[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS5915016B2 - Coating material with catalytic action - Google Patents

Coating material with catalytic action

Info

Publication number
JPS5915016B2
JPS5915016B2 JP53127543A JP12754378A JPS5915016B2 JP S5915016 B2 JPS5915016 B2 JP S5915016B2 JP 53127543 A JP53127543 A JP 53127543A JP 12754378 A JP12754378 A JP 12754378A JP S5915016 B2 JPS5915016 B2 JP S5915016B2
Authority
JP
Japan
Prior art keywords
catalyst
oil
coating
catalytic
paint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53127543A
Other languages
Japanese (ja)
Other versions
JPS5554356A (en
Inventor
正雄 牧
康典 金子
郁夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP53127543A priority Critical patent/JPS5915016B2/en
Priority to AU51776/79A priority patent/AU530955B2/en
Priority to FR7925616A priority patent/FR2439040A1/en
Priority to SE7908515A priority patent/SE7908515L/en
Priority to GB7935663A priority patent/GB2037271B/en
Priority to DE19792941768 priority patent/DE2941768A1/en
Priority to CA000337728A priority patent/CA1149363A/en
Publication of JPS5554356A publication Critical patent/JPS5554356A/en
Priority to US06/480,380 priority patent/US4471027A/en
Priority to US06/586,144 priority patent/US4515862A/en
Publication of JPS5915016B2 publication Critical patent/JPS5915016B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Cookers (AREA)
  • Catalysts (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】 本発明は被覆材に関するものであり、タール状 □の炭
素質が生成することが懸念される金属表面に対して、タ
ール状の炭素の生成を抑制する触媒効果を持つた被覆材
を提供するものである。
[Detailed Description of the Invention] The present invention relates to a coating material, which has a catalytic effect to suppress the formation of tar-like carbon on metal surfaces where there is a concern that tar-like carbon may be formed. The purpose of this invention is to provide a covering material that is

タール状の炭素質が生成してトラブルを生じさせる器具
として、例えば、油分、食品残渣などが 3飛び散り、
異臭を発生させたり、ベトベトと不潔な状態でこびりつ
いたりすることが嫌われている各種オープン等の箱型調
理器具であるとか、またハードカーボンを生成して、燃
焼量低下や安全にも拘わる種々のトラブルを発生させて
いる石油燃焼器具などが代表的なものとして挙げられる
Equipment that generates tar-like carbon and causes trouble, such as oil, food residue, etc.
There are various types of open and box-shaped cooking utensils that are disliked because they emit strange odors and get stuck in sticky and unclean conditions, and there are also various types of cooking utensils that generate hard carbon, which reduces the amount of combustion and concerns safety. A typical example of this is oil-burning appliances that cause problems.

従来、この様な触媒作用を有する被覆表面としては、素
地上にホーロー質またはガラス質を形成させるのである
が、このコーティング層として、マンガン、鉄、コバル
ト、ジルコニウム、クロム銅、または希土類金属の酸化
物などを主成分とし0 た触媒物質を添加して、ガラス
質化した触媒コーティングが、いわゆるセルフクリーニ
ング、ホーローとして、電気オープンなどに応用されて
いる。これ等の従来の触媒としては、一致して、強い触
媒能力を持つた酸化触媒が用いられている。5 調理中
に、肉や魚などの調理物から飛散する油、蛋白質、脂肪
、その他種々の有機化合物をこれ等の酸化触媒によつて
、炭酸ガスと水とに完全酸化して、庫内壁の汚れを防ぎ
、常に清潔に保つことを狙いとしているものである。
Conventionally, the coating surface with such catalytic action is formed by forming an enameled or glassy material on the substrate, but this coating layer is made of oxidized manganese, iron, cobalt, zirconium, chromium copper, or rare earth metals. Catalytic coatings made of vitrified materials, which are mainly composed of metals and the like, are used as self-cleaning enamels and are applied to electrical open circuits, etc. As these conventional catalysts, oxidation catalysts with strong catalytic ability are used. 5.During cooking, oil, protein, fat, and various other organic compounds scattered from cooked foods such as meat and fish are completely oxidized into carbon dioxide gas and water by these oxidation catalysts, and the inner walls of the refrigerator are completely oxidized. The aim is to prevent dirt and keep it clean at all times.

0 発明者らは、例えば、サラダ油などが液体状態で、
これ等の酸化触媒表面に接触している間にそれを完全に
、水と炭酸ガスにまで酸化し得ることに関しては疑問を
抱いていたが、実際にセルフクリーニングホーローとし
て、市場に出されている5 触媒コーティングについて
、サラダ油(大豆油)と接触させた状態で空気中で熱分
解させ、生成するガスをガスクロマトグラフを用いて分
析した、種々条件を変えて(温度を350℃まで上げて
1時間放置まで)評価したが、炭酸ガスは全く検出o
されなかつた。
0 The inventors discovered that, for example, when salad oil is in a liquid state,
I had doubts that these oxidation catalysts could be completely oxidized to water and carbon dioxide while in contact with the surface, but they are actually being marketed as self-cleaning enamels. 5 The catalyst coating was pyrolyzed in the air while in contact with salad oil (soybean oil), and the generated gas was analyzed using a gas chromatograph under various conditions (temperature was raised to 350°C for 1 hour). I evaluated it until I left it, but no carbon dioxide was detected.
It wasn't done.

したがつて、これ等の酸化触媒に関しては、完全酸化と
いう面での寄与は全く果たしていないと考えられる。空
気中で、加熱された油分がタール化していくプロセスと
しては、部分酸化されて例えば、過酸5 化物などの中
間体を得て重合していくプロセスと、または、水素引抜
きされてオレフィン等を経て、解重合していくプロセス
が考えられるがいずれのプロセスに関しても、強い酸化
触媒(それは同時に水素引抜き触媒としても作用すると
考えられる)の効果、むしろこのタール化を促進させる
側に働き決してこのセルフクリーニングの用途に関して
この方向の技術者がそう信じていた様な効果はないので
はないかと本発明者らは考え、むしろタール化に関係し
た反応の中間体を分解してしまう能力を持つた触媒こそ
が有効ではないかとの考えに基づき、触媒を探索した結
果、従来から見ると全く新規の方向で触媒を見出したも
のである。
Therefore, it is considered that these oxidation catalysts do not contribute at all to complete oxidation. The process in which oil heated in air turns into tar is partially oxidized to obtain an intermediate such as peroxide pentoxide and polymerized, or hydrogen is extracted to produce olefins, etc. In either process, the effect of a strong oxidation catalyst (which is thought to act as a hydrogen abstraction catalyst at the same time) may act to promote this tar formation, and the process of self-polymerization may occur. The present inventors believe that the catalyst may not be as effective in cleaning applications as the engineers in this field believed, and rather has the ability to decompose reaction intermediates related to tarring. Based on the idea that this would be effective, we searched for a catalyst and discovered a catalyst in a completely new direction compared to conventional methods.

事実、酸化触媒としては、強い能力を有することが知ら
れている、二酸化マンガン(MnO2),酸化銅(Cu
O)などの場合には、とくに著しくタール生成を促進す
る効果があることを後述のとおり見出した。これらの触
媒は、水素引抜き反応を強力に行なわせ、むしろ油分を
早く硬化させ、ドライな状態にする機能が実用面では評
価されよう。また従来セルフクリーニングホーローなど
と呼ばれているものについては、サラダ油などを高温空
気下で放置されている触媒表面上へ落とした場合、サラ
ダ油は表面上で、みるみるうちに広がり300℃条件下
では、20〜30分後にはその痕跡が見え難くなるが、
顕微鏡的スケールで見ると、炭素分が無くなつた訳では
なく、多孔質で厚みのあるホーロー質の底の部分に炭素
が見え難い状態で堆積しているものと思われる。試験前
後の重量変化から評価しても普通の鉄板上で油をタール
化させたものと数値的には大差なく、上記の考えが正し
いことを裏付けている。この様に従来のセルフクリーニ
ングホーローに関して、浄化効果の面で今一歩不充分で
あるのに加えて、触媒層自身が相当ポーラスであるため
密着性、或いは摩耗性に於いて、難点を有している。
In fact, as oxidation catalysts, manganese dioxide (MnO2) and copper oxide (Cu
As will be described later, it has been found that in the case of O), etc., there is a particularly significant effect of promoting tar formation. These catalysts will be appreciated in practical terms for their ability to force the hydrogen abstraction reaction to occur, and rather to quickly harden the oil and bring it to a dry state. Furthermore, regarding what is conventionally called self-cleaning enamel, when salad oil or the like is dropped onto the surface of a catalyst that has been left in high-temperature air, the salad oil quickly spreads on the surface and under 300℃ conditions, The traces become difficult to see after 20 to 30 minutes, but
On a microscopic scale, it appears that the carbon content has not disappeared, but rather has been deposited in a state that is difficult to see in the porous and thick enamel bottom. Even when evaluated from the weight change before and after the test, there was no significant difference numerically from oil tarred on an ordinary iron plate, supporting the above idea. As described above, conventional self-cleaning enamels are not only insufficient in terms of purification effect, but also have drawbacks in terms of adhesion and abrasiveness because the catalyst layer itself is quite porous. There is.

本発明は、従来の触媒被覆表面とは異なり、すでに耐熱
塗料としてかなりの実積を持つ、アルカリ金属シリケー
ト、酸性金属リン酸塩、耐熱性の優れた金属酸化物系な
どの顔料から成る耐熱塗料を触媒ベースとして、これに
触媒活性物を添加した系統の触媒コーテイングに関する
ものである。本発明の基本の思想からして、アルカリ金
属シリケートおよびその硬化反応を促進させるための硬
化剤は、触媒をこれに添加するためのベース或いは結合
剤として必要不可欠であるが、顔料は必ずしも必要では
ない。現在、耐熱性の優れた顔料としては一般に複合金
属酸化物素が広く用いられている。着色した塗膜を得る
ためには、顔料の存在が不可欠となるが、複合金属酸化
物素の顔料はそれが酸化触媒としてある程度の活性を発
揮し得る状態で添加されていることは、前記の様にむし
ろタール化の促進に繋がるので、極力不活性な状態で添
加するか、或いはそういう懸念のない非金属酸化物系の
顔料を用いることが望ましい。やむを得ず添加する場合
にも、必要最少限の量にとどめるのが望ましい。更に付
加すると、当触媒は油分の分解に於いては極めて優れた
能力を発揮するが、実用面からすると必ずしも、被覆面
の汚染物質は必ずしも油分のみとは限らず、それ以外に
も各種の色々な浄化が不可能な物質による汚染が考えら
れるため、着色顔料としては黒色のものを用いて、これ
らの汚染に対しては汚れが見え難くすることも実用上は
意味が大きい。既に本発明者らは、上記耐熱塗料をベー
スに、アルカリを添加した触媒コーテイングが優れた触
媒活性をすることを見出し、提案したが、本発明は更に
一段と広い観点から触媒活性物質を評価しそれを発展、
改良したものである。
Unlike conventional catalyst-coated surfaces, the present invention is a heat-resistant paint made of pigments such as alkali metal silicates, acidic metal phosphates, and metal oxides with excellent heat resistance, which have already been widely used as heat-resistant paints. The present invention relates to a catalytic coating system in which a catalytic active substance is added to the catalytic base. From the basic idea of the present invention, an alkali metal silicate and a curing agent for accelerating its curing reaction are essential as a base or binder for adding a catalyst thereto, but a pigment is not necessarily necessary. do not have. Currently, composite metal oxide elements are generally widely used as pigments with excellent heat resistance. In order to obtain a colored coating film, the presence of a pigment is essential, but as mentioned above, the pigment of the complex metal oxide element is added in a state where it can exhibit a certain degree of activity as an oxidation catalyst. However, since this may actually lead to the promotion of tar formation, it is desirable to add the pigment in an inactive state as much as possible, or to use a non-metal oxide pigment that does not cause such concerns. Even if it is unavoidably added, it is desirable to keep it to the minimum necessary amount. Furthermore, although this catalyst exhibits an extremely excellent ability to decompose oil, from a practical standpoint, the contaminant on the coated surface is not necessarily only oil; it also contains various other contaminants. Since contamination may be caused by substances that cannot be completely purified, it is of great practical significance to use a black colored pigment to make it difficult to see the contamination. The present inventors have already discovered and proposed that a catalytic coating based on the above-mentioned heat-resistant paint to which an alkali is added has excellent catalytic activity, but the present invention evaluates catalytically active substances from an even broader perspective. develop,
This is an improved version.

油分の分解に関して、有効に作用する触媒活性物質を探
索するため、ガスクロと熱分解装置を用いて、サラダ油
(大豆油)を空気中で、種々の金属酸化物と接触させた
状態で、熱分解させ生成したガスをガスクロマトグラフ
で分析し、とくに熱分解の能力の優れた金属酸化物系を
評価した。
In order to search for catalytically active substances that effectively decompose oil, we used gas chromatography and a pyrolysis device to pyrolyze salad oil (soybean oil) in the air while contacting it with various metal oxides. The resulting gas was analyzed using a gas chromatograph, and metal oxides with particularly excellent thermal decomposition ability were evaluated.

分解生成がガスとして、一酸化炭素、ホルムアルデヒド
などは同定したが、更に、サラダ油自体に含まれる成分
とは異なる分解炭化水素を検出した。試験条件は約2η
の金属酸化物に対して、マイクロシリンジを用いて、1
.0It1のサラダ油を混合させた条件下で、密閉ガラ
ス容器内で30『Cで10分分解させたのち、生成ガス
をガスクロに導入して分析した。分析条件としては、N
2キヤリアを用い(60m1/Min)F.I.D検出
器で(H2流量:60m1/Min,Air流量:0,
51/Min)カラム条件としては、3mmφ×3mの
ステンレスカラムでSlllcOneGE.SE−30
,5%液相(Shi−MaliteW担体)を用いて、
150℃で5分保持したのち、5Wc/Mlnの昇温速
度で250℃まで昇温分析を行なつて、分解生成ガスを
検出した。
Although carbon monoxide and formaldehyde were identified as gases produced by decomposition, they also detected decomposed hydrocarbons, which are different from the components contained in salad oil itself. The test conditions are approximately 2η
of metal oxide using a microsyringe.
.. The mixture was decomposed in a sealed glass container at 30°C for 10 minutes under conditions in which 0It1 of salad oil was mixed therein, and the resulting gas was introduced into a gas chromatogram and analyzed. The analysis conditions are N
Using 2 carriers (60m1/Min)F. I. At D detector (H2 flow rate: 60 m1/Min, Air flow rate: 0,
51/Min) Column conditions were a 3 mmφ x 3 m stainless steel column with SllcOneGE. SE-30
, using a 5% liquid phase (Shi-Malite W carrier),
After holding the temperature at 150° C. for 5 minutes, the temperature was raised to 250° C. at a heating rate of 5 Wc/Mln, and the decomposed gas was detected.

以上の条件に於いて、同定まではいつていないが保持時
間、100,106,139,173の位置に分解生成
物を検出した。代表的な金属酸物についての面積の積分
結果(デジタルインテグレータを用いて積分した数値、
上記4つの分解生成物の計数値の総和)を表1に示す。
表1より、サラダ油(−FUし大豆油)の空気共存下で
の分解に関して良好な触媒活性を示す金属酸化物または
化合物としては、周期律表の1族から4族の金属の酸化
物、なかでも1族A、2族Aのアルカリ、アルカリ土類
金属の酸化物が挙げられる。
Under the above conditions, decomposition products were detected at retention time positions of 100, 106, 139, and 173, although they have not yet been identified. Area integration results for typical metal oxides (values integrated using a digital integrator,
Table 1 shows the sum of the counts of the above four decomposition products.
From Table 1, metal oxides or compounds that exhibit good catalytic activity for the decomposition of salad oil (-FU and soybean oil) in the presence of air include oxides of metals from groups 1 to 4 of the periodic table; However, examples include oxides of Group 1 A and Group 2 A alkali and alkaline earth metals.

これは、これ等の物質は弱い部分酸化能力を有すること
が知られ、サラダ油の主成分である不飽和脂肪酸の熱分
解に関してそれが部分酸化化合物の中間体を経て分解す
る様な分解機構が推定されるが、これ等の弱い部分酸化
触媒は、この反応を活性化して並列的に進行する水素引
抜き重合化反応よりも先に、油分を分解し蒸発させてし
まうために結果としては油分のタール化を抑制し、いわ
ばセルフクリーニング的な効果を発揮するだろうという
考え方が発明者らの基本的な思想であつたが、後述の様
に正しいことが明らかになつた。この考え方に関しては
、同様の実験を窒素ガス置換雰囲気下で実施すると、ほ
ぼ同様の分解形態を示すことから、この実験で活性を示
した触媒は、上記のごとく推定したような機構よりも、
むしろガス化分解反応を活性化しているものと考えた方
がよい。表1において、更に優秀な化合物としては、(
MA)x(MB)y(0)zの形で表わされる化合物で
MAがIA族またはA族の元素、MBが1B族、または
B族の元素が良好であることが分る。
This is because these substances are known to have a weak partial oxidation ability, and a decomposition mechanism is presumed in which unsaturated fatty acids, which are the main components of salad oil, are decomposed through intermediates of partially oxidized compounds. However, these weak partial oxidation catalysts activate this reaction and decompose and evaporate the oil before the hydrogen abstraction polymerization reaction that proceeds in parallel, resulting in oil tar. The basic idea of the inventors was that it would suppress the chemical reaction and exhibit a so-called self-cleaning effect, and as will be described later, it became clear that this was correct. Regarding this idea, when a similar experiment is conducted in a nitrogen gas replacement atmosphere, almost the same decomposition form is shown, so the catalyst that showed activity in this experiment is more likely to have a mechanism than the one estimated above.
Rather, it is better to think of it as activating the gasification and decomposition reaction. In Table 1, the more excellent compounds are (
It can be seen that in a compound represented by the form MA) x (MB) y (0) z, MA is an element of group IA or group A, and MB is an element of group 1B or group B.

とくにMAはNa,K,Ca,Mgより成り、MBがC
,Si,Alより成る化合物を用いる時には最良である
ことが分る。
In particular, MA consists of Na, K, Ca, and Mg, and MB consists of C.
, Si, and Al are found to be the best.

以上の背景から、ここで抽出した触媒活性物質を耐熱性
のコーテイングとして適用化するために既にこの方面の
耐熱塗料として実積のあるアルカリ金属シリケート、酸
性金属リン酸塩、金属酸化物系の顔料より成る塗料に、
前記の触媒活性物質を添加してブレンドした塗料を調合
して実際に鉄板上に塗装して、そのセルフクリーニング
効果、或いは塗膜物性を評価した。
Based on the above background, in order to apply the catalytically active substance extracted here as a heat-resistant coating, alkali metal silicates, acidic metal phosphates, and metal oxide-based pigments, which have already been used as heat-resistant paints in this field, were used. The paint consists of
A paint blended with the above-mentioned catalytically active substance was prepared and actually painted on an iron plate to evaluate its self-cleaning effect and physical properties of the paint film.

一連の試験用塗料としては、ケイ酸ナトリウムをベース
とした、四国化研工業(株)の「セラミタイト:白色(
TiO2)」を用いて実施した。
A series of test paints included Shikoku Kaken Kogyo Co., Ltd.'s Ceramitite: White, which is based on sodium silicate.
It was carried out using "TiO2)".

当塗料は下記の構成からなる。(1)基剤 O珪酸ソーダ2号水溶液(アルカリ金属シリケートの一
例) ・・・・・・1000重量部O酸化チタ
ン(ルチル型) ・・・・・・100重量部0シリカ(
体質顔料)(耐熱性の良い顔料の一例)
・・・・・・100重量部(2)硬化剤0リン酸
アルミニウム(酸性金属リン酸塩の一例)
・・・・・・200重量部O水
・・・・・・300重量部この系統の塗料は、
一般式X2O.y(SiO2)(ただし、Xはアルカリ
金属、yは正の実数を表わす)なるアルカリ金属シリケ
ートを結合剤とし酸性金属リン酸塩を硬化剤として成る
水系塗料である。
This paint consists of the following composition. (1) Base O Sodium silicate No. 2 aqueous solution (an example of alkali metal silicate) ...... 1000 parts by weight O titanium oxide (rutile type) ...... 100 parts by weight O silica (
extender pigment) (an example of a pigment with good heat resistance)
...100 parts by weight (2) Hardening agent 0 aluminum phosphate (an example of acidic metal phosphate)
...200 parts by weight O water
・・・・・・300 parts by weight This type of paint is
General formula X2O. y(SiO2) (where X is an alkali metal and y is a positive real number) is a water-based paint made of an alkali metal silicate as a binder and an acidic metal phosphate as a curing agent.

無機顔料により着色が可能であり、当塗料は、酸化チタ
ンを用いているため、白色である。この塗料は白色であ
るため、サラダ油などのタール化に伴なう着色(黒色化
)が鋭敏に評価される。約250℃にセツトしたホツト
プレート上にテストピース(40m77!×80m1L
x0.67n77!t)を配置し、この上に1mg/〜
程度の分布となる様に、スポツト状で約30ηのサラダ
油を添加して、各種塗膜コーテイングについて、その浄
化性を観察した。これ等の試験に関して触媒コーテイン
グ層の特性として被膜物性を極力低下させない範囲内に
おいて出来るだけ多孔質であることが望ましいので塗料
としての性質を変えないで、焼付け操作時にそれが蒸発
して、被膜をポーラスにする添加物についても併せて種
々検討した一連の検討の結果グリセリンの添加が塗膜を
ボーラスにするのに有効であることを見出した。
It can be colored with inorganic pigments, and this paint is white because it uses titanium oxide. Since this paint is white, the coloration (blackening) caused by the tar formation of salad oil and the like is sensitively evaluated. Place a test piece (40m77! x 80m1L) on a hot plate set at approximately 250℃.
x0.67n77! t) and 1 mg/~ on top of this.
Approximately 30η of salad oil was added in the form of spots so as to obtain a uniform distribution, and the purification properties of various paint film coatings were observed. Regarding these tests, it is desirable for the catalyst coating layer to be as porous as possible within a range that does not reduce the physical properties of the coating as much as possible. As a result of a series of studies including various additives to make the coating porous, it was found that the addition of glycerin is effective in making the coating film bolus.

グリセリンの添加は4m1/(1009塗料)程度から
有効で、20m1/(1009塗料)位のオーダーまで
は極めて有効である。
The addition of glycerin is effective from about 4 m1/(1009 paints), and is extremely effective up to the order of 20 m1/(1009 paints).

グリセリンの添加が、このオーダを越えると、塗膜が部
分的に極めて不安定な状態となり幣害が表われる。各種
コーテイング系について、250℃でのサラダ油の浄化
能力について比較したデータを表2に示す。
If the addition of glycerin exceeds this order of magnitude, the coating film will become extremely unstable in parts and damage will appear. Table 2 shows data comparing various coating systems regarding their ability to purify salad oil at 250°C.

浄化率は、ブラツク(処理のない鉄板上)で、サラダ油
のみを放置した場合の減少を補正して示しており、30
分間に於けるテスト前後の重量変化から算出している。
(尚、塗膜は同温度で恒量となる様に事前に熱処理をし
ている。表2では省略しているが、当然触媒活性物質を
添加しない場合は浄化能力は全く得られない。以前に検
討した段階では、耐熱塗料に5wt%の炭酸カルシウム
を添加した系が良好であつたが、今回のグリセリンの添
加とまた改良された触媒活性物質の添加によつて、浄化
能力が飛躍的に改良されている。
The purification rate is shown on a black plate (on an untreated iron plate) after correcting the decrease when only salad oil is left.
It is calculated from the weight change before and after the test in minutes.
(The coating film is heat-treated in advance so that it has a constant weight at the same temperature.It is omitted in Table 2, but of course, if no catalytically active substance is added, no purification ability will be obtained at all. At the stage of investigation, a system in which 5 wt% of calcium carbonate was added to the heat-resistant paint was good, but the addition of glycerin and an improved catalytic active material improved the purification ability dramatically. has been done.

特に表2に示した最後の系(既ち、塗料6セラミタイド
に2wt%の炭酸カリウム、1wt%の酸化カルシウム
、2wtkgのケイ酸カルシウム、2wt%のアルミナ
セメントを添加し、更に6m1/(100g塗料)のグ
リセリンを添加した系)は最良で、30分間の試1験期
間で完全に痕跡も消失した。サラダ油の成分からして、
沸点が271失Cのパルミチン酸なども含まれているの
で、これが100%浄化されたということは、触媒活性
物質の分解能力によつて、25『Cでも熱分解され低佛
点物として蒸発したためだと考えられる。更に、ラード
(豚脂)を用いて、同様の試験を実施したが全く同じ結
果であつた。
In particular, the last system shown in Table 2 (already, 2 wt% potassium carbonate, 1 wt% calcium oxide, 2 wt kg calcium silicate, 2 wt% alumina cement was added to the paint 6 Ceramitide, and an additional 6 m1/(100 g paint ) was the best, with traces completely disappearing within a 30-minute test period. From the ingredients of salad oil,
Palmitic acid, which has a boiling point of 271C, is also included, so the fact that it was 100% purified means that it was thermally decomposed even at 25C by the decomposition ability of the catalytic active substance, and evaporated as a low-Food point substance. It is thought that. Furthermore, a similar test was conducted using lard (pork fat), but the results were exactly the same.

但し浄化率の数値は、ラードの方が大きな値が得られた
。塗装性の面で実用上問題となる硬化時間(ポツトライ
フ)の問題に関しては、酸化カルシウムが硬化促進剤と
して働き、10%も添加すると障害が表われるが、これ
らの触媒活性物質の総添加量が8%以下であれば、実用
上ほとんど問題がないことを確認した。更に、これ等の
触媒コーテイングに関して、温度安定性、密着性、ヒー
トシヨツク、耐食性等に関して一連の試験を実施したが
、10%以下程度のこれ等の触媒活性物質の添加では従
来の塗膜物性はほとんど損なわれていないことも併せて
確認した。
However, the numerical value of the purification rate was larger for lard. Regarding the problem of curing time (pot life), which is a practical problem in terms of paintability, calcium oxide acts as a curing accelerator, and when it is added as much as 10%, problems appear, but the total amount of these catalytically active substances added is It was confirmed that if it is 8% or less, there is almost no practical problem. Furthermore, we conducted a series of tests regarding temperature stability, adhesion, heat shock, corrosion resistance, etc. for these catalyst coatings, and found that when less than 10% of these catalyst active substances were added, the physical properties of conventional coatings were not the same. It was also confirmed that there was almost no damage.

これ等の一連の試験結果によれば、本発明の触媒コーテ
イングは、従来のホーロー処理品とほとんど同等の特性
を示した。強いて差異を挙げると本発明の触媒コーテイ
ングはより耐摩耗性において優れ、熱衝撃性の面では逆
に、ホーロー処理品が優れている。これは、従来のホー
ロー品が触媒効果よりも多孔性を重視してポーラスにし
ているのに対して、本系コーテイングの場合には、触媒
効果がよく発揮されているので、従来のホーロー品程度
の強度を犠性にした多孔性が必要ないためであろうと考
えられる。以上の様に本発明の触媒コーテイングは、従
来のこの種のコーテイングの範囲から全く離れた所で全
く新規の効果を見出し、しかも実用上極めて優れたセル
フクリーニング効果を発揮し、またコーテイングの質と
しても従来のホーロー品と同等以上の水準を有すること
を確認した。
According to these series of test results, the catalyst coating of the present invention exhibited almost the same characteristics as the conventional enameled product. To point out the differences, the catalyst coating of the present invention has better wear resistance, and conversely, the enamel-treated product has better thermal shock resistance. This is because conventional enamel products are porous, emphasizing porosity rather than catalytic effect, but in the case of this coating, the catalytic effect is well exhibited, so it is as good as conventional enamel products. This is thought to be because porosity that sacrifices strength is not necessary. As described above, the catalyst coating of the present invention has discovered a completely new effect completely outside the scope of conventional coatings of this type, and has an extremely excellent self-cleaning effect in practical use. It was also confirmed that the quality of the enamel products was equal to or higher than that of conventional enamel products.

本発明は主として、サラダ油などの油分を対象として、
そのタール化を抑制防止する効果を述べたが、タールの
生成が問題とされる灯油系などに対しても十分有効であ
る。
The present invention mainly targets oils such as salad oil,
The effect of suppressing and preventing tar formation has been described, but it is also sufficiently effective for kerosene systems where tar formation is a problem.

Claims (1)

【特許請求の範囲】[Claims] 1 アルカリ金属シリケートと、酸性金属リン酸塩と、
耐熱性の良い顔料と、アルカリ金属またはアルカリ土類
金属のケイ酸塩、アルミン酸塩の群から選ばれた少なく
とも1種以上の触媒とから成る調理器庫内の油汚れをガ
ス化分解して浄化する能力に優れた触媒作用を有する被
覆材。
1 an alkali metal silicate, an acidic metal phosphate,
It gasifies and decomposes oil stains in the cooking cabinet, which is made of a heat-resistant pigment and at least one catalyst selected from the group of alkali metal or alkaline earth metal silicates and aluminates. A coating material with catalytic action that has excellent purification ability.
JP53127543A 1978-02-13 1978-10-16 Coating material with catalytic action Expired JPS5915016B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP53127543A JPS5915016B2 (en) 1978-10-16 1978-10-16 Coating material with catalytic action
AU51776/79A AU530955B2 (en) 1978-10-16 1979-10-15 Coated surfaces capable of decomposing oils
FR7925616A FR2439040A1 (en) 1978-10-16 1979-10-15 COATED SURFACES COMPRISING A BINDER CONTAINING ONE OR MORE OXIDES, CAPABLE OF DECOMPOSING OILS
SE7908515A SE7908515L (en) 1978-10-16 1979-10-15 COATED SURFACES
GB7935663A GB2037271B (en) 1978-10-16 1979-10-15 Surface coatings capable of decomposing oil
DE19792941768 DE2941768A1 (en) 1978-10-16 1979-10-16 OIL-DEGRADATING COMPOSITION AND SURFACES, ESPECIALLY OVEN INTERIORS COATED WITH THE COMPOSITION
CA000337728A CA1149363A (en) 1978-10-16 1979-10-16 Coated surfaces capable of decomposing oils
US06/480,380 US4471027A (en) 1978-02-13 1983-04-05 Coated surfaces capable of decomposing oils
US06/586,144 US4515862A (en) 1978-10-16 1984-03-05 Coated surfaces capable of decomposing oils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53127543A JPS5915016B2 (en) 1978-10-16 1978-10-16 Coating material with catalytic action

Publications (2)

Publication Number Publication Date
JPS5554356A JPS5554356A (en) 1980-04-21
JPS5915016B2 true JPS5915016B2 (en) 1984-04-07

Family

ID=14962600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53127543A Expired JPS5915016B2 (en) 1978-02-13 1978-10-16 Coating material with catalytic action

Country Status (1)

Country Link
JP (1) JPS5915016B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108257A (en) * 1981-12-21 1983-06-28 Toshiba Corp Preparation of self-cleaning type coating layer
US5607503A (en) * 1993-09-03 1997-03-04 Refract-A-Gard Pty Limited Silica-based binder
GB201412058D0 (en) 2014-07-07 2014-08-20 Univ Dublin Thermal control coating

Also Published As

Publication number Publication date
JPS5554356A (en) 1980-04-21

Similar Documents

Publication Publication Date Title
CA1110222A (en) Self-cleaning coating
US3547098A (en) Porcelain enamels for self-cleaning cooking oven
JPS588893B2 (en) It's a big deal
WO2000059555A1 (en) Silane-based coating with a deodorizing effect for domestic appliances
JPS5919052B2 (en) frit composition
WO1981000972A1 (en) Article coated with improved fluoropolymer finish
AU724647B2 (en) Coating agent for carbonization chamber of coke ovens and application method thereof
JPS5915016B2 (en) Coating material with catalytic action
US3627560A (en) Self-cleaning cooking apparatus
JPS5848217B2 (en) Oil-degradable coating film
KR100206197B1 (en) Additives for lead-free frits
US3598650A (en) Method of removing organic soils in contact with a vitreous composition coated on a metallic substrate
EA200300968A1 (en) CATALYST FOR OXIDATIVE DEMERCAPTANIZATION OF HYDROCARBON COMPOSITES, METHOD FOR ITS PREPARATION AND APPLICATION IN THE PROCESS OF HYDROGEN CLEANING OF HYDROCARBON COMPOSITIONS
JPS6351194B2 (en)
JPS5915017B2 (en) Coated surface with catalytic action
JPS61133145A (en) Coating composition having catalytic action
KR940003194B1 (en) Coating composition
JPH0343476A (en) Heat resistant coating film material and cooking utensil provided with the same material
JPS6113505B2 (en)
JPS5854613B2 (en) Film with oxidation catalytic action
JPS5949314B2 (en) How to prevent carbonaceous deposits on surfaces
JPS6211621B2 (en)
JPS60171319A (en) Cooking apparatus
KR920002643B1 (en) Coating composition
US4060662A (en) Article having a surface layer of catalytic ash by-product of coal combustion