surface of the silicon substrate 11, and this trace is used as a reference for mask alignment, etc. in the subsequent C-MO8 manufacturing process.

〔背景技術の問題点〕[Problems with background technology]

ところで、第1図のC−MUSの特性に影響を与える要
因の一つに、 p−MIJS、L”E’l’ではソース
となるp十拡t4と基板lとの間、またN −M(J 
S i”Ell+ではソースとなるN十拡散4′とp−
ウェル2との間に九位差が発生し、 p−MUSi’E
i’  がオンした場合には4と5の間のチャンネル領
域で、また位差で変化し、従って夫々の1μ(1値電圧
が変化するという問題がある。これは基板効果と叶&’
、I−4シるもので1基&領域1,2の不純物濃度がI
MI <7LるにどWJ fill’ t[L圧が上が
ってオン抵抗が増大する。そして、オン抵抗の堀゛大は
動作速度の低下をもたら1゜従ってC−MO8の動作速
度を向上する上ではウェル拡散層の浜度をできるたU低
くして基板効果を小さくするのが望ましい。
By the way, one of the factors that affects the characteristics of the C-MUS shown in FIG. (J
In S i”Ell+, N1 diffusion 4′ and p-
A nine-position difference occurs between well 2 and p-MUSi'E.
When i' is turned on, there is a problem that the channel region between 4 and 5 changes with the phase difference, and therefore the respective 1μ (1 value voltage) changes. This is due to the substrate effect and the
, I-4, and the impurity concentration of 1 unit & regions 1 and 2 is I
MI <7L Runido WJ fill' t [L pressure rises and on-resistance increases. A large trench in the on-resistance causes a decrease in the operating speed. Therefore, in order to improve the operating speed of C-MO8, it is important to reduce the substrate effect by lowering the surface area of the well diffusion layer as much as possible. desirable.

これに対して、上記従来の方法で形成されたp−ウェル
14は、第2図(C)の段階でのイオン注入量が多いた
め、比較的高い不純物ざ;度で形成される。従って、そ
の後第1しjのC−fvfOS  を製造すると、p−
ウェル14に形成されたn−MOSFETの基板効果が
太き(なり、高速動作特性が得られないという問題があ
った。また、第2図<IJ)の段階でのイオン注入艮が
多いことからその後のドライブイン工程での拡1j父長
が太キ(1p−ウェル14は接合深さが深くなると共に
横方向の広がりも大きくなる。このため、第1図のC−
MUS  を従来の方法で製造するとp −M(J81
’E’l”とn−MO811″ETとの距離が大きくな
らざるを?v1、高呆積化の観点からも問題があった。
On the other hand, the p-well 14 formed by the conventional method is formed with a relatively high impurity concentration because the amount of ions implanted at the stage shown in FIG. 2(C) is large. Therefore, when the first C-fvfOS is manufactured thereafter, p-
There was a problem that the substrate effect of the n-MOSFET formed in the well 14 was thick (and high-speed operation characteristics could not be obtained).Also, since there were many ion implantations at the stage shown in Fig. 2 <IJ), In the subsequent drive-in process, the expansion 1j becomes thicker (the 1p well 14 has a deeper junction depth and a larger lateral spread.
When MUS is manufactured using the conventional method, p −M (J81
Will the distance between 'E'l' and n-MO811''ET become larger? v1, there was also a problem from the viewpoint of high volume accumulation.

なお、p型基根にn型ウェル拡散層を形成Jる場合にも
上述したのと同じ同地が生じる。
Note that the same situation as described above occurs also when an n-type well diffusion layer is formed in a p-type root.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたもので、基板効果の
小さいウェル拡散層を形成でき、もって動作速度の高速
化を図ることができる相袖〜半導体装置の製造方法を提
供するものである。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method for manufacturing a semiconductor device that can form a well diffusion layer with a small substrate effect, thereby increasing the operating speed.

〔発明の概要〕[Summary of the invention]

本発ψ」による相4111現半漕体装忙1.の製造方法
は、−4を型を冶する半梶体基板の表面に酸化膜を形成
し、更にその上に制酸化性膜を積層形成する工程と、そ
の後、写具蝕刻法により前記側1蚊化性膜を選択的に除
去する工程と、基板に対して通募電型の不純物を1亥化
ノ俣の1.Cい領域は直接基板上に、また耐酸化性膜の
残っている領域は酸化膜と制酸化性膜の4A層j反を通
してウェル拡散潮干足部に選択的にイオン注入する工程
と、熱処理を行なってこのイオン注入された不純物を活
性化することによりウェル拡散層を形成する工程とを具
備し/辷ことを特徴とするものである。
Ai 4111 current half-row body construction by ``Main ψ'' 1. The manufacturing method includes the steps of forming an oxide film on the surface of the semi-circular substrate used to mold -4, and further laminating an antioxidizing film thereon, and then forming the side 1 by photolithography. A step of selectively removing the mossifying film, and a step of removing conductive type impurities to the substrate at a rate of 1%. The C region is directly on the substrate, and the remaining region of the oxidation-resistant film is selectively implanted into the well diffusion foot portion through the 4A layer of oxide film and anti-oxidation film, and heat treatment is performed. and activating the ion-implanted impurities to form a well diffusion layer.

本発ツ]における耐酸化性膜としては、例えばシリコン
窒化膜を用いることができる。
As the oxidation-resistant film in the present invention, for example, a silicon nitride film can be used.

本発明ではシェル拡散層を形成するための不純物がlj
2化膜の外に制酸化性膜を萌してイオン注入されるため
、従来よりもイオン飛程か小さくなり、千尋体基板中に
導入される不純物世が少なくなる。従って、形成された
ウェル拡散層の不純物録度が低くなり、ウェル拡散層上
に形成される絶縁ゲート′亀界効来トランジスタの基板
効果を小さくして動作速度の高速化を図ることができる
In the present invention, the impurity for forming the shell diffusion layer is lj
Because ions are implanted with an antioxidizing film formed outside the dioxide film, the ion range is smaller than in the past, and fewer impurities are introduced into the substrate. Therefore, the impurity concentration of the formed well diffusion layer is reduced, and the substrate effect of the insulated gate field effect transistor formed on the well diffusion layer is reduced, thereby increasing the operating speed.

他方゛、本発明では不純物し度の1氏いウェル拡散J曽
が形成されることから、ウェル拡散層と基板との間の耐
圧が従来よりも低下することになる。
On the other hand, in the present invention, since a well diffusion layer with a lower degree of impurity is formed, the withstand voltage between the well diffusion layer and the substrate is lower than that of the conventional method.

しかし、11Ij醇化性膜(場合によってはその下の敏
化膜も)にウェル拡散層予矩部の周#秋を取り囲む開孔
を形成してイオン注入を行なうので、基板領域に接する
周縁部では不純!lq、v姐瓜のiti+ ’a・シェ
ル拡散層を形成でき、耐圧低下゛を抑fiilJ ′□
−4゛ることかできる。
However, since ion implantation is performed by forming an opening in the 11Ij desensitizing film (and in some cases, the underlying desensitizing film) surrounding the periphery of the well diffusion layer pre-rectangular area, the ion implantation is performed in the peripheral area in contact with the substrate region. Impure! It can form a shell diffusion layer of lq, v's melon, suppressing the breakdown voltage drop.
I can do -4.

〔発明の実施例〕[Embodiments of the invention]

以下S第1図のC−1vlO8製造に前用した本発明σ
〕一実施例につぎ、第3図(5)〜(、lJ)を#Il
l;j、して説ゆ]する。
Hereinafter, the present invention σ used in the production of C-1vlO8 shown in S Figure 1
] Next to an example, FIG. 3 (5) to (,lJ) are #Il
l;j, expound].

(1)  ま1、n型シσコン基板21の表面を熱酸化
することにより膜厚900A程屋のシリコン除化膜22
を形成し、絖いてその上にCVLI法により膜厚120
0A程1狂のシリコン窒化膜23を形成する。次いで、
PEPによりp−1〜拘S1!’ET用の11型活性領
域予定部およびn−LS4USII’l!、T用のp 
型ン古性・唄域予定部上’t49−うレジストパターン
24を形成する(第3図(5)図示)。
(1) First, by thermally oxidizing the surface of the n-type silicon substrate 21, a silicon removal film 22 with a thickness of about 900A is formed.
was formed, and then a film with a thickness of 120 mm was deposited on it by the CVLI method.
A silicon nitride film 23 of about 0A is formed. Then,
p-1 ~ restrained S1 by PEP! 'Type 11 active region planned area for ET and n-LS4USII'l! , p for T
A resist pattern 24 is formed on the intended area of the pattern and song area (as shown in FIG. 3 (5)).

(11)次に、レジストパターン24をマスクとしてシ
リコン窒化膜23をパターンニングすることにより、n
型を占性領域予ηて部およびp型活性領域予定部上を法
うシリコン采化膜パターン23’を形成する。続いてレ
ンストバクー724を除去した後、全面にJIMk’3
000^y4 H% ノCVU−8in、膜25を堆積
する。次いで、PEPによりp−ウェル予定部上に開孔
をイjするレジストパターン26を形成する( &’v
 3図(B)図示)。
(11) Next, by patterning the silicon nitride film 23 using the resist pattern 24 as a mask, the n
A silicon evaporation film pattern 23' is formed over the area where the mold is to be occupied and the area where the p-type active area is to be formed. Next, after removing Renst Baku 724, JIMk'3 was applied to the entire surface.
Deposit film 25 of 000^y4H% CVU-8in. Next, a resist pattern 26 is formed using PEP to form an opening on the planned p-well portion (&'v
Figure 3 (B) shown).

(iii)  次に、レジストパターン26に一マスク
としてCVJJ=Si02J換25およυ・シリコン酸
化膜22を1幀次エツチングし、p−ウゴル予定部のう
ち、フィールドr」(8)化1沢の形成さ」しるHb分
の基板表面を露出させる。(Kl、・で、レジストパタ
ーン26をフロラキングマスクとし、加速重圧100 
keV、ドーズ昂5×1012AWL2の条件でボロン
(131、)をp−ウェル予定都にイオン注入1′−る
(第31ン1(C)図示)。
(iii) Next, CVJJ=Si02J conversion 25 and υ silicon oxide film 22 are firstly etched as one mask on the resist pattern 26, and the field r'' (8) in the planned p-Ugol area is etched once. The surface of the substrate where Hb is formed is exposed. (With Kl, the resist pattern 26 is used as a flowering mask, and the acceleration pressure is 100.
Boron (131) is ion-implanted into the planned p-well under the conditions of keV and a dose of 5×10 12 AWL2 (as shown in Figure 31 (C)).

このとき、シリコン酸化11K 22 j’6よびシリ
コン墾化腺パターン23′で=われて(・るp型活性領
域予定部にはホロンが低ωと度でデポジットサれ、他方
、基板表面が龍山さり、たフィールド酸化膜の形成予定
部妊は高ム廓でホロンがデポジットされる。なお、25
′はエツチングで形成されたC:VLl−8in。
At this time, the silicon oxide 11K 22 j'6 and the silicon thickening gland pattern 23' deposit holons at low ω and degrees in the planned p-type active region, and on the other hand, the substrate surface Then, in the area where the field oxide film is to be formed, holons are deposited in the high area.
' is C:VLl-8in formed by etching.

膜パターンである。It is a membrane pattern.

(1v)次に、レジストパターン26を除去しノヒ後、
1200°Cで30時間の?eも温熱重化処理を行ない
、先にイオン注入によりブ゛小ジツトされ/CCポロン
ドライブインさセてp−ウェル27を形成する。この熱
改化処理によって、臨出さJlていたシリコン基板表面
も新lζに成長したシリコン1状化膜22で彷われる(
帛3図(LJ)し1示)。
(1v) Next, after removing the resist pattern 26,
30 hours at 1200°C? The p-well 27 is also formed by thermal aggregation treatment, and the p-well 27 is first formed by ion implantation and a CC poron drive-in. As a result of this thermal modification treatment, the surface of the silicon substrate, which had previously been exposed, is covered with a monolithic silicon film 22 that has grown into a new layer (
Figure 3 (LJ) and 1).

このとぎ、図示のようにp−ウニ/I/2’7は、シリ
コン窒化膜バク−723′で覆われたp△V活性排域予
定r+liにおいてホロン濃度が低く(表面濃度3.6
XlO’5も、8)かつ拡散深度も浅(形成され(5,
7μ)、他方その周囲のフィールド敵化膜形成予定部で
―ボロン濃度が高くかつ拡flk深度も除く形成される
。これは、第3図(C)で説明したよう((イオン注入
されたボロンのデポジット宛がケ(なるからである。
At this point, as shown in the figure, p-Uni/I/2'7 has a low holon concentration (surface concentration of 3.6
XlO'5 is also formed (8) and has a shallow diffusion depth (formed (5,
7μ), and on the other hand, in the surrounding area where the field enemy film is to be formed, the boron concentration is high and the expanded flk depth is also excluded. This is because, as explained in FIG. 3(C), the deposit of the ion-implanted boron is absorbed.

qv)その後は常法に従って、第1図のよりなC−M(
JS  を製造することができる。その場合、第1図に
おけるフィールドt7(化膜3はシリカン窒化膜パター
ン23′を面[酸化性マスクとする選択摩化により形成
することができる。またこの速択収化に先立って、比1
図におけるチャンネルストツI<領」或8゜8′ を形
成するために不純物のイオン注入がフィールド酸化膜形
成の111に行われる。
qv) After that, according to the usual method, the more C-M (
JS can be manufactured. In that case, the field t7 in FIG.
Impurity ion implantation is performed at 111 of the field oxide film formation to form a channel region I<8.8' in the figure.

そして、この実施例では第3図(縛のように、CVIJ
−8i02膜25/をマスクとしてp−ウェル27上に
pチャンネルストツノく用σ)イオン注入28を行ない
、CVD−8itJ2[z s′ヲエッチング後、基I
FILN出部分にNチャンネルストッパ用のイオン注入
29を行7′ヨ(・、その後は常法に従ってフィールド
畝化膜を形成してゆく。
In this example, as shown in FIG.
Using the -8i02 film 25/ as a mask, ion implantation 28 for p-channel filling is performed on the p-well 27, and after etching the CVD-8itJ2 [z s', the base I
Ion implantation 29 for an N-channel stopper is performed at the FILN exit portion (7'). After that, a field ridged film is formed according to a conventional method.

上記実施例によって製造されたC−MUSでは、まず第
1に、p−ウェル27の活性領域におけるボロン1fA
aが従来よりも小さいため、該p−ウェル27に形成さ
れたN−MO8FI(Tの基板効果を従来よりも低減で
きるという効果が得られる。一般に基板効果の大きさは
バックグー) 1’41圧値によって変化するから、上
記基板効果低減の効果を61r+ =するためにはバッ
クゲート電圧111j、を固定した上でその閾値↑fL
圧を測定しなげればならないが、C−MUS  では通
常基板i+J、極が形成されないからバックゲート電圧
を所定の値に固定することができない。そこで計算によ
って上記基板効果低減の効果を算出すれは仄の辿りであ
る。
In the C-MUS manufactured according to the above embodiment, first of all, the boron 1fA in the active region of the p-well 27 is
Since a is smaller than the conventional one, it is possible to reduce the substrate effect of the N-MO8FI (T) formed in the p-well 27 compared to the conventional one.In general, the magnitude of the substrate effect is 1'41 pressure. Since it changes depending on the value, in order to reduce the effect of reducing the substrate effect by 61r+, fix the back gate voltage 111j and set its threshold ↑fL.
However, in C-MUS, the back gate voltage cannot be fixed at a predetermined value because no poles are normally formed on the substrate i+J. Therefore, calculating the effect of reducing the substrate effect by calculation is a second step.

一般に八1(JS)ランジスタの1がJ1直亀圧(Vt
h)は次式によって与えられる。
Generally, 1 of the 81 (JS) transistor is the J1 direct pressure (Vt).
h) is given by the following equation.

φ旙;ケート電極とシリコンとの仕串陰]数の差 φF ;ビルトインポテンシャル Cox ;ゲート1疲化膜のギャパシタンスQss ;
ゲート歌化腹中の電荷 εsi;シリコンの訪Tlj率 ε。;真空;仄態の篩箱、率 q;’fit子1個の電荷 N5ub :左板表面の不純物濃度 この式から上記実施例で得られたC MUS  iMよ
び従来の製造方法で得られたc−Mus  の両者につ
いて、p−ウェル上に形成されたn−■JSi’l、’
l’の閾値電圧を61界した結果を第1表に示1゜バン
クゲート電圧値がov、2.5v、5.OVのときの値
を夫々唱算しであるのは、則nのC−MすSは5■↑L
源を用いているため、0〜5vのバックゲート電圧でf
li!4作すると考えられるからである。
φ旙; Difference in number between gate electrode and silicon φF; Built-in potential Cox; Capacitance of gate 1 fatigued film Qss;
Charge εsi in the gate cell; Tlj rate ε of silicon. ; Vacuum; Sieve box in the empty state, rate q; Charge of one fitter N5ub: Impurity concentration on the left plate surface From this equation, C MUS iM obtained in the above example and c obtained by the conventional manufacturing method. -Mus, n-■JSi'l,' formed on the p-well
The results of dividing the threshold voltage of l' by 61 are shown in Table 1. When the bank gate voltage value is ov, 2.5v, 5. The reason for reciting the values at OV is that the rule n is C-M S is 5■↑L
Since a source is used, f
li! This is because it is thought that there will be four works.

なお、バックゲート電圧以外のバフメータのうち、φM
S、φF I Cox * Qssについては吹施例お
よび従来例ともに02も一般的l工多結晶シリコンゲー
ト電極によるn−MO8FETのものを用いた。また、
実MM 例のl’Js市については実施例中で記載した
辿り3.6 X I O7cmとし、従来例のN Su
bについては最も一般的な値である6 X l g 1
5A’yr? を用−5)だ。
Note that among the buff meters other than the back gate voltage, φM
Regarding S, φF I Cox *Qss, an n-MO8FET with a general l-engineered polycrystalline silicon gate electrode was used in both the blown example and the conventional example. Also,
For the actual MM example l'Js city, the trace described in the example is 3.6 X I O7cm, and the conventional example N Su
For b, the most common value is 6 X l g 1
5A'yr? -5).

第1表 この結果からり」もかなように、上iL、実施例によれ
ばp −!7 x ル27に形成されるn M、U S
 I+’+1;’1の承伏効果は顕著に低處され、+j
′Lって動1′「速度の向上を図ることかで゛きる。ま
/こ、バンクケート電子の変化による1的値電圧の変化
幅が小さくなることから、イ「1頼件の高(・C−へ4
(JS  を製]貞することができる。
Table 1 This result shows that, according to the above example, p -! 7 x n M, U S formed in Le 27
The surrender effect of I+'+1;'1 is significantly reduced, and +j
'L' can be achieved by trying to improve the speed. Since the range of change in the primary voltage due to changes in the bank gate electrons becomes smaller,・To C-4
(JS production) can be done.

更に、上「尼実hIIi例ではp−ソエル27をその周
縁部、即しフィールド1′1(化j摸が形成される部分
においてボロン濃度を高(シ、かつ拡散深度を1まく形
成できるため、この化1分がカードリングと−して作用
してp−ウェル27と基板2〕との面1圧低下を防止す
ることができる。
Furthermore, in the example above, the p-soel 27 is formed at its periphery, that is, at the part where the field 1'1 (chemical formation) is formed, since the boron concentration is high (and the diffusion depth can be increased by 1 field). This layer acts as a card ring to prevent a drop in pressure across the surface between the p-well 27 and the substrate 2.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明によれは八KJSFETか
形成される活性領域のウェル拡散層を低佐七度で形成し
てウェル拡散層に形成される絶縁ゲート電界効果トラン
ジスタの基板効果を低減でき、もって高速動作特性およ
び信頼性の^)い相補型半導体装置を製造できる等、顕
著な効果が11.)られるものである。
As described in detail above, according to the present invention, the well diffusion layer in the active region where the 8KJSFET is formed is formed with a low temperature to reduce the substrate effect of the insulated gate field effect transistor formed in the well diffusion layer. 11. Remarkable effects include the ability to manufacture complementary semiconductor devices with high speed operation characteristics and reliability. ).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はC−MOS  の−例を示すiノ1面図、第2
′図(5)〜(E)はC−MOS  の製造方法に」6
日−る従N(のp−ウェル形成工程を示す11)[面図
、第3図(5)〜C’f−)は本発明の一実施例になる
p−ウェルプレ成工程を示す断面図である。 21− n型シリコン基板、22・・・シIJ コン醒
化膜、23・・・シリコン窒化膜、23′・・・71ノ
コン電化膜パターン、24.26・・・レジストノくク
ーノ、2 s 1.CVD−8in、IQ、25/01
.CVD−8iO2膜パターン、27・・・p−ウェル
、28・・・94712層、29・・・N 4712層
Figure 1 is a top view of the i-node showing an example of C-MOS, and the second
'Figures (5) to (E) show the C-MOS manufacturing method'6
Figure 3 (5) to C'f-) are cross-sectional views showing the p-well formation process according to an embodiment of the present invention. It is. 21- n-type silicon substrate, 22... silicon nitride film, 23... silicon nitride film, 23'... 71 electrode electrified film pattern, 24.26... resist pattern, 2 s 1 .. CVD-8in, IQ, 25/01
.. CVD-8iO2 film pattern, 27...p-well, 28...94712 layer, 29...N 4712 layer.

Claims (1)

【特許請求の範囲】[Claims] 一導電型を肩する半導体基板の表面に酸化膜を形成し、
更にその上に耐酸化性膜を積層形成する工程と、その後
、写真蝕刻法により前記耐酸化性族を選択的に除去する
工程と、基板に対して逆導電型の不純物を酸化膜のない
領域は直接基板上に、また耐酸化性族の残っている領域
は酸化膜とlf1目支化性膜の積層膜を通してウェル拡
散層予定部に選択的にイオン注入する工程と、熱処理を
行なってこのイオン注入された不純物を活性化J−るこ
とによりウェル拡散層を形成ゴーる工程とを具備したこ
とを釉徴とする相補型半導体装1tffiの製造方法。
An oxide film is formed on the surface of a semiconductor substrate that has one conductivity type,
Furthermore, there is a step of laminating an oxidation-resistant film thereon, a step of selectively removing the oxidation-resistant group by photolithography, and a step of adding impurities of the opposite conductivity type to the substrate in areas where there is no oxide film. This is done by selectively implanting ions directly onto the substrate, and by selectively implanting ions into the planned well diffusion layer area through the laminated film of the oxide film and the lf1 eye-supporting film in the remaining region of the oxidation-resistant group, and by heat treatment. 1. A method for manufacturing a complementary semiconductor device 1tffi, which comprises the step of activating ion-implanted impurities to form a well diffusion layer.
JP58018534A 1983-02-07 1983-02-07 Manufacture of complementary type semiconductor device Pending JPS59150467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58018534A JPS59150467A (en) 1983-02-07 1983-02-07 Manufacture of complementary type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58018534A JPS59150467A (en) 1983-02-07 1983-02-07 Manufacture of complementary type semiconductor device

Publications (1)

Publication Number Publication Date
JPS59150467A true JPS59150467A (en) 1984-08-28

Family

ID=11974288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58018534A Pending JPS59150467A (en) 1983-02-07 1983-02-07 Manufacture of complementary type semiconductor device

Country Status (1)

Country Link
JP (1) JPS59150467A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5071777A (en) * 1987-08-18 1991-12-10 Deutsche Itt Industries Gmbh Method of fabricating implanted wells and islands of cmos circuits
US5679588A (en) * 1995-10-05 1997-10-21 Integrated Device Technology, Inc. Method for fabricating P-wells and N-wells having optimized field and active regions

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5071777A (en) * 1987-08-18 1991-12-10 Deutsche Itt Industries Gmbh Method of fabricating implanted wells and islands of cmos circuits
US5679588A (en) * 1995-10-05 1997-10-21 Integrated Device Technology, Inc. Method for fabricating P-wells and N-wells having optimized field and active regions
US5926704A (en) * 1995-10-05 1999-07-20 Integrated Device Technology, Inc. Efficient method for fabricating P-wells and N-wells

Similar Documents

Publication Publication Date Title
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
US6867462B2 (en) Semiconductor device using an SOI substrate and having a trench isolation and method for fabricating the same
JPH0355984B2 (en)
JP2006080161A (en) Semiconductor device and its manufacturing method
JPH07142565A (en) Semiconductor device and manufacture thereof
JPS5947471B2 (en) Method for manufacturing insulated gate field effect semiconductor device
JPS62149163A (en) Manufacture of complementary mos integrated circuit
JPS59150467A (en) Manufacture of complementary type semiconductor device
JPH11102917A (en) Semiconductor device and manufacture thereof
JPH07283302A (en) Manufacture of semiconductor integrated circuit device
JPH06268057A (en) Manufacture of semiconductor device
JP2573319B2 (en) Method for manufacturing semiconductor device
JPH0530075B2 (en)
US7186631B2 (en) Method for manufacturing a semiconductor device
US6815773B2 (en) Semiconductor device and method of manufacturing the same
JPS60226168A (en) Complementary mos semiconductor device
JP2000124336A (en) Semiconductor device and manufacture thereof
JPH08227936A (en) Semiconductor device and fabrication thereof
JPH0744276B2 (en) MIS type semiconductor device
JP2633525B2 (en) Method for manufacturing semiconductor device
JPS5940563A (en) Manufacture of semiconductor device
JPH03147362A (en) Semiconductor
JPS61232678A (en) Manufacture of semiconductor integrated circuit
JPH04294582A (en) Manufacture of semiconductor device
JPH0590396A (en) Semiconductor device and manufacture thereof