[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS59146971A - Composite body manufacture and device - Google Patents

Composite body manufacture and device

Info

Publication number
JPS59146971A
JPS59146971A JP58016252A JP1625283A JPS59146971A JP S59146971 A JPS59146971 A JP S59146971A JP 58016252 A JP58016252 A JP 58016252A JP 1625283 A JP1625283 A JP 1625283A JP S59146971 A JPS59146971 A JP S59146971A
Authority
JP
Japan
Prior art keywords
container
composite
raw material
pressure
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58016252A
Other languages
Japanese (ja)
Inventor
満尾 浩治
則雄 大坪
満尾 ミツ子
樋上 恭子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITSUO SOGO KENKYUSHO KK
MITSUO SOUGOU KENKYUSHO KK
Original Assignee
MITSUO SOGO KENKYUSHO KK
MITSUO SOUGOU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITSUO SOGO KENKYUSHO KK, MITSUO SOUGOU KENKYUSHO KK filed Critical MITSUO SOGO KENKYUSHO KK
Priority to JP58016252A priority Critical patent/JPS59146971A/en
Priority to PCT/JP1984/000032 priority patent/WO1984003063A1/en
Priority to AU24916/84A priority patent/AU2491684A/en
Publication of JPS59146971A publication Critical patent/JPS59146971A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/46Arrangements for applying super- or sub-atmospheric pressure during mixing; Arrangements for cooling or heating during mixing, e.g. by introducing vapour
    • B28C5/462Mixing at sub- or super-atmospheric pressure
    • B28C5/464Mixing at sub- or super-atmospheric pressure at sub-atmospheric pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/29Mixing by periodically deforming flexible tubular members through which the material is flowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/55Mixers with shaking, oscillating, or vibrating mechanisms the materials to be mixed being contained in a flexible bag submitted to periodical deformation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、繊維、粒、片、塊等の多孔物質の気孔に、
水硬性無機質系、合成樹脂系、熔融金属系、熔融硝子系
、或いは乾燥固化系等の硬化原料を圧入してなる複合体
の製造法と、その製造装置とに関する。
DETAILED DESCRIPTION OF THE INVENTION This invention provides for
The present invention relates to a method for producing a composite material by press-fitting a hardening material such as a hydraulic inorganic material, a synthetic resin material, a molten metal material, a molten glass material, or a dry solidification material, and an apparatus for producing the same.

従来知られているコンクリートヤモルタルは、単にセメ
ントと水及び骨材を混練して硬化させたものが多く、セ
メントと骨材の付着効果が少(、骨材が多孔質の場合は
気孔中の空気が付着を粗害し、骨材そのものの強度を良
好に利用することができない欠点があった。上記σ)よ
うな現象は単にコンクl −トやモルタルのみならず、
増量材を混入した合成樹脂その他の硬化体についても同
様である。
Conventionally known concrete mortar is often made by simply kneading cement, water, and aggregate and hardening it, which has little adhesion effect between cement and aggregate (or, if the aggregate is porous, the pores are hardened). There was a drawback that air damaged the adhesion and the strength of the aggregate itself could not be utilized effectively.Phenomena such as σ) above are not only limited to concrete and mortar.
The same applies to synthetic resins and other cured products mixed with extenders.

この発明は上記に鑑みなされたものであり、多孔物質の
気孔に硬化原料を圧入して硬化させる複合体の製造法と
、その製造装置を提供することを目的とするものであっ
て、その要旨は下記の通りである。
This invention was made in view of the above, and aims to provide a method for manufacturing a composite material in which a hardening material is press-fitted into the pores of a porous material and hardened, and an apparatus for manufacturing the same. is as follows.

(1)減圧下におかれた多孔物質が内在する硬化原料を
、復圧した後硬化させてなることを特徴とする複合体の
製造法。
(1) A method for producing a composite, which is characterized in that a hardening raw material containing a porous material is placed under reduced pressure and then hardened after being restored to pressure.

(2)上部容器と下部容器の間に開閉自在なゲートを設
けておぎ、該ゲートを閉じて上記上部容器内に多孔物質
が内在する硬化原料を入れ毛密閉する一方、上記下部容
器内戚(へ&1更に上記上部容器内を減圧し、次いで上
記ゲートを開いて上記多孔物質が内在する硬化原料を上
記下部容器内に落下させ、該下部容器内の減圧下におか
れた多孔物質が内在する硬化原料を、復圧した後硬化さ
せてなることを特徴とする複合体の製造法。
(2) A gate that can be opened and closed is provided between the upper container and the lower container, and the gate is closed to put the curing raw material containing a porous substance in the upper container and seal it. Step 1: Further reduce the pressure in the upper container, then open the gate to allow the cured raw material containing the porous material to fall into the lower container, and the porous material placed under reduced pressure in the lower container to contain the porous material. A method for producing a composite material, which comprises curing a hardening raw material after repressurizing it.

(3)多孔物質が内在する硬化原料を容器内に入れて密
閉し、該容器内な減圧して該容器内に設けられた攪拌具
で攪拌し、攪拌中か、攪拌停止と同時か、または攪拌停
止後容器内を復圧し、多孔物質が内在する硬化原料を取
出し硬化させてな・ることを特徴とする覆合体の製造法
(3) Put the curing raw material containing the porous material into a container, seal it, reduce the pressure inside the container, and stir it with a stirring tool provided in the container, either during stirring or at the same time as stirring is stopped, or 1. A method for producing a covering body, which is characterized in that after stopping stirring, the pressure inside the container is restored, and the hardening raw material containing the porous material is taken out and hardened.

(4)上部容器と下部容器の間に開閉自在なゲートを設
けておぎ、該ゲートを閉じて上記上部容器内に多孔物質
が内在する硬化原料を入れ、上記上部容器式いは更に上
記下部容器を減圧して上記上部容器内に設けた攪拌具で
攪拌し、復圧して上記上部容器内の多孔物質が内在する
硬化原料を上記F部容器内に落下させ、これを取出し硬
化させてなることを%徴とする複合体の製造法。
(4) A gate that can be opened and closed between the upper container and the lower container is provided, the gate is closed, and the curing raw material containing a porous substance is put into the upper container, and the upper container type or further the lower container is used. is depressurized and stirred with a stirring tool provided in the upper container, and the pressure is restored to cause the curing raw material containing the porous material in the upper container to fall into the F section container, which is then taken out and cured. A method for producing a composite with %.

(5)  上部容器と下部容器の藺に開閉自在なゲート
を設けておぎ、該ゲートを閉じて上記上部容器内に多孔
物質と硬化原料とを入れ、上記上部容器を密閉するか密
閉することなく上記上部容器内に設けられた攪拌具によ
り多孔物質と硬化原料を攪拌して多孔物質が内在する硬
化原料をつくり、上記上部容器内を減圧して更に攪拌を
続しナた後復圧して上記ゲートから上記下部容器内へ多
孔物質が内在する硬化原料を落下させこ八を取出して硬
化させるかまたは上記F部容器内或いは更に上記上部容
器内を減圧し、仄いで上記ゲートな開い℃上記多孔物質
が内在する硬化原料を上記下部容器内に洛fさせ、該下
部容器内の減圧下におかれた多孔物質が内在する硬化原
料を復圧して取出し、これを硬化させてなることを特徴
とする複合体の製造法。
(5) A gate that can be opened and closed is provided in the upper container and the lower container, and the gate is closed and the porous material and the hardening raw material are placed in the upper container, and the upper container is sealed or not sealed. The porous material and the hardening raw material are stirred using a stirring tool installed in the upper container to create a hardening material containing the porous material, and the pressure inside the upper container is reduced, stirring is continued, and the pressure is restored to the above. The hardening material containing the porous substance is dropped from the gate into the lower container, and the material is removed and cured, or the inside of the F container or the upper container is reduced in pressure, and the gate is opened. A hardening raw material containing a substance is blown into the lower container, and a porous material placed under reduced pressure in the lower container restores pressure and takes out the hardening raw material, which is then cured. A method for producing a complex.

(6)変形可能な容器内に多孔物質と硬化原料を入れて
上記容器を密閉し、上記容器にその外側から圧力を茄え
て容器を変形させることにより多孔物質と硬化原料を混
練し、上記容器内を減圧して更に混線を行った後容器内
を復圧し、多孔物質が内在する硬化原料を取出し硬化さ
せてなることを特徴とする複合体の製造法。
(6) Put a porous substance and a hardening raw material into a deformable container, seal the container, apply pressure to the outside of the container to deform the container, knead the porous material and hardenable raw material, and knead the porous material and hardenable raw material in the container. 1. A method for producing a composite, which comprises reducing the pressure inside the container, cross-circuiting the container, then restoring the pressure inside the container, taking out the curing raw material containing the porous material and curing it.

(力 多孔物質が内在する硬化原料か、または多孔物質
と硬化原料とを容器に入れ、該容器を往復動させて混練
すると共に容器内な減圧し、矢に上記容器の往復動中か
、往復動停止と同時か、または往復動停止後に容器を復
圧し、多孔物質が内在する硬化原料を取り出し硬化させ
てなることを特徴とする複合体の製造法。
(Force) Put the hardening raw material containing a porous substance or the porous material and hardening raw material into a container, move the container back and forth to knead it, and reduce the pressure inside the container. 1. A method for producing a composite, which comprises restoring the pressure in a container at the same time as the motion stops or after stopping the reciprocating motion, and taking out and curing the hardening raw material containing the porous material.

(8)減圧下におかれた多孔物質が内在する硬化原料を
、直列に配設された3組のバルブを組合わせ作動させる
ことにより、順次排出かつ復圧させ、復圧した後硬化さ
せてなることを特徴とする複合体の製造法。
(8) The hardening raw material containing porous material placed under reduced pressure is sequentially discharged and depressurized by operating three sets of valves arranged in series, and after being depressurized, the hardening material is hardened. A method for producing a complex characterized by:

(9)減圧下におかれた多孔物質が内在する硬化原料を
、両側にバルブを設けかつ真空吸引装置に繋がれた容器
を介し順次排出かつ復圧し、復圧後硬化させてなること
を特、徴とする複合体の製造法。
(9) A curing raw material containing a porous substance placed under reduced pressure is sequentially discharged and depressurized through a container equipped with valves on both sides and connected to a vacuum suction device, and is cured after being depressurized. , a method for producing a complex with characteristics.

[101減圧下におかれた多孔物質が内在する硬化原料
を、レベル検出器または電量測定器を設けかつ下端にゲ
ートを設けた下向き管を介し順次排出かつ復圧し、復圧
後硬化させてなることを特徴とする複合体の製造法。
[101 A cured raw material containing a porous substance placed under reduced pressure is sequentially discharged and depressurized through a downward tube equipped with a level detector or a coulometer and a gate at the lower end, and cured after being depressurized. A method for producing a composite, characterized by:

IIB  減圧下におかれた多孔物質が内在する硬化原
料を、直列に配設されたコ組のバルブを組合わせ作動さ
せることにより、順欠復圧かつ排出し、復圧した後硬化
させてなることを特徴とする複合体の製造法。
IIB A cured raw material containing a porous material placed under reduced pressure is sequentially restored and discharged by operating a combination of valves arranged in series, and cured after being restored to pressure. A method for producing a composite, characterized by:

[121多孔物質が内在する硬化原料を、減圧下の容器
内に導くかまたは容器内に導いた後減圧し、排出かつ復
圧した後硬化させてなることを特徴とする複合体の製造
法。
[121 A method for producing a composite material, which comprises introducing a hardening raw material containing a porous material into a container under reduced pressure, or introducing it into a container, reducing the pressure, discharging it, restoring the pressure, and then curing it.

(131減圧ドにおかれた多孔物質が内在する硬化原料
を、後圧した後含泡させるか発泡させ、これを硬化させ
てなることを特徴とする複合体の製造法。
(131) A method for producing a composite, which is characterized in that a cured raw material containing a porous material is placed under reduced pressure, subjected to post-pressure, foamed or foamed, and then cured.

04I  上部容器と下部容器の間に開閉自在なゲート
が設けられており、上記上部容器と下部容器のうちのl
またはツが真空吸引装置に繋がれていることを特徴とす
る複合体の製造装置。
04I A gate that can be opened and closed is provided between the upper container and the lower container.
A device for manufacturing a composite body, characterized in that the device is connected to a vacuum suction device.

09  変形可能な容器と、該容器に圧力を加えて変形
させろ押圧具と、上記容器内を真空吸引する真空吸引装
置とを具備したことを特徴とする複合体の製造装置。
09. An apparatus for manufacturing a composite body, comprising: a deformable container; a pressing tool for applying pressure to deform the container; and a vacuum suction device for vacuuming the inside of the container.

υυ 供給装置に間欠的または連続的排出装置が設けら
れ℃いることを特徴とする複合体の製造装置。
υυ Composite production equipment characterized in that the supply device is provided with an intermittent or continuous discharge device.

Uη 導入口と排出口を設けた容器に真空吸引装置或い
は更にコンプレッサーを繋いだことを特徴とする複合体
の製造装置。、 以下この発明を、多孔物質に高炉滓を使用し、硬化原料
にセメントと水を使用し、添付図面を参照して詳細に説
明する。
Uη A device for manufacturing a composite body, characterized in that a vacuum suction device or a compressor is connected to a container provided with an inlet and an outlet. Hereinafter, the present invention will be described in detail using blast furnace slag as a porous material and cement and water as hardening raw materials, with reference to the accompanying drawings.

第1図及び第2図は複合体の製造装Wt/例を示し、1
はメインフレームであり、該メインフレーム1にはシリ
ンダ2によりミキサーフレーム3が回転自在に設けられ
ている。ミキシングドラム4かも突出したミキサー軸5
はミキサーフレーム3の軸受(図示せず)に支承され、
ミキシングドラム4に固着されたギヤー6と、ミキサー
フレーム3に取付けられた原動機70回転軸(図示せず
)に取付けられたビニオン8が噛合し、原動機70回転
によりミキシングドラム4が回転するように構成されて
いる。
FIG. 1 and FIG. 2 show an example of manufacturing equipment Wt/example of a composite body.
is a main frame, and a mixer frame 3 is rotatably provided on the main frame 1 by means of a cylinder 2. The mixing drum 4 also has a protruding mixer shaft 5
is supported by a bearing (not shown) of the mixer frame 3,
A gear 6 fixed to the mixing drum 4 and a pinion 8 attached to a rotating shaft (not shown) of a prime mover 70 attached to the mixer frame 3 mesh with each other, so that the mixing drum 4 is rotated by the prime mover 70 rotations. has been done.

一方ミキサーフレーム3の一側には基部アーム9が固着
されており、基部アーム9の先端にはシリンダ10によ
って端部アーム11が回転自在に枢着され、端部アーム
11の先端にはスイベル12がスイベルブラケット13
を介して取付けられている。スイベル12は第3図に示
されるように、スイベルケース14内に、該スイベルケ
ース14に内嵌されたベアリング15を介して中空軸1
6が回転自在に装着されたものであり、中空軸16は七
〇−側がプラグ17で閉塞され、他側は中空軸16と一
体的につくられた蓋18を貫通してミキシングドラム4
内に連通している。尚中空軸16の中間には孔が設Hら
れでいてスイベルケース14に設けた吸引口19に連通
し、スイベルケース14と中空軸160間にはシール2
0が設けられている。
On the other hand, a base arm 9 is fixed to one side of the mixer frame 3. An end arm 11 is rotatably attached to the tip of the base arm 9 by a cylinder 10, and a swivel 12 is attached to the tip of the end arm 11. is the swivel bracket 13
It is installed through. As shown in FIG. 3, the swivel 12 is inserted into the swivel case 14 via a bearing 15 fitted inside the swivel case 14, and then the hollow shaft 12 is inserted into the swivel case 14.
6 is rotatably mounted, the hollow shaft 16 is closed with a plug 17 on the 70- side, and the other side passes through a lid 18 that is integrally formed with the hollow shaft 16 to connect the mixing drum 4.
It communicates within. A hole is provided in the middle of the hollow shaft 16 and communicates with a suction port 19 provided in the swivel case 14, and a seal 2 is provided between the swivel case 14 and the hollow shaft 160.
0 is set.

また蓋18はシリンダ1oによりバッキング21を介し
てミキシングドラム4の開口部に着脱自在とさnており
、ベアリングカバー22及び止め輪23はベアリング1
5を固定すると共にスイベルケース14と中空軸16の
脱落を防止している。
Further, the lid 18 is detachably attached to the opening of the mixing drum 4 via the backing 21 by the cylinder 1o, and the bearing cover 22 and retaining ring 23 are attached to the bearing 1.
5 and prevents the swivel case 14 and hollow shaft 16 from falling off.

次に以上述べた複合体の製造装置Aを利用したコンク’
J−ト(a合体)の製造法に就て説明する。先づ図示の
状態からシリンダ1oを作動させて蓋18を開き、ミキ
シングドラム4内にその開口部から所要量の高炉滓(多
孔物質)とセメント及び水(硬化原料)とを入れ、再び
シリンダ10を作動させて蓋18でミキシングドラム4
の開口部を閉じ、原動機Iを作動させミキシングドラム
4を回転させて混練する。次に混練しながら図示されて
いない真空吸引装置を作動させてこれに連通ずる吸引口
19を介しミキシングドラム4内を真空吸引し、高炉滓
の気孔中の空気を光分に脱気した所で復圧し、次に原動
機Tの作動を停止してミキシングドラム40回転を止め
、シリンダ10を作動させて蓋18を開き、シリンダ2
の作動によりミキシングドラム4を傾斜させて開口部を
下に向け、ミキシングドラム内の生コンクリート(多孔
物質が内在する硬化原料〕を外部に出し、これを型枠に
打ち込んで成形し硬化させると、高炉滓の気孔にコンク
リート成分が圧入された強度の高いコンクリート(g合
体)を得る。
Next, we will use the above-mentioned composite manufacturing equipment A.
The method for producing J-t (a combination) will be explained. First, operate the cylinder 1o from the illustrated state, open the lid 18, put the required amount of blast furnace slag (porous material), cement, and water (hardening raw materials) into the mixing drum 4 through its opening, and then open the cylinder 10 again. Activate the mixing drum 4 with the lid 18.
The opening is closed, the prime mover I is operated, and the mixing drum 4 is rotated for kneading. Next, while kneading, a vacuum suction device (not shown) is activated to vacuum the inside of the mixing drum 4 through the suction port 19 communicating with it, and the air in the pores of the blast furnace slag is degassed into light. The pressure is restored, then the operation of the prime mover T is stopped to stop the rotation of the mixing drum 40, the cylinder 10 is operated and the lid 18 is opened, and the cylinder 2
By the operation of , the mixing drum 4 is tilted so that the opening faces downward, and the ready-mixed concrete (hardened raw material containing porous material) inside the mixing drum is brought out to the outside, and it is poured into a formwork to be shaped and hardened. To obtain high-strength concrete (g-combination) in which concrete components are press-fitted into the pores of blast furnace slag.

上記実施例は回転ドラム型ミキサー4−ネ」用した複合
体の製造装置iLAと、これを利用した複合体の製造法
1例を示すが、他のミキサーで高炉滓を骨材に使った生
コンクリートをつくっておき、これを製造装置Aのミキ
シングドラム4内に入れ、ミキシングドラム4を回転さ
せて混練しながら真空吸引し、復圧した後取出して硬化
させてよいことはいうまでもない。また復圧はミキシン
グドラムの回転中であってもよ(、回転中止と同時であ
ってもよく、回転中止後であってもよい。混練しながら
真空吸引すること等によりむらはく高炉滓の脱気を行う
ことが肝要である。
The above example shows an example of a composite manufacturing apparatus iLA using a rotating drum mixer (4-N) and an example of a composite manufacturing method using this. Needless to say, concrete may be prepared in advance, placed in the mixing drum 4 of the manufacturing apparatus A, vacuum-suctioned while the mixing drum 4 is rotated and kneaded, pressure restored, and then taken out and hardened. In addition, pressure recovery may be carried out while the mixing drum is rotating (or may be carried out at the same time as the mixing drum stops, or after the rotation is stopped.) It is essential to perform deaeration.

以上多孔物質に高炉滓を使用し、硬化原料にセメントと
水を使用した実施例につき説明したが、多孔物質及び硬
化原料には後記するように多々のものを使用することが
でき、しかも硬化原料は/剤のみならず複数剤の場合も
多いので、高炉滓等を単に多孔物質、セメントと水等を
硬化原料、硬化原料を構成する材料例えばセメントや水
等を材料、多孔物質が内在する硬化原料を複合原料、そ
の硬化したものを複合体と呼称し、他の実施例につぎ説
明する。
The above example uses blast furnace slag as the porous material and cement and water as the hardening raw materials. In many cases, it is not only a / agent but also multiple agents, so blast furnace slag is simply a porous material, cement and water are hardening materials, materials that make up the hardening raw materials, such as cement and water, are hardening materials that contain porous materials. The raw material will be referred to as a composite raw material, and its cured material will be referred to as a composite, and will be described below with reference to other examples.

第q図〜第11図は開閉自在なゲート24を介した上部
容器25と下部容器26によって構成される複合体の製
造装置8例を示し、21は上部容器25に連通して設け
られた減圧管、28は下部容器26に連通して設けられ
た減圧管であり、減圧管27及び28は何れも図示され
ていない真空吸引装置に繋がれている。29は下部容器
26のゲート24下部に設けられた拡散板、30は上部
容器25内に設けら扛た攪拌具、31は下部容器26内
に設けられた攪拌具、3zは攪拌具30.31を駆動回
転させるモータ、33は複合原料、34は上部容器25
に設けられた導入孔、35は下部容器26の排出口であ
る。
Figures q to 11 show eight examples of a composite manufacturing apparatus composed of an upper container 25 and a lower container 26 via a gate 24 that can be opened and closed, and 21 is a vacuum chamber provided in communication with the upper container 25. A pipe 28 is a pressure reducing pipe provided in communication with the lower container 26, and both pressure reducing pipes 27 and 28 are connected to a vacuum suction device (not shown). 29 is a diffusion plate provided below the gate 24 of the lower container 26, 30 is a stirring tool provided in the upper container 25, 31 is a stirring tool provided in the lower container 26, and 3z is a stirring tool 30.31 33 is a composite raw material, 34 is an upper container 25
An inlet hole 35 provided in the lower container 26 is an outlet of the lower container 26.

第を図〜第ろ図に示される複合体の製造装置Bを利用し
た複合体の製造法につき説明する。
A method for manufacturing a composite using the composite manufacturing apparatus B shown in FIGS.

先づ第を図に示されるようにゲート24と排出口35を
閉じ、真空吸引装置を作動させ減圧管28を介して下部
容器26内を真空吸引して減圧し、上部容器25の蓋を
開は複合原料3:l−上部容器25内に入れてこれを充
満し、蓋を閉じて密閉する。次に第S図に示されるよう
にゲート24を開くと複合原料33は圧力差と自重によ
り下部容器26内に落丁する。暫時真空吸引を続けた後
下部容器26内を復圧すると、複合原料33に含まれる
硬化原料は、硬化原料内に内在する脱気された多孔物質
の気孔中に圧入される。ここで排出口35を開き複合原
料33を取出して型枠内に打設し硬化させると複合体を
得ろ。この製造法は複合原料を減圧下で混練して多孔物
質の脱気をむらなく行う前記実施例に比し、上部容器2
5内の複合原料33を減圧された下部容器26内に落下
させながら多孔物質の脱気をむらしく行わんとするもの
であり、下部容器26の容積が上部容器25の容積より
大であり、下部容器26の高さが犬である程効果が犬で
ある。尚この実施例では第6図に示されるように、複合
原料33を上部容器25内に充満させることl工(、空
間を残して入れ下部容器26内に落下させてもよい。こ
の時は上部容器25と下部容器26の圧力差が犬となり
、複合原料33は下部容器26内に勢よく落下して落下
時複合原料33が分散しやすく多孔物質の脱気をむらな
(行いやすいが、真空度が低くなるので下部容器26を
上部容器に比し犬にしておくか下部容器26の真空度を
上部容器の真空度より高めておくことが望ましい。
First, as shown in the figure, the gate 24 and the discharge port 35 are closed, the vacuum suction device is activated to vacuum the inside of the lower container 26 through the pressure reducing tube 28 to reduce the pressure, and the lid of the upper container 25 is opened. Composite raw material 3:1 is placed in the upper container 25, filled with the upper container 25, and the lid is closed to seal it. Next, as shown in FIG. S, when the gate 24 is opened, the composite raw material 33 falls into the lower container 26 due to the pressure difference and its own weight. When the pressure inside the lower container 26 is restored after continuing vacuum suction for a while, the hardening raw material contained in the composite raw material 33 is forced into the pores of the degassed porous material present in the hardening raw material. Here, the discharge port 35 is opened and the composite raw material 33 is taken out, poured into a mold, and hardened to obtain a composite. This manufacturing method is different from the above embodiment in which the composite raw materials are kneaded under reduced pressure and the porous material is evenly degassed.
The purpose is to degas the porous material in an inefficient manner while dropping the composite raw material 33 in 5 into the reduced pressure lower container 26, and the volume of the lower container 26 is larger than the volume of the upper container 25, The higher the height of the lower container 26, the higher the effect. In this embodiment, as shown in FIG. The pressure difference between the container 25 and the lower container 26 becomes a dog, and the composite raw material 33 falls forcefully into the lower container 26, and when it falls, the composite raw material 33 tends to be dispersed and the porous material is degassed unevenly (although it is easy to do so, Therefore, it is desirable that the lower container 26 be made smaller than the upper container, or that the degree of vacuum in the lower container 26 be higher than that of the upper container.

第を図〜第6図に示される複合体の製造装置Bは、第7
図に示される複合体の製造装置B1のように、上部容器
25の蓋を固定式とし、これに複合原料を入れる導入孔
34と減圧管27を設けてもよい。この装置B1を使用
する時は導入孔34から複合原料33を上部容器25内
に入れて遮断密閉し、減圧管27.28を介し上部容器
25及び下部容器26内を共に真空外用して減圧した後
、ゲート24を開き複合原料33を下部容器26内に落
下させる。この時下部容器26内の真空度を上部容器2
5の真空度より犬にしておけば複合原料33は圧力差と
自重により落下し、真空度が同一である時は複合原料3
3は自重により落下する。久に復圧して複合原料33を
取出し硬化させて複合体とすることは第弘図〜第す図で
説明したと同様である。
The composite manufacturing apparatus B shown in FIGS.
As in the composite manufacturing apparatus B1 shown in the figure, the lid of the upper container 25 may be fixed, and an introduction hole 34 for introducing the composite raw material and a pressure reducing pipe 27 may be provided therein. When using this apparatus B1, the composite raw material 33 is put into the upper container 25 through the introduction hole 34, shut off and sealed, and the insides of the upper container 25 and the lower container 26 are both externally vacuumed to reduce the pressure. After that, the gate 24 is opened and the composite raw material 33 is dropped into the lower container 26. At this time, the degree of vacuum in the lower container 26 is lowered to the upper container 2.
If the degree of vacuum is higher than that of 5, the composite material 33 will fall due to the pressure difference and its own weight, and if the degree of vacuum is the same, the composite material 33 will fall.
3 falls due to its own weight. The process of recovering the pressure for a while, taking out the composite raw material 33, and curing it to form a composite is the same as that described in Figs.

第5図は第を図〜第4図で説明した複合体の製造装置B
の下部容器26内に、ゲート24の下部に位置して柄の
ない傘形の拡散板29を設ゆた複合体の製造装置B2を
示し、前記同様にして複合体を製造するが、ゲート24
を開いて上部容器25内の複合原料を落下させる時、複
合原料は拡散板29によって分散しながら下部容器26
内に落下し、多孔物質の脱気をむしなく行いやすい。複
合原料の落下時拡散板29を過当な手段で回転させると
複合原料の分散落下は爽に効果的となる。尚拡散板29
に代えて例えば格子等の分数具を使用してよいことはい
うまでもない。
Figure 5 is a composite manufacturing apparatus B explained in Figures 1 to 4.
A composite manufacturing apparatus B2 is shown in which a handleless umbrella-shaped diffuser plate 29 is provided in the lower container 26 of the gate 24, and the composite is manufactured in the same manner as described above.
When the composite raw material in the upper container 25 is opened and dropped, the composite raw material is dispersed by the diffusion plate 29 and flows into the lower container 26.
It is easy to degas the porous material. If the diffusion plate 29 is rotated by an appropriate means when the composite raw material is falling, the composite raw material can be dispersed and dropped very effectively. Furthermore, the diffusion plate 29
It goes without saying that a fractional device such as a lattice may be used instead.

第9図は第j図〜第6図で説明した複合体の製造装置B
の下部容器26内に攪拌具31を設けた複合体の製造装
置B3を示し、攪拌具31を設けたため下部容626の
底部が水平に形成されている。複合体の製造法は第4図
〜第す図及び第5図の複合体の製造装置同様に、ゲート
24と排出口35を閉じておき、下部容器26内を減圧
すると共に上部容器25内に複合原料を入れて密閉し、
次にゲート24を開いて上部容器25内の複合原料を下
部容器26内に落下させるが、更に多孔物質の脱気をむ
らなく行うため、下部容器26内に落下した複合原料を
攪拌具31で攪拌し、しかる後復圧し、排出口35を開
いて複合原料を外に出しこれを硬化させるものである。
Figure 9 shows the composite manufacturing apparatus B explained in Figures J to 6.
A composite manufacturing apparatus B3 is shown in which a stirring tool 31 is provided in the lower container 26 of 2. Because the stirring tool 31 is provided, the bottom of the lower container 626 is formed horizontally. The method for manufacturing the composite is similar to the composite manufacturing apparatus shown in FIGS. Add composite raw materials and seal.
Next, the gate 24 is opened to allow the composite raw material in the upper container 25 to fall into the lower container 26. In order to further evenly degas the porous material, the composite raw material that has fallen into the lower container 26 is stirred with a stirring tool 31. The mixture is stirred, then the pressure is restored, and the discharge port 35 is opened to take out the composite raw material and harden it.

尚復圧は撹拌中、攪拌停止と同時または攪拌停止後の何
れの時に行ってもよ(・。またこの装置を使用する時は
、排出口35とゲート24を閉じておぎ、上部容器25
内に複合原料または材料(例えばセメント、水、及び高
炉滓等)乞入れ、ゲート24を開いて複合原料または材
料を下部容器26内に落ドさせ、ゲート24を閉じて下
部容器26を密閉し、モータ32’Y作動させて攪拌具
31を回転させ、複合原料または材料を攪拌混練すると
共に、減圧管2ε、を介して下部容器26内を減圧し、
次に復圧した後排出口35を開き、複合原料を外に取出
しこれを硬化させてもよい。即ち上部容器を定量器また
はホッパーとして利用したものである。
Note that pressure restoration can be performed during stirring, at the same time as stirring is stopped, or after stirring is stopped.
the composite raw material or material (e.g., cement, water, blast furnace slag, etc.) is poured into the lower vessel 26, the gate 24 is opened to allow the composite raw material or material to fall into the lower vessel 26, and the gate 24 is closed to seal the lower vessel 26. , operate the motor 32'Y to rotate the stirring tool 31 to stir and knead the composite raw material or material, and reduce the pressure in the lower container 26 via the pressure reducing pipe 2ε,
Next, after the pressure is restored, the discharge port 35 may be opened to take out the composite raw material and harden it. That is, the upper container is used as a meter or a hopper.

第10図は、1覚拌具30及び減圧V27を投げた上部
容器25と、減圧管281¥設けた下部容器26との間
に、開閉自在なゲート24を設けた複合体の製造装置B
4を示し、この装置を使用して複合体をつくる時は、図
示されていない導入孔から複合原料を上部容器25内に
入れ、上部容器25を密閉し減圧管27を介して下部容
器25内を減圧しなからモータ32の作動により攪拌具
30で複合原料を攪拌し、復圧した後ゲート24を開い
て複合原料を下部容器内に落下させ、排出口35を開き
複合原料を外に取出して硬化さセる。尚上部容器25と
下部容器26を減圧し℃おぎ、上部容器25(ハ)の複
合原料を攪拌した後ゲート24を開いて下部容器26内
に落下させ、ここで復圧して複合原料を取出し硬化させ
てもよく、上¥A谷器25を減圧しておいてこの中で複
合原料を攪拌し、復圧した後ゲート24を開いて減圧下
の下部容器26内に複合原料を落下させ、下部容器25
を復圧して複合原料を取出し硬化させてもよい。また上
部容a25には複合原料に代えて材料を入れ、攪拌具3
0で攪拌混練して複合原料とじ、上記工程を行って複合
原料を取出し硬化させてよい。
Figure 10 shows a complex manufacturing device B in which a gate 24 that can be opened and closed is provided between an upper container 25 containing a stirrer 30 and a reduced pressure V 27, and a lower container 26 provided with a reduced pressure pipe 281.
4, and when making a composite using this device, the composite raw material is introduced into the upper container 25 through an introduction hole (not shown), the upper container 25 is sealed, and the composite material is introduced into the lower container 25 via the pressure reducing pipe 27. While reducing the pressure, the composite raw material is stirred by the stirring tool 30 by operating the motor 32, and after the pressure is restored, the gate 24 is opened and the composite raw material falls into the lower container, and the discharge port 35 is opened and the composite raw material is taken out. Let it harden. The upper container 25 and the lower container 26 are depressurized and cooled to ℃, and after stirring the composite raw material in the upper container 25 (c), the gate 24 is opened and dropped into the lower container 26, where the pressure is restored and the composite raw material is taken out and hardened. Alternatively, the pressure in the upper A valley vessel 25 is reduced, the composite raw material is stirred therein, and after the pressure is restored, the gate 24 is opened and the composite raw material is dropped into the lower container 26 under reduced pressure. Container 25
The composite raw material may be taken out and hardened by restoring the pressure. In addition, the upper volume a25 is filled with a material instead of the composite raw material, and the stirring tool 3
The composite raw material may be prepared by stirring and kneading the composite raw material at 0 and then performing the above steps to take out the composite raw material and harden it.

材料を混練する時は上部容器は密閉しておいてもよく密
閉しないでおいてもよい。即ち上部容器25に攪拌具3
0を設ければ、上部容器25内にセメント、水、高炉滓
等の材料を入れて攪拌混練し、複合原料をつくることが
でき、上部容器25内を密閉減圧して複合原料を攪拌し
た後後圧して下部容器26内に落下させることもできれ
ば、攪拌具30は単に複合原料の装造のみに利用し、下
部容器26を減圧しておいてこの中に複合原料を落下さ
せ、復圧後取出して硬化させることもできる訳である。
When kneading the ingredients, the upper container may be kept closed or uncovered. That is, the stirring tool 3 is placed in the upper container 25.
If 0 is provided, materials such as cement, water, and blast furnace slag can be put into the upper container 25 and stirred and kneaded to produce a composite raw material.After the upper container 25 is sealed and depressurized and the composite raw material is stirred. If the stirring device 30 can be used only for preparing the composite raw material with after-pressurization, the composite raw material can be dropped into the lower container 26 after being depressurized. It can also be taken out and cured.

尚この時導入孔は遮断しておいてもよく開けておいても
よい。
At this time, the introduction hole may be closed or left open.

第11図は減圧管27と攪拌具30を設けた下部容器2
5と、減圧管28と攪拌具31を設けた下部容器26の
間に、開閉自在なゲート24を設けた複合体の製造装置
B、を示し、第9図及び第10図の複合体の製造装置に
おける製造法のみならず、これを複合した多々の製造法
を有する。
FIG. 11 shows a lower container 2 equipped with a pressure reducing pipe 27 and a stirring tool 30.
5, and a composite manufacturing apparatus B in which a gate 24 that can be opened and closed is provided between a lower container 26 provided with a pressure reducing pipe 28 and a stirring tool 31, and a composite manufacturing apparatus B shown in FIGS. 9 and 10. In addition to manufacturing methods using equipment, there are many manufacturing methods that combine these methods.

以上複合体ノ製a装ft Bt + B2 r Bs 
r B4 + BsKついて説明したが、何れも複合体
の裏造装[Bを利用したものである。即ち複合体の製造
装置BKは、上部容器25と下部容器26のlまたはユ
に減圧管を設げてよく、攪拌具を設けてもよい。また下
部容器に拡散板かまたは分散具を設けてよいこともいう
までもない。そして以上述べた複合体の製造法をそのま
まで或いは組合わせて行うことができる。
The above composite A-mounted ft Bt + B2 r Bs
r B4 + BsK has been explained, but both utilize the backing [B] of the composite. That is, in the composite manufacturing apparatus BK, a pressure reducing pipe may be provided in either L or U of the upper container 25 and the lower container 26, and a stirring tool may be provided. It goes without saying that the lower container may be provided with a diffusion plate or a dispersion device. The above-described composite manufacturing methods can be used as they are or in combination.

第1.2図及び第73図を工区示さ扛ていな上・真空吸
引装置に繋かれた減圧管38を有する変形oT能なゴム
製等の容器36と、直線型往復動を行う抑圧具39によ
って構成されφ複合体の製造装置1例を示し、この装置
によって複合体をつくる時は、先づ容器36内に材料を
入れ蓋をして密閉し、抑圧具39を往復動させ容器36
を介して内部の材料を押圧混練し、材料41が複合原料
になった所で、即ち材料41がよく混練された後減圧管
38を介して容器36内を減圧し、多孔物質なむらなく
脱気した所で容器36内を復圧し、往圧具39の往復動
を停止した後蓋を開いて内部の複合原料を取出し、これ
を硬化させて複合体をつくる。尚第1.2図及び第13
図に示されるように、水平方向の抑圧具による抑圧と垂
直方向の抑圧具による抑圧はこれを交互に行った方が混
線を効果的に行うことができる。また抑圧具39の直線
型往復動に代え、第1乙図に示されるように、押圧具4
2を基部43を中心にして円運動させ、抑圧具420円
運動により容器36を介し材料41を混練し或いjX減
圧下の複合原料を攪拌してもよい。
Figures 1.2 and 73 show the construction area. A deformable container 36 made of rubber or the like that has a decompression pipe 38 connected to a vacuum suction device, and a suppressor 39 that performs linear reciprocating motion. An example of an apparatus for manufacturing a φ composite is shown below. When manufacturing a composite using this apparatus, first put the material into the container 36 and seal it with a lid.
When the material 41 has become a composite raw material, that is, after the material 41 has been well kneaded, the pressure inside the container 36 is reduced through the pressure reducing pipe 38, and the porous material is evenly removed. After the pressure inside the container 36 is restored and the reciprocating motion of the forward pressure tool 39 is stopped, the lid is opened to take out the composite raw material inside and harden it to form a composite. In addition, Figures 1.2 and 13
As shown in the figure, crosstalk can be effectively achieved by alternately performing suppression using the horizontal suppression device and suppression using the vertical suppression device. Moreover, instead of the linear reciprocating movement of the pressing tool 39, as shown in FIG.
2 may be moved circularly around the base 43, and the material 41 may be kneaded through the container 36 by the circular movement of the suppressor 420, or the composite raw material may be stirred under reduced pressure.

第111.図及び第15図は、図示されていない真空吸
引装置に繋がれた減圧管38を有する容器37の1j1
11壁部及び底部に袋40を設けた複合体の製造装置C
4を示し、1111壁部の袋40と底部の袋40を交互
に膨張狭窄させることにより、容器37に入れられて密
閉された材料41を混練し、材料41が混練された所で
容器37内を減圧し、多孔物質かむもなく脱気された所
で復圧し、袋40の膨張狭窄作動を停止し、容器31内
の複合原料を取出し硬化させるものである。
No. 111. The figure and FIG. 15 show a container 37 1j1 having a pressure reducing pipe 38 connected to a vacuum suction device (not shown).
11 Composite manufacturing device C with bags 40 provided on the wall and bottom
4, by alternately expanding and constricting the bag 40 on the wall 1111 and the bag 40 on the bottom, the material 41 placed in the container 37 and sealed is kneaded, and at the place where the material 41 is kneaded, the inside of the container 37 is The pressure is reduced, the pressure is restored at the point where the porous material is completely deaerated, the expansion and constriction operation of the bag 40 is stopped, and the composite raw material in the container 31 is taken out and hardened.

内袋40の膨張狭窄作動を工水圧シリンダや空圧シリン
ダ等を利用し、水や空気を出し入れすることによって行
われる。また容器37内に、第72図に示されるような
変形可能な容器36を入れ、容器36と容器37の間に
袋40を介在させ、袋40の膨張狭窄作動により容器3
6を介して材料41を混練し、或いは減圧下の複合原料
を攪拌してよいことはいうまでもない。
The expansion and constriction of the inner bag 40 is carried out by using a hydraulic cylinder, a pneumatic cylinder, etc., to introduce and extract water and air. Further, a deformable container 36 as shown in FIG. 72 is placed in the container 37, a bag 40 is interposed between the containers 36 and 37, and the expansion and constriction of the bag 40 causes the container to collapse.
It goes without saying that the material 41 may be kneaded through the sieve 6 or the composite raw material may be stirred under reduced pressure.

次に容器の往復動を利−用した複合棒の製造装置と複合
体の製造法について説明する。
Next, an apparatus for manufacturing a composite rod and a method for manufacturing a composite rod using reciprocating motion of a container will be explained.

渠77図は両側の架台44と、この間に往復動自在に架
設された容器46によって構成される複合体の製造装置
りを示し、容器46には図示され℃いない真空吸引装置
に繋がれた減圧管47が設けられており、両側に固着さ
れた往復軸48が架台44の斜孔45に挿入され、これ
に摺動して容器46が往復動するように構成され℃いる
Figure 77 shows a complex manufacturing device consisting of frames 44 on both sides and a container 46 that is reciprocatably installed between them. A tube 47 is provided, and a reciprocating shaft 48 fixed to both sides is inserted into a diagonal hole 45 of the pedestal 44, and the container 46 is configured to reciprocate by sliding thereon.

先づ図示されていない蓋を開けて容器46内に材料を入
れ、図示されていないモータを作動させて容器46を往
復動させ、材料を混練して複合原料をつくる。次に真空
吸引装置を作@させ減圧管47を介して容器46内を減
圧し、多孔物質かむもなく脱気された所で復圧し、容器
46の往復動を停止し図示されていない排出口を開き複
合原料を排出し、これを硬化させて複合体をつくる。尚
容器46の直線型往復動は水平往復動でもよく垂直往復
動でもよい。また第tg図に示さ扛る複合体の製造装置
り、のよ5に往復動が揺動型往復動であってもよく、第
19図及び第20図に示される複合体の製造装置D2の
ように円型往復動でおってもよい。
First, a lid (not shown) is opened and materials are put into the container 46, and a motor (not shown) is operated to reciprocate the container 46 to knead the materials to produce a composite raw material. Next, a vacuum suction device is operated to reduce the pressure inside the container 46 via the pressure reducing pipe 47, and the pressure is restored at the point where the porous material is inevitably degassed. The container is opened and the composite material is discharged, which is then cured to create a composite material. The linear reciprocating motion of the container 46 may be horizontal reciprocating motion or vertical reciprocating motion. Further, in the apparatus for manufacturing a composite body shown in FIG. It may be a circular reciprocating motion as shown in the figure.

第ig図示の複合体の製造装置D1は容器49.49を
連結した:1個の容器が両側の架台50間に揺動自在に
架設されたものであり、51は両側の容器49.49の
連結部に突設され、架台50に回転自在に支承された揺
動軸、52は図示されていない真空吸引装置に繋がれ容
器49に設けられた減圧管であり、容器49.49に材
料を入れて密閉し、容器49.49を揺動させて複合原
料をつくり、次に減圧管52.52を介して容器49.
49内を減圧し、多孔物質かむもなく脱気された所で復
圧し、排出口を開いて複合原料を取出し硬化させる。尚
ツ個の容器49.49が連通している時は、減圧’15
2は1本でよい。また第、2.2図に示されるように、
容器49内に邪魔板53を設ければ容器49の揺動を太
ぎくすることができる。54は導入孔に設けられた蓋、
55は排出口に設けろした蓋、41は材料、52は減圧
管である。
The composite manufacturing apparatus D1 shown in FIG. A swing shaft 52, which is protruded from the connecting part and rotatably supported by the pedestal 50, is a decompression pipe connected to a vacuum suction device (not shown) and provided in the container 49. The container 49.49 is then shaken to create a composite raw material, and then transferred to the container 49.49 via a vacuum tube 52.52.
The pressure in the chamber 49 is reduced, and the pressure is restored at the point where the porous material is completely degassed, and the discharge port is opened to take out the composite material and harden it. When two containers 49.49 are in communication, the reduced pressure '15
Only one piece of 2 is enough. Also, as shown in Figure 2.2,
If a baffle plate 53 is provided inside the container 49, the swing of the container 49 can be increased. 54 is a lid provided on the introduction hole;
55 is a lid provided on the discharge port, 41 is a material, and 52 is a pressure reducing pipe.

第19図及び第20図に示される複合体の製造装置t 
L)2は両側の架台56.56間に容器57が円型往復
動を行うように架設されたものであり、架台56に回転
軸59が回転自在に支承され、回転軸59に固着された
回転板60に容器57の突出横杆58が回転自在に支承
されていて、図示されていIKいモータを作動させて回
転軸59を回転させろと回転板60が回転し、容器57
が円型往復動を行プように構成さitている。即ち容器
57内に材料を入れて密閉し、容器57を円型往復!!
!Iさせて混練し、複合原料ンつくった後図示されてい
ない真空吸引装置を作動させ減圧管61な介して容器5
7内を減圧し、多孔物質がむらなく脱気された所で復圧
し、容器51の円型往復動を停止して複合原料を取出し
、これを硬化させて複合体をつくる。
Composite manufacturing apparatus t shown in FIGS. 19 and 20
L) 2 is constructed such that a container 57 is reciprocated in a circular manner between frames 56 and 56 on both sides, and a rotating shaft 59 is rotatably supported by the frames 56 and fixed to the rotating shaft 59. A protruding horizontal rod 58 of a container 57 is rotatably supported on a rotary plate 60, and when an IK motor (not shown) is operated to rotate a rotary shaft 59, the rotary plate 60 rotates, and the container 57 is rotated.
It is configured to perform circular reciprocating motion. That is, put the material into the container 57, seal it, and move the container 57 back and forth in a circular manner! !
! After kneading and kneading the composite material, a vacuum suction device (not shown) is activated to pump the container 5 through the pressure reducing pipe 61.
The pressure inside the chamber 7 is reduced, and the pressure is restored after the porous material is evenly degassed, and the circular reciprocating movement of the container 51 is stopped to take out the composite raw material and harden it to form a composite.

第2/図は両側の架台62.62間に容器63を、その
取付軸64.64を変心させて往復動可能に架設した場
合を示し、第17図の複合体の製造装置に応用すること
ができる。
Figure 2 shows a case in which a container 63 is installed between frames 62 and 62 on both sides so that its mounting shafts 64 and 64 can be moved reciprocally, and this can be applied to the composite manufacturing apparatus shown in Figure 17. I can do it.

以上ワンロット毎のり合体の製造装置とり合体の製造法
に就で説明したが、以下複合体の連続製造装置と連続製
造法について説明する。
Above, the manufacturing apparatus and the manufacturing method for glue combination for each lot have been explained in detail, and below, the continuous manufacturing equipment and continuous manufacturing method for the composite will be explained.

第、23図は連続ミキサー65と排出装置66を組付わ
ぜた複合体の製造装置1例を示し、67は連続ミキサー
65を駆動する原動機、68は連続ミキサー65内を減
圧する真空吸引装置、69は気圧の変動を少(するため
の真空タンク・70はゲージ、71は多孔物質を入れる
ホッパー、72は連続ミキサー65に設けられたロータ
リーフィーダー74のホッパー73に、ホッパー71内
の多孔物質を搬送するベルトフィーダー、75はベルト
フィーダー72の速度を制御する速度制御装置、76は
ベルトフィーダーγ2に設けられたベルトスケール、7
7tj−ffl拌機78を備えた硬化原料貯蔵槽、79
は貯蔵槽1γ内の硬化原料をロータリーフィーダー74
の基部を介して4続ミ斤サー65内に搬送する搬送管8
0に設けられた可変容量型ポンプ、81は搬送管800
可変容量型ポンプ79と連続ミキサー65の間に設けら
れた流量計、82は流量計81及びベルトスケール76
 VC,Xカnり比率制御装置、83は排出装置66に
直列に設けられた3組のバルブ、84は排出装置66か
ら排出される複合原料を貯えるホッパーである。
FIG. 23 shows an example of a composite manufacturing apparatus in which a continuous mixer 65 and a discharge device 66 are assembled, 67 is a prime mover that drives the continuous mixer 65, and 68 is a vacuum suction device that reduces the pressure inside the continuous mixer 65. , 69 is a vacuum tank for minimizing fluctuations in atmospheric pressure; 70 is a gauge; 71 is a hopper for storing porous materials; 72 is a hopper 73 of a rotary feeder 74 provided in a continuous mixer 65; 75 is a speed control device that controls the speed of the belt feeder 72; 76 is a belt scale provided on the belt feeder γ2;
Hardening raw material storage tank with 7tj-ffl stirrer 78, 79
The hardening raw material in the storage tank 1γ is transferred to the rotary feeder 74.
Conveying pipe 8 to be conveyed into the four-sequence mixer 65 through the base of
0 is a variable displacement pump installed, 81 is a conveying pipe 800
A flow meter 82 is provided between the variable displacement pump 79 and the continuous mixer 65, and 82 is a flow meter 81 and a belt scale 76.
VC, X ratio control device, 83 is three sets of valves installed in series with the discharge device 66, 84 is a hopper for storing the composite raw material discharged from the discharge device 66.

上記装置では、ホッパー11の中の多孔物質はベルトフ
ィーダー72でロータリーフィーダー74の供給口であ
るホツノ<−73へ搬送されルカ、この時ベルトフィー
ダー72の速度を速度制御装置75によって調整するこ
とにより任意の量を供給することができる。また多孔物
質に対する硬化原料の割合を予じめ比率制御装置8zに
設定しておけば、ベルトフィーダー72に設けたベルト
スケール76によって検出された多孔物質の量に対し、
流量計81によって検出された硬化原料の量が予じめ設
定した割付になるように可変容量型ポンプ79を制御す
る。
In the above device, the porous material in the hopper 11 is conveyed by the belt feeder 72 to the feed port of the rotary feeder 74, which is the feed port of the rotary feeder 74. At this time, the speed of the belt feeder 72 is adjusted by the speed controller 75. Any amount can be supplied. Furthermore, if the ratio of the hardening raw material to the porous material is set in advance in the ratio control device 8z, the amount of the porous material detected by the belt scale 76 provided on the belt feeder 72 will be
The variable displacement pump 79 is controlled so that the amount of hardening raw material detected by the flow meter 81 corresponds to a preset allocation.

即ち、比率制御装置82に硬化原料(実施例ではセメン
トペースト)と多孔*質(実施例では高炉滓)の・割合
を設定すると共に速度制御装置15でベルトフィーダー
72の速度を制御しておぎ、図示されていないミキサー
でつくら几た硬化原料を貯蔵槽TIに入れ、攪拌器78
で攪拌しながら可変容量減ポンプ79、ベルトフィーダ
ー72、ロータリーフィーダー74、連続ミキサー65
及び真空吸引装置68を作動させると、所定量の硬化原
料と多孔物質が連続して連続ミキサー65内に供給され
、減圧下の連続ミキサー65内で混練されて複合原料と
なり、上部の排出口から負圧に抗し自直により排出装置
66内に落下し、3組のバルブ83の作動によりホッパ
ー84へ排出され復圧される0尚排出装置66は受圧板
66aと3組のバルブ83によって構成されており、バ
ルブ83は袋83aとシリンダ83bによって構成され
、各袋83aは連通している。先づ図示のように上部シ
リンダのピストンロッドのみを後退させておくと連続ミ
キサー65でつくられた複金属)#+は上部袋内に充満
する。矢に中間シリンダのピストンロッドを後退させ上
部シリンダのピストンロッドな前進させると上部袋内の
複合原料は中間袋内に移動する。次に下部シリンダのビ
ス村ンロツドを後退させると共に中間シリンダのピスト
ンロッドな前進させると中間袋内の複合原料は下部袋内
に移動し、上部シリンダのピストンロッドな後退させる
と上部袋内に複合原料が充満する0次に下部シリンダの
ピストンロッドを前進させると下部袋内の複合原料は落
下してホッパー84内に落ドし、中間シリンダのピスト
ンロッドを後退させ上部シリンダのピストンロッドk 
M aさせると上部袋内の複合原料は中間袋内に移動f
る。この作動を繰返して連続ミキサー65内の減圧状態
な損害することなく複合原料を間欠的に排出することが
できる。
That is, the ratio of hardening raw material (cement paste in the embodiment) and porous material (blast furnace slag in the embodiment) is set in the ratio control device 82, and the speed of the belt feeder 72 is controlled by the speed control device 15. The hardened raw material produced by a mixer (not shown) is put into the storage tank TI, and the stirrer 78
While stirring, a variable displacement pump 79, a belt feeder 72, a rotary feeder 74, and a continuous mixer 65 are used.
When the vacuum suction device 68 is activated, a predetermined amount of the hardened raw material and porous material are continuously supplied into the continuous mixer 65, kneaded in the continuous mixer 65 under reduced pressure to become a composite raw material, and then discharged from the upper discharge port. It falls into the discharge device 66 due to its self-righteousness against negative pressure, and is discharged to the hopper 84 by the operation of three sets of valves 83 to be depressurized. The valve 83 is composed of a bag 83a and a cylinder 83b, and each bag 83a communicates with each other. First, if only the piston rod of the upper cylinder is retracted as shown in the figure, the double metal (#+) produced by the continuous mixer 65 will fill the upper bag. When the piston rod of the intermediate cylinder is moved backward and the piston rod of the upper cylinder is moved forward, the composite material in the upper bag moves into the intermediate bag. Next, when the lower cylinder's bismuth rod is retracted and the intermediate cylinder's piston rod is advanced, the composite material in the intermediate bag moves into the lower bag, and when the upper cylinder's piston rod is retracted, the composite material is transferred into the upper bag. Next, when the piston rod of the lower cylinder is moved forward, the composite material in the lower bag falls into the hopper 84, and the piston rod of the intermediate cylinder is moved back and the piston rod of the upper cylinder is moved forward.
When M a is applied, the composite material in the upper bag moves to the middle bag f
Ru. By repeating this operation, the composite raw material can be intermittently discharged without damaging the reduced pressure inside the continuous mixer 65.

尚バルブの作動順序は上記順序に限定されない。第2乙
図〜第30図は受圧板66aと7本の可撓性管83′a
と3個のシリンダよりなる排出装置のシリンダの作動順
序を示し、83Cはシリンダのピストンロッドである。
Note that the order of operation of the valves is not limited to the above order. Figures 2 to 30 show the pressure receiving plate 66a and seven flexible tubes 83'a.
83C is the piston rod of the cylinder.

即ち受圧板と可撓性管と3個のシリンダにより3組のバ
ルブが形成されていることになる。第23図の排出装置
の3個の袋に代えて1本の可撓性管を使用したものであ
り、排出原理は同一であるから、この排出装置のシリン
ダの作動順序が第23図の排出装置に利用さn、第23
図のシリンダの作動1畝序がこの排出装置に利用できる
ことはいうまでもない。即ち第26図の状態から第27
図に示されるように中間ピストンロッドを後退させ、第
2g―に示されるように上部ピストンロッドを前進させ
、第2q図に示されるように下部ピストンロッドを後退
させると共に中間ピストンロッドを前進させ、第30図
に示されるように下部ピストンロッドを前進させ、矢に
第二6図に示されるように上部ピストンロッドを後退さ
せ、この作動を繰返し行って連続ミキサー65内でつく
られたり合原料を間欠的に排出する。
That is, three sets of valves are formed by the pressure receiving plate, the flexible tube, and the three cylinders. One flexible tube is used instead of the three bags in the ejector shown in Fig. 23, and the ejection principle is the same, so the operating order of the cylinders in this ejector is the same as the ejector shown in Fig. 23. Device utilized n, 23rd
It goes without saying that the working order of the cylinder shown in the figure can be used for this ejection device. That is, from the state shown in Fig. 26 to Fig. 27
Retracting the intermediate piston rod as shown in the figure, advancing the upper piston rod as shown in Figure 2g-, retracting the lower piston rod and advancing the intermediate piston rod as shown in Figure 2q, The lower piston rod is moved forward as shown in FIG. 30, and the upper piston rod is moved back as shown in FIG. Emit intermittently.

以上述べた排出装置は3組のバルブを利用したものであ
るが、第3/図〜第34L図に示されるように2組のバ
ルブを便用した排出装置でも連続ミキサー65内の減圧
状態を損害することなく複合原料を排出することができ
ろ。この排出装置督工第、26図〜第30図の排屯装置
の中間シリンダを除去したものに過ぎないので構造の詳
細を省略する。即ち第3/図の状態から第3二図に示さ
れるように上部ピストンロッド83Cヲ後退させ、第3
3図に示されろように上部ピストンロッド83Cを前進
させ、第3グ図に示されるように下部ピストンロンド8
3Cを後退させ、次に第37図に示されるように下部ピ
ストンロッド83Cを前進させ、この作動を順次繰返し
て連続ミキサー65内でつ(もれた複合原料を間欠的に
排出する。尚排出がスムースに行われない時は受圧板ま
たは可繞性管に振動を加えろことができる。
The discharge device described above uses three sets of valves, but even a discharge device using two sets of valves, as shown in Figures 3/3 to 34L, can maintain the reduced pressure inside the continuous mixer 65. Be able to discharge composite materials without damage. The details of the structure will be omitted since this is merely the same as the evacuation device shown in Figs. 26 to 30 with the intermediate cylinder removed. That is, as shown in FIG. 32, the upper piston rod 83C is moved back from the state shown in FIG.
The upper piston rod 83C is advanced as shown in Figure 3, and the lower piston rod 83C is moved forward as shown in Figure 3.
3C is moved backward, and then the lower piston rod 83C is moved forward as shown in FIG. If this is not done smoothly, you can apply vibration to the pressure plate or the flexible tube.

第2q図は他の排出装置を示し、連続ミギサー65の排
出口に上部容器85とこれに連通する下部容器86が設
けられており、下部容器86は真空バルブ88を介して
真空吸引装置68に繋がれ、上下にVエバシブ8フ 、
87が設けろnている。即ち上部バルブ87を閉じて連
続ミキサー65を運転すれば上部容器85に複合原料が
溜る。同時に上部パルプ87を閉じて真空バルブ88を
開くと、下部容器86内も連続ミキサー65内と同一気
圧になっているから、上部容器85が複合原料で一杯に
なったら上部バルブ87を開くと上部容器85内の複合
原料は下部容器86内に移動する。仄に上部バルブ87
を閉じかつ真空バルブを閉じて下部バルブ87を開くと
複合原料は下部容686かり排出され、上部容器85に
は複合原料が溜る。この動作を繰返して量大的に複合原
料を排出する。
FIG. 2q shows another discharge device, in which an upper container 85 and a lower container 86 communicating with the upper container 85 and the lower container 86 are provided at the discharge port of the continuous mixer 65, and the lower container 86 is connected to the vacuum suction device 68 via a vacuum valve 88. Connected, V-Evasive 8F above and below,
87 is set up. That is, if the upper valve 87 is closed and the continuous mixer 65 is operated, the composite raw material will accumulate in the upper container 85. At the same time, if you close the upper pulp 87 and open the vacuum valve 88, the inside of the lower container 86 will be at the same pressure as the inside of the continuous mixer 65, so when the upper container 85 is full of composite materials, open the upper valve 87 and the vacuum valve 88 will open. The composite raw material in container 85 moves into lower container 86 . Upper valve 87 slightly
When the vacuum valve is closed and the lower valve 87 is opened, the composite raw material is discharged from the lower container 686, and the composite raw material is accumulated in the upper container 85. This operation is repeated to discharge a large amount of composite raw materials.

第、25図は他の排出装置/例を示し、連続ミキサー6
5の排出口に連通して設けられた下向き菅89に図示さ
れていないレベル検出器またはM貴測定器が設けられて
いると共にド端に開閉自在なゲート90が設ゆらnてい
る。下向ぎ管89内の複合原料を押し上げる力をF、大
気圧なP。、連続ミキサー65内の気圧なP7、下向き
管の断面積をAとす扛ば、F゛二(po−1’l)Aの
式が成り立ち、下向きg89内の複合原料の高さをり、
重量をW、比息をdとすればW=A ndの式が成り立
つ。ここでW)Fであれば連続ミキサー65内は低圧に
保たれるから、上記範d内でいつも複合原料が一定の重
量を維持でさるようにゲート90を開いて複合原料を間
欠的に少量づつ排出すれば、連続ミキサー65内の減圧
状態を損害することなく複合原料を排出することができ
る。尚図中真空タンク69、ゲージ70及び真空吸引装
置68はこれを省略した。
FIG. 25 shows another discharge device/example, continuous mixer 6
A downward tube 89 provided in communication with the discharge port 5 is provided with a level detector or a measuring device (not shown), and a gate 90 that can be opened and closed is provided at the end. The force pushing up the composite material in the downward tube 89 is F, and the atmospheric pressure is P. , the atmospheric pressure inside the continuous mixer 65 is P7, and the cross-sectional area of the downward tube is A, then the formula F゛2(po-1'l)A is established, and the height of the composite material in the downward direction g89 is
If the weight is W and the relative breath is d, the formula W=A nd holds true. Here, if W) is F, the pressure inside the continuous mixer 65 is maintained at low pressure, so the gate 90 is opened to intermittently feed a small amount of the composite raw material so that the composite raw material always maintains a constant weight within the above range d. If discharged one by one, the composite raw material can be discharged without damaging the vacuum state within the continuous mixer 65. In the figure, the vacuum tank 69, gauge 70, and vacuum suction device 68 are omitted.

以上複合体の連続製造装置について説明したが、排出装
:筺かもホッパー84に排出さルた複合原料?取り出し
硬化させれば、複合体を得ろ。
The continuous production device for composites has been explained above, but the discharge device: the composite raw material discharged into the hopper 84? Take it out, let it harden, and you'll get a composite.

向上記した復合本の連続製造法とは複合原料の排出襞王
土での製造法をいう。
The above-mentioned continuous production method of composite materials refers to the production method using composite raw material discharge fold soil.

第23図〜第3≠図で説明した複合体の製造法及び製造
装置では、搬送R80を図示されていない水源または硬
化原料槽に繁ぎ(貯蔵槽71に代えて)かつホッパー7
1とベルトスケール76を設けfこベルトフィーダ−1
2複数皿を設け、多孔物質を含む複数の材料をロータリ
ーフィーダー74のホッパー13に供給してもよい。
In the composite manufacturing method and manufacturing apparatus described in FIG.
1 and a belt scale 76 are installed on the belt feeder 1.
Two or more dishes may be provided to feed a plurality of materials containing porous material to the hopper 13 of the rotary feeder 74.

即し連続ミキサー65に排送管80で水を供給し、複数
のベルトフィーダーから多孔物質、セメント或いは更に
砂等を供給してもよい。また排出装置66には、これに
代えてロータリーフィーダーを使用してもよく、ロータ
リーフィーダー74には、これに代えて排出装置660
う)の適切なものを使用することもできる。尚連続ミキ
サー65には複合原料を供給して多孔物置の脱気をむら
なく行い、排出装置から排出して復圧してよいことはい
うまでもない。またバルブ83,87にはダイヤラムま
たはピンチバルブが適している。
For example, the continuous mixer 65 may be supplied with water via a discharge pipe 80 and may be supplied with porous material, cement or even sand from a plurality of belt feeders. Further, a rotary feeder may be used instead of the discharge device 66, and a discharge device 660 may be used instead of the rotary feeder 74.
(b) may also be used as appropriate. It goes without saying that the composite raw material may be supplied to the continuous mixer 65 to uniformly deaerate the porous storage, and then discharged from the discharge device to restore the pressure. Also suitable for the valves 83, 87 are diaphragms or pinch valves.

第35図は複合体の連続製造装置1例を示し、91は容
器、92は供給管、93は拡散板、例は排出管、95は
図示されていない真空吸引装置に繋がれた減圧・d、9
6は図示さ几でいないコンプレッサーに繋がれた加圧管
、97は容器91内に設けろねた攪拌具、98は攪拌具
97を回動させるモータである。
FIG. 35 shows an example of a continuous manufacturing apparatus for composites, in which 91 is a container, 92 is a supply pipe, 93 is a diffusion plate, 95 is a discharge pipe, and 95 is a vacuum pump connected to a vacuum suction device (not shown). ,9
6 is a pressurizing pipe connected to a compressor (not shown), 97 is a stirring tool provided in the container 91, and 98 is a motor for rotating the stirring tool 97.

供給管92、排出管94、及び加圧管96を閉じておぎ
、真空吸引装fff:作動させ減圧管95を介して容器
91を減圧し、矢に供給管92?:開き定量の複合原料
を容器91内に供給fると、複合原料は供給’1ff9
2の上部に設けられた拡散板93によって分散し容器9
1内に落下する。
The supply pipe 92, the discharge pipe 94, and the pressurizing pipe 96 are closed, and the vacuum suction device fff: is activated to reduce the pressure in the container 91 via the pressure reducing pipe 95, and the supply pipe 92? : When a fixed amount of composite raw material is opened and fed into the container 91, the composite raw material is supplied '1ff9
The container 9 is dispersed by a diffusion plate 93 provided on the upper part of the container 9.
Fall within 1.

次に容器91内を復圧し、供給管92と減圧管95f!
:1,41じ排出′訝94と加圧′g96を開きコンプ
レッサーな作動させて容器91内を加圧すると、答?5
91内の複合原料は排出管94から排出される。矢にコ
ンプレッサーの作動を停止して加圧管96、排出管94
を閉じ、減圧管95を開いて成空吸引装置を作動させる
と、容器91内は減圧されろ。上記作動を繰返し行うと
排出・194ρ・ら間欠的に複合原料が排出さ几、これ
を硬化させて複合体をつくる。尚拡散板93はこれを回
転させてもよく他の分散具に代えてもよい。減圧下の複
合原料を攪拌具97で撹拌してよいこともいうよでもな
い。また供給管92Kkエロータリーノイーダーや前記
した排出装置等を設け、自@ 1filJ #L−C定
瀘づつ複合原料を供給するようにしてもよい。
Next, the pressure inside the container 91 is restored, and the supply pipe 92 and the pressure reducing pipe 95f!
:1.41 Open the discharge 94 and pressurization 96 and operate the compressor to pressurize the inside of the container 91.Answer? 5
The composite raw material in 91 is discharged from discharge pipe 94. After stopping the operation of the compressor, the pressurizing pipe 96 and the discharge pipe 94 are removed.
When the container 91 is closed and the pressure reducing pipe 95 is opened to operate the air-forming suction device, the pressure inside the container 91 is reduced. When the above operation is repeated, the composite raw material is intermittently discharged, and the composite material is hardened to form a composite. Incidentally, the diffusion plate 93 may be rotated or may be replaced with another dispersing device. It goes without saying that the composite raw material under reduced pressure may be stirred by the stirring tool 97. Further, a supply pipe 92Kk rotary noider, the above-mentioned discharge device, etc. may be provided to supply the composite raw material at a constant rate.

第3L図は複合体の連続製造装置7例を示し、99はシ
リンダ、100はシリンダ99のピストン、101はシ
リンダ壁であり、シリンダ壁101の底部にはその下部
に一体的に形成された容器103に連通する孔102が
設げられてZす、孔102にはフィルターが張られてい
る。
FIG. 3L shows seven examples of a continuous manufacturing apparatus for a composite body, in which 99 is a cylinder, 100 is a piston of cylinder 99, 101 is a cylinder wall, and the bottom of the cylinder wall 101 has a container integrally formed thereunder. A hole 102 communicating with the hole 103 is provided, and the hole 102 is covered with a filter.

また容器103には供給管104、排出管105減圧管
106及び加圧管107が設けられている。即ち第35
図示の複合体の連続裏道装置にシリンダ99を付加した
ものであり、複合体の製造法は第3S図で説明し1こと
同じ要領で行われるので、での詳細馨省略するが、シリ
ンダ99を利用して容器103内の減圧と加圧を行うこ
とができるので、減圧′1106及び加圧管107は必
ずしも必要ではない。また容器103内に拡散板や分散
具及び攪拌具を設げてよいことは第3S図の装置同様で
ある。
Further, the container 103 is provided with a supply pipe 104, a discharge pipe 105, a pressure reducing pipe 106, and a pressurizing pipe 107. That is, the 35th
A cylinder 99 is added to the continuous back passage device of the composite shown in the figure, and the manufacturing method of the composite is explained in Fig. 3S and is carried out in the same manner as in 1. Since the pressure inside the container 103 can be reduced and increased using the pressure reduction and pressurization pipes 107, the pressure reduction '1106 and the pressurization pipe 107 are not necessarily necessary. Further, a diffusion plate, a dispersing device, and a stirring device may be provided in the container 103, as in the apparatus shown in FIG. 3S.

第35図及び第36図では、供給管が7本であり、こ几
かI−)仮合原料乞容器内に供給したが、供給管を複数
本設け、これから複数、の材料及びまたは硬化原料を各
器内に供給し、容器内を減圧し減圧下で攪拌して複合原
料をつくり、復圧と同時かまたは復圧後容器内な側圧し
て複合原料を排出管から排出し、この動作な繰返して間
欠的に連続して複合原料を排出することができる。尚容
器の形状はホッパー同様に下部な径小に形成するが望ま
しく、このような形状にすれば複合原料の排出には必ず
しも圧搾空気を必要としない。
In Figures 35 and 36, there are seven supply pipes, and the material is supplied into the temporary mixing container. is supplied into each vessel, the pressure inside the container is reduced and the mixture is stirred under reduced pressure to create a composite raw material, and the composite raw material is discharged from the discharge pipe at the same time as pressure is restored or after the pressure is restored by applying side pressure inside the container, and this operation The composite raw material can be discharged repeatedly intermittently and continuously. It is preferable that the shape of the container is small in diameter at the bottom, similar to the hopper; if such a shape is used, compressed air is not necessarily required for discharging the composite raw material.

第37図を工排出装置に利用することができる他ロータ
リーフィーダー74に代えて使用することもできる流動
体用ポンプEを示し、108は半円形の両側端な接扇方
向に延設した断面形状を有する断面形状略半円形のケー
シング、1o9シエぞの内側面に宿ってU字状に配設さ
れたoT撓管、11oはケーシング1o8に対しその半
円形部と同心的に回転するアームであり、アーム110
の下方には同形状の下部アームが設けられており、駆動
軸113がアーム11oの中心部軸受と下部アームの中
心部軸受に挿嵌され、従動軸114及び114′が夫々
アーム11oの端部軸受と下部アームの端部軸受に挿嵌
されている。また駆動軸113には、駆動軸スプロケッ
ト115が上部及び下部に夫々固着されており、上部の
駆動軸スプロケット115と従動軸114の上部に固着
した従動軸スプロケット111間にはチェノ116が巻
回され、下部の駆動軸スプロケット115と従動軸11
4′の下部に固着した従動軸スプロヶッ) 111’間
vctsチェン116′が巻回されていて、動力により
j!KwJ軸113を矢印方向に回転させると従動軸1
14及び114′も矢印方向に回転し、従動軸114及
び114′の夫々の径大部即ち回転ローラ112・11
2′は夫々可撓管109を押圧しながら自転自走し、可
撓管109内の流動体(流動性を有する材料、硬化原料
、複合原料等)を一定方向へ押し出すようにして搬送し
、アーム110も駆動軸113を中心に矢印方向へ回転
する。尚アーム110と同様なアームをアーム11oと
直父させて設け、を個の回転ローラを自転自走させて可
撓管109内の#、動体な搬送してよいことはいうまで
もない。
FIG. 37 shows a fluid pump E that can be used as a discharge device and can also be used in place of the rotary feeder 74, with 108 having a cross-sectional shape extending in the fan direction at both ends of a semicircle. A casing having an approximately semicircular cross-sectional shape, an oT flexible tube located on the inner surface of each 1o9 shell and arranged in a U-shape, and 11o an arm that rotates concentrically with the semicircular portion of the casing 1o8. , arm 110
A lower arm of the same shape is provided below, a drive shaft 113 is inserted into the center bearing of the arm 11o and a center bearing of the lower arm, and driven shafts 114 and 114' are respectively attached to the ends of the arm 11o. It is inserted into the bearing and the end bearing of the lower arm. Further, drive shaft sprockets 115 are fixed to the upper and lower parts of the drive shaft 113, respectively, and a chino 116 is wound between the upper drive shaft sprocket 115 and the driven shaft sprocket 111 fixed to the upper part of the driven shaft 114. , lower drive shaft sprocket 115 and driven shaft 11
A VCTS chain 116' is wound between the driven shaft sprocket 4' and the driven shaft sprocket 111', which is fixed to the lower part of the driven shaft sprocket 4'. When the KwJ shaft 113 is rotated in the direction of the arrow, the driven shaft 1
14 and 114' also rotate in the direction of the arrow, and the large diameter portions of the driven shafts 114 and 114', that is, the rotating rollers 112 and 11
2' rotates on its own axis while pressing the flexible tube 109, and transports the fluid (fluid material, hardened raw material, composite raw material, etc.) in the flexible tube 109 by pushing it out in a certain direction, The arm 110 also rotates about the drive shaft 113 in the direction of the arrow. It goes without saying that an arm similar to the arm 110 may be provided in direct contact with the arm 11o, and a rotating roller may be rotated and moved on its own axis to transport the material within the flexible tube 109 in a moving manner.

即ち可読管の一側を連続ミキサー或いは貯蔵槽等へ連結
しておぎ、図示されていない原動機を作!111]させ
て駆動軸113を回転させろと、連1読ミキサーでつく
られた、或いは貯蔵槽へ貯えられた流動体を、可撓管の
他側から連続的に排出することができ、排出と同時に復
圧することができる。従って第23図に示される連続ミ
キサー65に、排出装置66に代えて取付は使用するこ
とがでさる他、連続ミキサー65Vc供給されるものが
複合原料等の流動体である場合は、ロータリーフィーダ
ー74に代えて使用することもできる。
That is, one side of the readable tube is connected to a continuous mixer or storage tank, and a prime mover (not shown) is created! 111] to rotate the drive shaft 113, the fluid produced by the continuous mixer or stored in the storage tank can be continuously discharged from the other side of the flexible tube, and the fluid can be discharged continuously from the other side of the flexible tube. It is possible to restore pressure at the same time. Therefore, the continuous mixer 65 shown in FIG. 23 can be installed in place of the discharge device 66, and if the continuous mixer 65Vc is supplied with a fluid such as a composite raw material, a rotary feeder 74 can be used. It can also be used instead.

尚流動体用ポンプには、駆動軸に固層されたアームを回
転させ、アームの両端に回動自在に取付Vすられた回転
ローラにより可撓管を科圧しl工がら可撓管内の流動体
を搬送する流動体用ポンプ等も知られており、上記した
流一体用ポンプEを含めた流動体用ポンプをFと呼称し
て、以下複合体の製造法と製造装置他側につぎ説明する
For fluid pumps, an arm fixed to the drive shaft is rotated, and rotating rollers rotatably attached to both ends of the arm press the flexible tube to control the flow inside the flexible tube. Pumps for fluids that transport bodies are also known, and the pumps for fluids including the above-mentioned fluid pump E will be referred to as F, and the manufacturing method and manufacturing equipment for the composite will be explained below. do.

第3g図〜第t2図にKいて、117を1直値図に示さ
れる連続ミキサー118等でつくられる複合原料130
を7時貯蔵する貯蔵槽、119は貯蔵槽、117から容
器120または連続ミキサー121に複合原料を供給す
る供給管、122は容器120または連続ミキサー12
1に減圧管123を介して設げられた真空吸引装置、1
24は減圧管123に設げられた気液分離器、125は
容器120または連続ミキサー121かも複合原料を排
出する排出管、Fは供給管119及び排出管125に設
けられた流動体用ポンプであり、その両側の可撓管が供
給管119及び排出管125に取付けられている。また
126は第39図示の容器120内に設けられた回転式
拡散板、121は1AaO図示の容器120内に設けら
れた攪拌具、128は回転式拡散板126攪拌具121
、及び連続ミキサー118.121を夫々駆動する原動
機、129は5第弘二図における連続ミキサー118内
に供給管131を介して供給される材料、132は連続
ミキサー118で混練されてつくられた複合原料130
な貯蔵槽117へ排出する排出管である。
In Figures 3g to t2, 117 is a composite raw material 130 made with a continuous mixer 118 etc. shown in the direct value diagram.
119 is a storage tank, 117 is a supply pipe for supplying the composite raw material from 117 to container 120 or continuous mixer 121, 122 is container 120 or continuous mixer 12
1, a vacuum suction device provided through a pressure reducing pipe 123;
24 is a gas-liquid separator provided in the pressure reduction pipe 123, 125 is a discharge pipe for discharging the composite raw material from the container 120 or the continuous mixer 121, and F is a fluid pump provided in the supply pipe 119 and the discharge pipe 125. The flexible tubes on both sides are attached to the supply pipe 119 and the discharge pipe 125. Further, 126 is a rotary diffusion plate provided in the container 120 shown in FIG.
, and the prime mover that drives the continuous mixers 118 and 121, respectively, 129 is the material fed into the continuous mixer 118 in Fig. 5 Koji via the supply pipe 131, and 132 is the composite raw material made by being kneaded in the continuous mixer 118. 130
This is a discharge pipe that discharges water to a storage tank 117.

即ち、第3に図〜第ダ2図の複合体の製造装置は、何れ
も連続ミキサー118等で複数の材料を混線してつくし
れた複合原料130を貯蔵槽117に一時貯え、これを
真空吸引装置122によって減圧された容器120また
は連続ミキサー121内に供給管119の流動体用ポン
プFを介し℃連続的に供給する一方、排出管125の流
動体用ポンプFを介して排出かつ復圧して図示されてい
ないホッパー等へ排出するもので、復圧された複合原料
を取出し硬化させると複合体を得る。尚複合原料130
をむらなく減圧する目的で、第3g図の装置では容器1
20の高さを高くして複合原料を落下時均−に減圧する
ように考慮されており、第39図の装置では回転式拡散
板126(固定式拡散板でも分散具でもよい)を使用し
て複合原料の分散による減圧効果が考慮されている。ま
た第グ0図の装置では減圧下の複合原料を攪拌具で攪拌
して、第41.1図及び第42図の装置では減圧下の連
続ミキサー121の攪拌を利用して複合原料の均一な減
圧が考慮されている。以上述べた製造装置で貯蔵槽11
7へ複合原料を供給するミキサーは、第グユ図示の連続
ミキサー118に限定されるものではな(、貯蔵槽11
7内へ常時複合原料が貯蔵される構成のものであれば、
ワンロット毎に複合原料をつくるミキサーであってもよ
い。
That is, thirdly, in the composite manufacturing apparatuses shown in FIGS. 2 to 2, a composite raw material 130 made by mixing a plurality of materials with a continuous mixer 118 or the like is temporarily stored in a storage tank 117, and the composite material 130 is vacuum-processed. C. is continuously supplied via the fluid pump F of the supply pipe 119 into the container 120 or the continuous mixer 121 whose pressure has been reduced by the suction device 122, while it is discharged and depressurized via the fluid pump F of the discharge pipe 125. The composite material is discharged to a hopper (not shown), and the composite material is taken out and hardened to obtain a composite material. Composite raw materials 130
In order to evenly depressurize the container 1 in the device shown in Fig. 3g,
20 is designed to increase the height of the composite material to reduce the pressure evenly over the falling time, and the apparatus shown in FIG. The effect of reduced pressure due to the dispersion of composite raw materials is taken into account. In addition, in the apparatus shown in Fig. 0, the composite raw material is stirred with a stirring tool under reduced pressure, and in the apparatuses shown in Figs. Decompression is taken into account. Storage tank 11 with the manufacturing equipment described above.
The mixer that supplies the composite raw material to the storage tank 11 is not limited to the continuous mixer 118 shown in the figure.
If the structure is such that the composite raw material is always stored in 7,
It may also be a mixer that produces composite raw materials for each lot.

第43図及び第≠を図は、以上のよ5iCしてつくもれ
た複合原料130を更に含泡させて含泡複合原料とする
製造装置二側を示し、125は第3g図〜第112図の
複合体の製造装置の排出管、Fは排出管125に設けら
れた流動体用ポンプ、133は造成機、134は造成@
133でつくられた泡をミキサー135内に供給する泡
供給管、136はミキサー135内ic排出管125か
ら排出さルる複合原料と造成機133から供給される泡
137′ff:混練して含泡複合原料をつくる攪拌具、
138は攪拌具136を駆動する原動機、139はミキ
サー135内でつくられた含泡複合原料を排出する排出
管、140は排出管139から排出される含泡複合原料
141を一時貯蔵する貯蔵槽、142は貯蔵槽140内
の含泡複合原料141を排出する排出管、Fは排出管1
42に設げられた流動体用ポンプ、143は連続ミキサ
ー144と造成機133の間の泡供給管134に設けら
れた流量計、145は連続ミキサー144内に排出管1
25かも供給される複合原料と造成機133から供給さ
れる泡を混練してて(られる含泡複合原料、147は連
続ミキサー144でつくられた含泡複合原料145を排
出する排出管である。
Figures 43 and ≠ show the second side of the manufacturing apparatus for further foaming the composite raw material 130 formed by 5iC as described above to obtain a foamed composite raw material, and 125 indicates the second side of the manufacturing apparatus for producing a foamed composite raw material. F is a fluid pump installed in the discharge pipe 125, 133 is a forming machine, and 134 is a forming @
A foam supply pipe 136 supplies the foam produced in the mixer 135 into the mixer 135; Stirring tool for making foam composite raw materials,
138 is a prime mover that drives the stirring tool 136; 139 is a discharge pipe that discharges the foamed composite raw material produced in the mixer 135; 140 is a storage tank that temporarily stores the foamed composite raw material 141 discharged from the discharge pipe 139; 142 is a discharge pipe for discharging the foamed composite material 141 in the storage tank 140, F is a discharge pipe 1
42 is a fluid pump installed, 143 is a flow meter installed in the foam supply pipe 134 between the continuous mixer 144 and the maker 133, and 145 is a discharge pipe 1 in the continuous mixer 144.
147 is a discharge pipe for discharging the foamed composite raw material 145 produced by the continuous mixer 144.

第93図の装置では、排出管139を閉じておいて排出
管125から排出される複合原料と造成機133でつく
られる泡とをミキサー135内で混練して含泡複合原料
をつくり、排出管139を開いて貯蔵[140へ排出し
、流動体用ポンプFの作動により排出管42かも連続し
て排出するが、この装置ではワンロッド毎に含泡複合原
料がつくられるので、ミキサー135への複合原料の供
給は第3g図〜第’A2図の装置から供給することなく
、第1図〜第3乙図で説明した装置から供給してもよい
In the apparatus shown in FIG. 93, the composite raw material discharged from the discharge pipe 125 with the discharge pipe 139 closed and the foam produced by the forming machine 133 are kneaded in the mixer 135 to produce a foamed composite raw material, and the discharge pipe 139 is closed. 139 is opened and discharged to the storage [140], and the discharge pipe 42 is also continuously discharged by the operation of the fluid pump F. However, in this device, a foamed composite material is produced for each rod, so the composite material is discharged to the mixer 135. The raw material may be supplied from the apparatus explained in FIGS. 1 to 3B, instead of being supplied from the apparatus shown in FIGS. 3G to 'A2.

第7を図の装置V工、排出管125から連続して供給さ
れる複合原料と造成機133かも連続して供給される泡
を、連続ミキサー144で連続して混線し含泡複合原料
となし、これを排出管147かも連続して排出するもの
である。、尚流動体用ポンプFの吐出量と流量計143
で検出される泡のff、tを図示されていない制御装置
で制御して任意の配合比の含泡複合原料をつくることは
いうまでもない。図中146は連続ミキサー144を駆
動する原動機−である。
7. In the device shown in FIG. , this is also continuously discharged through the discharge pipe 147. , and the discharge amount of the fluid pump F and the flow meter 143
It goes without saying that a foamed composite material having an arbitrary blending ratio can be produced by controlling the ff and t of the foam detected by a control device (not shown). In the figure, 146 is a prime mover that drives the continuous mixer 144.

以上複合原料と含泡複合原料の製造法について説明した
が、材料の配合、減圧度、ポンプの吐出量等を自動制御
して、所望の複合原料或いは更に含泡複合原料をつくり
、これを硬化させてよいことはいうまでもない。
The manufacturing method of composite raw materials and foamed composite raw materials has been explained above, and the desired composite raw materials or even foamed composite raw materials are produced by automatically controlling the material composition, degree of vacuum, pump discharge amount, etc., and then cured. It goes without saying that it is okay to do so.

以上実施例を多々説明したが、上記実施例は適切であれ
ば何れも下記のように構成してよい。
Although a number of embodiments have been described above, any of the embodiments described above may be configured as described below if appropriate.

(1)減圧下で材料または複合原料を攪拌してよ(ゝ。(1) Stir the material or composite raw material under reduced pressure (ゝ.

(2)減圧下の複合原料を攪拌しながら復圧してよい。(2) The pressure of the composite raw material under reduced pressure may be restored while stirring.

(31多孔物Ij’にはパーライト、シラス発泡粒、高
炉滓、軽石、人造軽量骨材(メサライト、セイライト等
)、多孔質の鉱滓、炭素、炭化珪素、硝子、耐アルカリ
性ガラス、金属、窒化珪素、合成樹脂等を使用すること
ができ、複合原料をつ(るKは上記多孔物質の7丈たは
ユ以上を使用することができる。
(31 Porous materials Ij' include pearlite, foamed shirasu grains, blast furnace slag, pumice, artificial lightweight aggregate (mesalite, saylite, etc.), porous slag, carbon, silicon carbide, glass, alkali-resistant glass, metal, silicon nitride , synthetic resin, etc. can be used, and the composite raw material (K) can be 7 lengths or more of the above-mentioned porous material.

(4)  多孔物質には繊維、片、粒、塊等の形状のも
のを使用することができ、複合原料をつくるには上記多
孔物質の/または二以上を使用することができる。
(4) The porous material can be in the form of fibers, pieces, grains, lumps, etc., and/or two or more of the above porous materials can be used to make a composite raw material.

(5)硬化原料には水硬性無機質系(セメント系、石灰
系、水滓系、石膏系、珪灰系等)、合成樹脂系(熱OI
′塑性及び熱硬化性を含む)、熔融金属系、熔融硝子系
、釉薬系、等の有機または無機質系硬化原料を使用する
ことができる。
(5) Hardening raw materials include hydraulic inorganic systems (cement, lime, slag, gypsum, silica, etc.), synthetic resins (thermal OI
Organic or inorganic hardening materials such as molten metal, molten glass, glaze, etc. can be used.

(6)複合原料を硬化させるには乾燥、加熱、蒸気養生
・オートクノーブ養生、冷却等を利用することができる
(6) Drying, heating, steam curing/autoknove curing, cooling, etc. can be used to harden the composite raw material.

次に多孔物質に高炉滓を使用し、硬化原料にセメントと
水を使用した複合体(実施例ではコンクリート)の製造
法について説明する。
Next, a method for manufacturing a composite (concrete in the example) using blast furnace slag as a porous material and cement and water as hardening raw materials will be described.

実施例1 第1図〜第3図に示されるミキシングドラム4内に一’
i!メントゲ/を箪遺部、水765重量部、砂乙/7重
量部、高炉滓1000重量部を投入し、蓋18を閉じて
ミキシングドラム4を密閉し、ミキシングドラム4を回
転させて上記材料を混練すると共に、光分に混線が行わ
れてセメントの飛散がなく1.Cつだ所でミキシングド
ラム4内の圧力を乙00 mm H,@まで減圧し、こ
の減圧下でq分1用混練を続け、次いでミキシングドラ
ム4内を大気圧VC復圧し、ミキシングドラム4の回転
を停止して蓋18を開さ、ミキシングドラム4を傾斜さ
せて複合原料を取出し、これを型枠に流し込んで成形し
、蒸気養生して硬化させた後離型して複合体(コンクリ
ート)を得た。
Example 1 In the mixing drum 4 shown in FIGS.
i! Add 765 parts by weight of water, 7 parts by weight of sand, and 1000 parts by weight of blast furnace slag, close the lid 18 to seal the mixing drum 4, and rotate the mixing drum 4 to mix the above materials. While kneading, there is no scattering of cement due to crosstalk in the light beams.1. At the point C, the pressure inside the mixing drum 4 is reduced to 00 mm H, @, and kneading for q/1 is continued under this reduced pressure.Then, the inside of the mixing drum 4 is returned to atmospheric pressure VC, and the mixing drum 4 is The rotation is stopped, the lid 18 is opened, and the mixing drum 4 is tilted to take out the composite raw material, which is poured into a mold and molded, cured with steam to harden, and then released from the mold to form a composite (concrete). I got it.

上記実施例における複合原料(未硬化コンクリート)の
スランプは7.5cIrL、7日後の圧縮強度は≠07
−1− ’c9/cl、ユg日後の圧縮強度はS弘gk
g/cnlであり、減圧することなく硬化させたものに
比し軽量かつ高強度であることが判明した。
The slump of the composite material (uncured concrete) in the above example was 7.5 cIrL, and the compressive strength after 7 days was ≠07
-1- 'c9/cl, the compressive strength after 3 days is S hong k
g/cnl, and was found to be lighter and stronger than that cured without reducing pressure.

尚上記実施例の他に材料の配合比及び粒径な種々変更し
てテストしたが、高強度を目的とした配合では最高圧縮
強度9ろ0瞭4mlを得ることができ、一般には600
〜900kl?/c[11の圧縮強度が比較的容易に得
られ、これに伴い曲げ強度及び引張強度も増大し、しか
もバラツキが少ない均−l工品質の@量高強度または高
強度コノクリートを得ることができた。@量高強度コン
クリートの場合は高炉滓の中心部にセメント物質が圧入
されない気孔またを工空洞が残存し、高強度コンクリー
トの場合は高炉滓の粒径が小すク総ての気孔にセメント
物質が圧入したからと考えられる。また曲げ試験におけ
る圧縮側と引張側のひずみを検討した結果、比例限度応
力比は約aろ7の一定値と高い応力比を得た。従って初
期ひび割れが従来のコノクリートに比し発生しに(いこ
とも考察された。上記したような皮果が得られたことは
、高炉滓の表面組繊に圧入されたセメント*貞が無数の
針状となって高炉滓に突き刺さり、コンクリートと一体
化し、かつ高炉滓自体が圧入セメント物質により補強さ
れて強度が高くなったからと考えられる。
In addition to the above-mentioned examples, tests were conducted with various changes in material blending ratio and particle size, but with the blending aimed at high strength, a maximum compressive strength of 9.0 to 4 ml could be obtained, and in general, 600.
~900kl? A compressive strength of /c [11] can be obtained relatively easily, the bending strength and tensile strength are increased accordingly, and high-strength or high-strength conocrete with uniform work quality with little variation can be obtained. Ta. In the case of high-strength concrete, there are pores or cavities remaining in the center of the blast furnace slag where cement material is not injected, and in the case of high-strength concrete, the grain size of the blast furnace slag is small, so cement material fills all the pores. This is thought to be because it was press-fitted. Furthermore, as a result of examining the strain on the compression side and the tension side in the bending test, the proportional limit stress ratio was found to be a constant value of approximately a7, which is a high stress ratio. Therefore, it was also considered that initial cracks were less likely to occur than in conventional conocret. This is thought to be due to the fact that it becomes needle-shaped and pierces the blast furnace slag, becomes integrated with the concrete, and that the blast furnace slag itself is reinforced by the press-in cement material, increasing its strength.

実施例ユ 第43図、第グを図に示さ庇ろ造成機133を利用し、
安定剤と界面活性剤よりなる起泡剤と水を使用して泡を
つ(す、実施例/でつくられた複合原料(未硬化コンク
リート)と上記泡とを容積比3二/の割合で混合し、つ
(もれた含泡複合原料を型枠に打設し硬化させて軽量高
強度複合体(経量高強匿気泡コンクリート)を得た。
Embodiment U is shown in FIG. 43 and FIG.
Foam is created using a foaming agent consisting of a stabilizer and a surfactant, and water.The composite raw material (uncured concrete) made in Example/ is mixed with the above foam at a volume ratio of 3/2. The mixed and leaked foam-containing composite materials were poured into a mold and hardened to obtain a lightweight, high-strength composite (high-strength, high-strength cellular concrete).

上記実施例では、高炉滓を粉砕した等の高炉浮粉とセメ
ント及び水を使用して実施例1の方法により水セメント
比55%程度の高炉滓にセメント物質が圧入されたスラ
リー(複合原料)をつくり、これに泡を混合して硬化さ
せ気泡コンクリート(複合体)をつくってもよい。内泡
を温合して含泡複合原料をつくる時は、造成に使用する
起泡剤と水の混合水を複合原料の製造時におけろ水とし
て使用すれば、複合体の尚比重の調整が容易である。ま
たセルローズ系等の減水剤を使用すれば水セメント比の
少ない複合原料をつくり得て強度の高い複合体を得る。
In the above example, a slurry (composite raw material) in which cement material was injected into the blast furnace slag with a water-cement ratio of about 55% was made by the method of Example 1 using blast furnace floating powder such as crushed blast furnace slag, cement, and water. Aerated concrete (composite) may be created by mixing foam with the concrete and curing it. When producing a foamed composite raw material by heating the inner foam, if the mixed water of the foaming agent and water used for creation is used as filtrate during the production of the composite raw material, the specific gravity of the composite can be further adjusted. It's easy. Furthermore, if a water reducing agent such as cellulose is used, a composite material with a low water-to-cement ratio can be produced, resulting in a composite with high strength.

以上セメント系複合体の製造法ユ例について説明したが
、上記製造法は以下の実施態様をとることができる。
Although an example of a method for producing a cement-based composite has been described above, the above-mentioned production method can take the following embodiments.

(1)減圧下の複合原料を復圧した後再度混練すること
ができる。
(1) The composite raw material under reduced pressure can be kneaded again after the pressure is restored.

(2)  水比の大きい減圧下の複合原料を復圧したd
セメント等の材料を加えて再混練し水比な小さくするこ
とができる。
(2) Repressurizing the composite raw material under reduced pressure with a large water ratio d
The water ratio can be reduced by adding materials such as cement and kneading again.

(3)多孔物質に水滓または徐冷滓を使用することがで
きる。
(3) Water slag or slow cooling slag can be used for the porous material.

(4)安山岩や玄武岩等の火岩岩または七の砕体を付加
して複合原料をつ(す、減圧下の上記複合原料を復圧し
た後取出し硬化させ、耐火性複合体とすることができる
(4) Adding pyrolithic rocks such as andesite and basalt or crushed materials to produce a composite material. After restoring the pressure of the composite material under reduced pressure, it can be taken out and hardened to form a fire-resistant composite material. can.

(5)  マンガンまたハ/及びマンガン鉱石微粉、或
いは更に粘板岩、ベントナイト、ゼオライトのうちの1
種または2種以上を加えたものを適量付側して複合原料
をつくり、減圧下の上記複合原料を復圧した後取出し硬
化させ、耐塩耐酸性複合体とすることができる。
(5) Manganese or manganese ore fine powder, or one of slate, bentonite, and zeolite
A composite raw material is prepared by adding an appropriate amount of a seed or a combination of two or more species, and after the composite raw material under reduced pressure is restored to pressure, it is taken out and hardened to obtain a salt-resistant and acid-resistant composite.

(6)7ンガンを酸(特にクエン酸やリンゴ酸等の食酸
が好ましい)に溶解した溶液の適量を水に加えこの水を
使用して複合原料をつくり、減圧下の上記複合原料を復
圧した後取出し硬化させ、耐塩耐酸性複合体とすること
ができる。
(6) Add an appropriate amount of a solution of 7 mg dissolved in an acid (especially edible acids such as citric acid or malic acid) to water, use this water to create a composite raw material, and regenerate the composite raw material under reduced pressure. After pressing, it can be taken out and cured to form a salt-resistant and acid-resistant composite.

(カ マンガン酸塩または/及び過マンガン酸塩の水溶
液適量を付加して複合原料をつくり、減圧下の上記複合
原料ft復圧した後取出し硬化させ、耐塩耐酸性複合体
とすることができる。
(A composite raw material is prepared by adding an appropriate amount of an aqueous solution of camanganate or/and permanganate, and after the composite raw material is decompressed under reduced pressure, it is taken out and hardened to obtain a salt-resistant and acid-resistant composite.

(8)  減圧下ノ複合原料を復圧した後、これに小量
の非親水性物質例えば撥水剤(シリコン樹脂、ステアリ
ン酸塩等)等を加えて混練し、これを硬化させて耐水往
復合体とすることができる。
(8) After repressurizing the composite material under reduced pressure, a small amount of a non-hydrophilic substance such as a water repellent (silicone resin, stearate, etc.) is added and kneaded, and this is cured to make it water resistant. Can be combined.

(9)  減圧下の複合原料を復圧した後、これに小量
の非親水性物質を加えて混練し、更に生石灰ケ付カロし
て混疎し、これを型内に密閉するか密閉することなく硬
化させ、同化時[トコを早めかつ生石灰をr彫*させて
複合体をつくることができる。(第+5図示のように型
148内に上記複合原料149を入れ蓋150を閉じて
密閉すると、非親水性′$lJ質の存在により生石灰の
水相反応は遅効して徐々に水相反応を生じ、生石灰の膨
張により複合原料(工加圧されることに71つ、強度の
高い複合体を得ることができる。また生石灰の適量使用
によりクラックを生じない。) dOセメントニハ高炉セメント、急硬セメント、加熱硬
化型セメント等を使用することができる。
(9) After restoring the pressure of the composite material under reduced pressure, add a small amount of non-hydrophilic substance to it, knead it, mix with quicklime, and seal or seal it in a mold. It is possible to harden the quicklime quickly, and when assimilated, to make quicklime harden and carve the quicklime into a complex. (As shown in figure +5, when the composite raw material 149 is placed in the mold 148 and the lid 150 is closed to seal it, the aqueous phase reaction of quicklime is delayed due to the presence of the non-hydrophilic substance, and the aqueous phase reaction gradually occurs. dO cement Niha blast furnace cement, rapid hardening cement , heat-curing cement, etc. can be used.

dll  減圧ドの複合原料を復圧した後こnを取出し
、バイブレーションを加えて成形し硬化させることがで
きろ。
dll After repressurizing the composite raw material under reduced pressure, it can be taken out, molded and cured by applying vibration.

σ2 減圧下の複合原料を復圧した後これを取出し、〃
目玉成形して硬化させることができる。
σ2 After repressurizing the composite raw material under reduced pressure, take it out and
Can be molded into eyeballs and cured.

(131以上述べた/ユ項目の方法は、七のlまたは」
以上の方法を併用して実施することができる。
(131 The methods for the items mentioned above are the 7th l or
The above methods can be used in combination.

仄に成形型r利用して複合原料を減圧し、次いで復圧し
て多孔物質に硬化原料を圧入させた後加圧プレスして成
形し硬化させてなる蝋合体の製造法と、その製造装置に
つぎ説明する。
A method for producing a wax composite by reducing the pressure of a composite material using a mold r, then restoring the pressure to force the hardened material into a porous material, and then pressing it under pressure to form and harden it, and an apparatus for producing the same. I will explain next.

第ダ乙図〜第qg図を工、慣行自在かつ真空吸引孔15
1ン設けた中空状上型152と、上下動自在な可動栓1
53を周設しかつ図示さnでいないシリンダによって昇
降するF型154を利用した複合体の製造法/例を示し
、先づ可動栓153を上昇させて下型154上に複合原
料155を載せ、第ダ6図に示されるように上型152
を下型154の上に位置させろ。尚上型152の底板g
は多孔質金属でつくられているか、または多数の孔が設
けられてSり下面に金網を介して通気性布が取付けられ
ている。次に下型154を上昇させて上型152、下型
154及びOT動枠153で複合原料155を包囲し、
複合原料155を成形するか成形することなく真空吸引
孔151に連通して設げられた図示されてい11い真空
吸引装置を作動させて複合原料155を減圧する。次に
復圧して複合原料中の多孔物質に硬化原料を圧入させ、
再度真空吸引装置を作動させて減圧しながら更に下型1
54を上昇させ、複合原料155を加圧するか或いは成
形かつ加圧し、第4’g図に示されるようにシリンダの
圧抜きをした後町動枠153を下降させ更に下a!!1
54をド降させろと、成形された複合原料155は上型
152の下面に吸着されて残る。次に上型152を横行
させて図示されていない受取台上に位置させ復圧すると
、成形された複合原料155は受取台上に落下転移する
。以上の動作の間に下型154VC複合原料155を載
せて16さ、第グ乙図に示されるように下m154上に
上型152を移行させ、上記動作を繰返して成形された
複合原料を連続的に製造することができ、これを硬化さ
せて複合体を得る。上記実施例において上型152を昇
降自在とし下型154を横行自在としてよいことはいう
までもなく、また加圧成形後加熱等の手段により複合原
料を硬化させこれを取出してよいこともいうまでもない
The drawings from 2nd to 3rd fig.
A hollow upper mold 152 provided with 1 inch and a movable stopper 1 that can move up and down.
A manufacturing method/example of a composite using an F-type 154 having a circumference of 53 and raised and lowered by a cylinder not shown in the figure is shown. , the upper mold 152 as shown in FIG.
Position it above the lower mold 154. Furthermore, the bottom plate g of the upper mold 152
It is made of porous metal or has many holes and a breathable cloth is attached to the lower surface of the S through a wire mesh. Next, the lower mold 154 is raised to surround the composite raw material 155 with the upper mold 152, the lower mold 154 and the OT moving frame 153,
A vacuum suction device (not shown) provided in communication with the vacuum suction hole 151 is operated to reduce the pressure of the composite raw material 155, whether or not the composite raw material 155 is molded. Next, the pressure is restored and the hardened raw material is forced into the porous material in the composite raw material.
Activate the vacuum suction device again to reduce the pressure and remove the lower mold 1.
54 is raised, the composite raw material 155 is pressurized or molded and pressurized, and the cylinder is depressurized as shown in FIG. ! 1
When the mold 54 is dropped, the molded composite raw material 155 is adsorbed to the lower surface of the upper mold 152 and remains. Next, when the upper mold 152 is moved sideways and placed on a receiving stand (not shown) and the pressure is restored, the molded composite material 155 falls and transfers onto the receiving stand. During the above operations, the lower mold 154 is loaded with the VC composite material 155, and the upper mold 152 is moved onto the lower mold 154 as shown in Fig. It can be manufactured manually and then cured to obtain a composite. In the above embodiment, it goes without saying that the upper die 152 can be moved up and down and the lower die 154 can be moved up and down, and it is also possible to harden the composite material by heating or other means after pressure forming and take it out. Nor.

第≠9図〜第57図は、上下動自在な可動栓156を周
設しかつ図示されていないシリンダにより昇降する上型
157と、上板部を多孔物質でつくるか上板部に多数の
孔を設けその上に金網を介して通気性布を取付けかつ真
空吸引孔158を設けた甲空状の下型159″4!0:
利用した複合体の製造法)例を示し、第1デ図に示され
るように先づ下型159の上に複合原料160を供給し
上型157の−F面より下方に可動栓156を突設して
おく、次に第50図に示されるよ5に上型157を下降
させて上型157、可動棒156、下型159で複合原
料160を包囲し、複合原料を成形するか成形すること
なく図示されていない真空吸引装置を作動させ真空吸引
孔158を介して複合原料160を減圧し、次に復圧し
て複合原料160の中の多孔物質に硬化原料を圧入させ
、再度減圧しながら上型157を更に下降させて複合原
料160を加圧するか成形かつ加圧し、シリンダの圧抜
きを行った後可動枠156を上昇させ、第!i/図のよ
うに上型157を上昇させると成形された複合原料は下
型159上に残る。次に下型159を横行させ図示され
ていない受取台上に位置させ、下型159を反転し℃復
圧すると成形された複合原料160は受取台上に落下転
移する。尚受取台は昇降自在とされており、下型の反転
時は下降しており、受取時は上昇して受取る。次に下型
159上に複合原料160を供給しく再反転後)上型1
57の下部に位置させ第+q図の状態に復位する。上記
動作を繰返し行って成形複合原料な連続的に製造し、こ
れを取出し硬化させて複合体を得るが、成形後加熱また
は冷却等の手段により複合原料を硬化させ、これを取出
してよいことはいうまでもない。
9 to 57 show an upper mold 157 that has a movable stopper 156 that can move up and down and that is raised and lowered by a cylinder (not shown), and an upper mold 157 that is made of a porous material or has a large number of Hollow-shaped lower mold 159″4!0 with a hole provided thereon, a breathable cloth attached through a wire mesh, and a vacuum suction hole 158 provided therein:
An example of the manufacturing method of the composite material utilized is shown below. As shown in the first figure, first the composite raw material 160 is supplied onto the lower mold 159, and the movable stopper 156 is protruded below the -F surface of the upper mold 157. Then, as shown in FIG. 50, the upper mold 157 is lowered to surround the composite raw material 160 with the upper mold 157, the movable rod 156, and the lower mold 159, and the composite raw material is molded or molded. Without further ado, a vacuum suction device (not shown) is operated to reduce the pressure of the composite raw material 160 through the vacuum suction hole 158, and then the pressure is restored to pressurize the hardening raw material into the porous material in the composite raw material 160, and while reducing the pressure again. The upper mold 157 is further lowered to pressurize the composite raw material 160, or to form and pressurize it, and after releasing the pressure from the cylinder, the movable frame 156 is raised, and the movable frame 156 is raised. When the upper mold 157 is raised as shown in FIG. i/, the molded composite material remains on the lower mold 159. Next, the lower die 159 is moved sideways and placed on a receiving stand (not shown), and when the lower die 159 is reversed and the pressure is restored at °C, the molded composite material 160 falls and transfers onto the receiving stand. The receiving stand is movable up and down, and is lowered when the lower mold is inverted, and raised when receiving the mold. Next, the composite material 160 is supplied onto the lower mold 159 (after re-inversion) the upper mold 1
57 and reinstated to the state shown in Figure +q. The above operations are repeated to continuously produce a molded composite raw material, which is then taken out and cured to obtain a composite. However, it is not permitted to harden the composite raw material by means such as heating or cooling after molding and then take it out. Needless to say.

以上コ実施例について説明したが、共に減圧下の複合原
料を復圧して多孔物質(硬化原料を圧入させた後の加圧
または加圧成形時は、減圧することなく可動棒を下降ま
たは上昇させて側面剥離を行った後真空吸引を再開して
もよい。
The above embodiments have been described, but in both cases, when pressurizing or press-molding the composite material under reduced pressure after pressurizing the porous material (hardened material), the movable rod is lowered or raised without reducing the pressure. Vacuum suction may be resumed after lateral peeling.

次にこの発明の製造法によりつくられる製品の具体例に
ついて述べる。
Next, specific examples of products manufactured by the manufacturing method of the present invention will be described.

(1)  多孔物質に高炉滓を使用し或いは更に含泡さ
せたセメント、石膏、水滓等の水硬性無機質系複合体。
(1) Hydraulic inorganic composites such as cement, gypsum, and water slag that use blast furnace slag as a porous material or further contain foam.

(用途−断熱性瓦、ブロック、壁、床、柱、梁、杭、ボ
ール、枕木、コンクリートバージ、海洋構築物等) (2)多孔物質に高炉滓を使用した佳人系複合体。
(Applications: insulation tiles, blocks, walls, floors, columns, beams, piles, balls, sleepers, concrete barges, marine structures, etc.) (2) A complex using blast furnace slag as a porous material.

(減圧下の佳人系複合原料を復圧した後アルミニウム粉
等の発泡剤を混合して発泡させ、オートクレーブ養生し
て硬化させる。)(3)多孔物質に合成樹脂系、炭素系
、炭化珪素系、窒化珪素系、または金属系の、多孔質繊
維または及び多孔質粒(片または塊でもよい)を使用し
た水硬性無機質系複合体。
(After restoring the pressure of the composite material under reduced pressure, foaming agents such as aluminum powder are mixed and cured in an autoclave to harden.) (3) Porous materials include synthetic resin, carbon, and silicon carbide. A hydraulic inorganic composite using porous fibers or porous particles (which may be pieces or lumps), silicon nitride-based, or metal-based.

(4)多孔物質に炭素系、炭化珪素系、窒化珪素系、ま
たは金属系の、多孔質繊維または及び多孔質粒体を使用
した合成樹脂系複合体。
(4) A synthetic resin composite using carbon-based, silicon carbide-based, silicon nitride-based, or metal-based porous fibers or porous particles as the porous material.

(5)多孔物質に高炉滓、または多孔質セラミックを使
用したアルミニウム系等の金属系複合体。(用途−シリ
ンダ等) (6)  多孔物質に炭素系、炭化珪素系、窒化珪素系
、または高融点金属系の、多孔質繊維または及び多孔質
粒を使用したアルミニウム系等の金属系複合体。
(5) A metal-based composite such as an aluminum-based material using blast furnace slag or porous ceramic as a porous material. (Applications - cylinders, etc.) (6) Metal-based composites, such as aluminum-based, using carbon-based, silicon carbide-based, silicon nitride-based, or high-melting point metal-based porous fibers or porous particles as the porous material.

この発明において、l実施例に使用した物または方法が
、他の実施例に適切であるかまたは利用することができ
る時は、要旨を変更しない範囲内でこれを他の実施例に
使用しまたは利用することができる。
In this invention, when an object or method used in an embodiment is suitable or can be used in another embodiment, it may be used in the other embodiment without changing the gist thereof. can be used.

この発明は詳記のように構成されるから、多孔物質に硬
化原料が圧入されて多孔物質の強度が改善され、多孔物
質と硬化体は一体化して複合体は圧縮強度が大となるば
かりか、引張強度曲げ強度共に増大し、気圧差を利用す
るだけであるから製造法、製造装置共に簡単であり、硬
化原料の使用量を削減することもできる。また多孔物質
に粒、片、塊等の形状のものを使用し、非多孔質の金属
系、炭素系、炭化珪素系、窒化珪素系、或いは合成樹脂
系等の繊維な加えて複合原料をつくり、減圧下の上記複
合原料を復圧して硬化させれば、多孔物質への硬化原料
の圧入のみならず、上記繊維と硬化原料の付着力も改番
されて曲げ強度や引張強度が更に大きい複合体を得るこ
とができる。また復圧後の複合原料に発泡スチロールや
パーライト等を加えて混練し、こルを硬化させて0!量
な複合体をつくることができる等、種々の方法や用途を
有し、合成樹脂系のものはクラブや釣竿等に、金属系の
ものはシリンダ等に、その用途は極めて広い。
Since this invention is constructed as described in detail, the hardening raw material is press-fitted into the porous material to improve the strength of the porous material, and the porous material and the hardened material are integrated, and the composite not only has a high compressive strength. Both the tensile strength and bending strength are increased, and since only the atmospheric pressure difference is used, the manufacturing method and manufacturing equipment are simple, and the amount of hardening raw materials used can be reduced. In addition, by using porous materials in the form of particles, pieces, blocks, etc., we can create composite materials in addition to non-porous metal-based, carbon-based, silicon carbide-based, silicon nitride-based, or synthetic resin-based fibers. If the composite material under reduced pressure is cured by restoring the pressure, not only will the hardening material be press-fitted into the porous material, but the adhesion between the fibers and the hardening material will also be changed, resulting in a composite with even greater bending strength and tensile strength. You can get a body. In addition, styrofoam, perlite, etc. are added to the composite material after pressure recovery, and the mixture is kneaded and hardened. It has a variety of methods and uses, such as being able to make large amounts of composites, and its uses are extremely wide: synthetic resin-based products are used for clubs, fishing rods, etc., and metal-based products are used for cylinders, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面はこの発明の実施例を示すものであって、第1
図は複合体の製造装置/例の側面図、第二図は同上から
見た図、第3図は同開閉部の断面図、第弘図〜第1/図
は複合体の製造装置g例を示す概略図、第12図及び第
73図は複合体の製造法1例を示す概略図、第1Q図及
び第15図も複合体の製造法1例を示す概略図゛、第1
6図は複合体の製造法他側を示す概略図、第17図及び
第1g図は複合体の製造装置二側の概略N面図、第1q
図は複合体の製造装置1例の概略側面図、第二0図は同
概略正面図、第21図は複合体の製造装置1例の概略正
面図、第22図は第1g図の容器の一部を示す図、第、
23図は複合体の製造装置7例を示す概略図、第2’1
図及び第25図は排出装置ユ例を示す図、第31図〜第
3弘図は排出装置/例の作動順序を示す図、第31図〜
第3弘図も排出装置1例の作動順序を示す図、第35図
及び第3b図は複合体の製造装置二側を示す概略図、第
37図は流動体用ポンプ/例を説明するための図、第3
1図〜第3弘図を1複合体の製造法S例を説明するため
の図、第ダ3図及び第j弘図は含泡した複合体の製造法
ユ例を説明するための図、第≠S図は複合体の製造法/
例を説明するための図、第弘乙図〜第≠g図は複合体の
製造法1例の作動順序を示す断面図、第1A9図〜第5
1図も複合体の製造法17例の作動順序を示す断面図で
ある。 特許出願人  株式会社満尾総合研究所代表取締役満 
尾 浩 治 第1図 Δ 第2図  2.A 4′′ 第3図 / 第21図        第n図 第23図 第37図 第38図  (転)9図  艶0図    第41図4
9 第46図 坪49図 第47図     第48図 第50図     第51図 60 柿、殻す正オ(tk) 昭和票禽61:12’70 竹粘斤毛栄/を゛り 1第/1の木零塙酌昭浦づ6292喝 2、亮B日σじろキネ 7殉、胞tA−の%&二五℃う
酒yし聞1宣3Z市正乞裏3木 弗、r−sY−’zt絶綿 臂tN出譚人り7関正0)
す守Ak 屏咄1會壮臼η、□□□t16梢上勇力庵
The attached drawings show embodiments of the present invention, and the first
The figure is a side view of the composite manufacturing apparatus/example, the second figure is a view seen from above, the third is a cross-sectional view of the opening/closing part, and the diagrams 1 to 1 are examples of the composite manufacturing apparatus g. FIG. 12 and FIG. 73 are schematic diagrams showing an example of a method for manufacturing a composite, and FIGS. 1Q and 15 are also schematic diagrams showing an example of a method for manufacturing a composite.
Figure 6 is a schematic diagram showing the other side of the composite manufacturing method, Figures 17 and 1g are schematic N side views of the second side of the composite manufacturing apparatus, and Figure 1q
The figure is a schematic side view of an example of a composite manufacturing apparatus, FIG. 20 is a schematic front view of the same, FIG. 21 is a schematic front view of an example of a composite manufacturing apparatus, and FIG. A diagram showing a part, No.
Figure 23 is a schematic diagram showing seven examples of composite manufacturing equipment, No. 2'1
25 and 25 are diagrams showing an example of the ejecting device, and FIGS. 31 to 3 are diagrams showing the operating sequence of the ejecting device/example,
Figure 3 also shows the operating sequence of one example of the discharge device, Figures 35 and 3b are schematic diagrams showing the second side of the composite manufacturing equipment, and Figure 37 is for explaining the fluid pump/example. figure, 3rd
Figures 1 to 3 are diagrams for explaining an example of the manufacturing method S for a composite, Figures 3 and 3 are diagrams for explaining an example of a manufacturing method for a foamed composite, Figure ≠S shows the manufacturing method of the composite/
Figures for explaining examples, Figures 1A9 to ≠g are cross-sectional views showing the operating sequence of one example of the method for manufacturing a composite, and Figures 1A9 to 5.
FIG. 1 is also a sectional view showing the operating sequence of 17 examples of the composite manufacturing method. Patent applicant Mitsuo Research Institute Co., Ltd. Representative Director Mitsuru
Hiroharu Oo Figure 1 Δ Figure 2 2. A 4'' Fig. 3/ Fig. 21 Fig. n Fig. 23 Fig. 37 Fig. 38 (Roll) Fig. 9 Gloss 0 Fig. 41 Fig. 4
9 Fig. 46 Fig. 49 Fig. 47 Fig. 48 Fig. 50 Fig. 51 Fig. 60 Persimmon, kasumasao (tk) Showa vote bird 61:12'70 Bamboo mucus kageei/wori 1/1 6292 kire 2, Ryo B day σjiro kine 7 martyrdom, % of tA- & 25℃ drinking y Shimon 1 sen 3Z Ichishobeiura 3 Mokuputra, r-sY -'zt Zetsuwa 臂tN 下轚人ri7 Sekisho 0)
Sumori Ak Byōen 1 Kai Sousu η, □□□t16 Kozueue Yurikian

Claims (9)

【特許請求の範囲】[Claims] (1)減圧下におかれた多孔物質が内在する硬化原料を
、復圧した後硬化させてなることを特徴とする複合体の
製造法。
(1) A method for producing a composite, which is characterized in that a hardening raw material containing a porous material is placed under reduced pressure and then hardened after being restored to pressure.
(2)上部容器と下部容器の間に開閉自在なゲートを設
けておき、該ゲートを閉じて上記上部容器内に多孔物質
が内在する硬化原料を入れて密閉する一方、上記下部容
器内戚いは更に上記上部容器内を減圧し、次いで上記ゲ
ートを開いて上記多孔物質が内在する硬化原料を上記下
部容器内に落下させ、該下部容器内の減圧下に号かれた
多孔物質が内在する硬化原料を、復圧した後硬化させて
なることを特徴とする複合体の製造法。
(2) A gate that can be opened and closed is provided between the upper container and the lower container, and the gate is closed to put the curing raw material containing a porous substance into the upper container and seal it. Further, the pressure inside the upper container is reduced, and then the gate is opened to allow the curing raw material containing the porous material to fall into the lower container, and the curing material containing the porous material is cured under reduced pressure in the lower container. A method for producing a composite material, which comprises curing raw materials after repressurizing them.
(3)多孔物質が内在する硬化原料が上部容器から下部
容器へ落下する時、上記多孔物質が内在する硬化原料を
上記下部容器内に設げられた拡散板かまたは分散具を介
し分散させて落ドさせることを特徴とする特許請求の範
囲第一項記載の複合体の製造法。
(3) When the hardening raw material containing the porous material falls from the upper container to the lower container, the hardening raw material containing the porous material is dispersed through a diffusion plate or a dispersion device provided in the lower container. A method for producing a composite according to claim 1, which comprises dropping the composite.
(4)下部容器内に落下し減圧下におかれた多孔物質が
内在する硬化原料を、下部容器内に設けられた攪拌具で
攪拌し、攪拌中か、攪拌停止と同時か、または攪拌停止
後、下部容器内を復圧することを特徴とする特許請求の
範囲第ユ項及び第3項記載の複合体の製造法。
(4) Stir the hardened raw material containing porous material that has fallen into the lower container and is placed under reduced pressure with a stirring tool installed in the lower container, either during stirring, at the same time as stirring is stopped, or when stirring is stopped. The method for producing a composite according to claims 1 and 3, characterized in that the pressure inside the lower container is restored after that.
(5)多孔物質が内在する硬化原料を容器内に入れて密
閉し、該容器内を減圧して該容器内に設けられた攪拌具
で攪拌し、攪拌中か、攪拌停止と同時か、または攪拌停
止後容器内を復圧し、多孔物質が内在する硬化原料を取
出し硬化させてなることを特徴とする複合体の製造法。
(5) Put the curing raw material containing a porous material into a container, seal it, reduce the pressure inside the container, and stir it with a stirring tool provided in the container, either during stirring or at the same time as stirring is stopped, or 1. A method for producing a composite, which comprises: repressurizing the inside of the container after stopping stirring, and taking out a hardening raw material containing a porous substance and hardening it.
(6)上部容器とF部容器の間に開閉自在なゲートを設
けておぎ、該ゲートを閉じて上記上部容器内に多孔物質
が内在する硬化原料を入れ、上記上部容器酸いは更に上
記下部容器を減圧して上記上部容器内に設げた攪拌具で
攪拌し、復圧して上記上部容器内の多孔物質が内在する
硬化原料を上記下部容器内に落下させ、これを取出し硬
化させてなることを特徴とする複合体の製造法。
(6) A gate that can be opened and closed is provided between the upper container and the F section container, the gate is closed and the curing raw material containing a porous substance is put into the upper container, and the acid in the upper container is further removed from the lower part. The container is depressurized and stirred using a stirrer provided in the upper container, and the pressure is restored to cause the curing raw material containing the porous material in the upper container to fall into the lower container, which is then taken out and cured. A method for producing a complex characterized by:
(7)上部容器と下部容器の間に開閉自在なゲートを設
けておき、該ゲートを閉じて上記上部容器内に多孔物質
と硬化原料とを入れ、上記下部容器を密閉するか密閉す
ることなく上記上部容器内に設けられた攪拌具により多
孔物質と硬化原料を攪拌して多孔物質が内在する硬化原
料をつくり、上記上部容器内を減圧して更に攪拌を続け
た後復圧して上記ゲートから上記下部容器内へ多孔物質
が内在する硬化原料を落下させこれを取出して硬化させ
るか、または上記下部容器内戚いは更に上記上部容器内
を減圧し、次いで上記ゲートを開いて上記多孔物質が内
在する硬化原料を上記下部容器内に落下させ、該下部容
器内の減圧下におかれた多孔物質が内在する硬化原料を
復圧して取出し、これを硬化させてなることを特徴とす
る複合体め製造法。
(7) A gate that can be opened and closed is provided between the upper container and the lower container, the gate is closed, the porous material and the hardening material are placed in the upper container, and the lower container is sealed or not sealed. The porous material and the hardening raw material are stirred by a stirring tool installed in the upper container to create a hardening material containing the porous material, and after reducing the pressure inside the upper container and continuing stirring, the pressure is restored and the hardening material is passed through the gate. Either the curing raw material containing the porous material is dropped into the lower container and taken out and cured, or the pressure inside the lower container or the upper container is reduced, and then the gate is opened to remove the porous material. A composite material characterized in that the cured raw material contained therein is dropped into the lower container, and the porous material placed under reduced pressure in the lower container restores pressure and takes out the cured raw material contained therein, and is cured. Me manufacturing method.
(8)多孔物質が内在する硬化原料が上部容器から下部
容器へ落下する時、上記多孔物質が内在する硬化原料を
上記下部容器内に設けられた拡散板かまたは分散具を介
し分散させて落下させることを特徴とする特許請求の範
囲第7項記載の複合体の製造法。
(8) When the hardening raw material containing a porous substance falls from the upper container to the lower container, the hardening raw material containing the porous substance is dispersed through a diffusion plate or a dispersion device installed in the lower container and then falls. 8. A method for producing a composite according to claim 7, which comprises:
(9)下部容器内に落下し減圧下におかれた多孔物質が
内在する硬化原料を、下部容器内に設けられた攪拌具で
攪拌し、攪拌中か、攪拌停止と同時か、または攪拌停止
後下部容器内を復圧することを特徴とする特許請求の範
囲第7項及び第g項記載の複合体の製造法。 liα 変形可能な容器内に多孔物質と硬化原料を入れ
て上記容器を密閉し、上記容器にその外側から圧力を加
えて容器を変形させることにより多孔物質と硬化原料を
混練し、上記容器内を減圧して更に混線を行った後容器
内を復圧し、多孔物質が内在する硬化原料を取出し硬化
させてなることを特徴とする複合体の製造法。 旧) 多孔物質が内在する硬化原料か、または多孔物質
と硬化原料とを容器に入れ、該容器を往復動させて混練
すると共に容器内を減圧し、次に上記容器の往復動中か
、往復動停止と同時か、または往復動停止後に容器を復
圧し、多孔物質が内在する硬化原料を取り出し硬化させ
てなることを特徴とする複合体の製造法。 uz′&復動が直線型往復動か、揺動型往復動か、また
は円型往復動であることを特徴とする特許請求の範囲第
1/項記載の複合体の製造法。 03  減圧下におかれた多孔物質が内在する硬化原料
を、直列に配設された3組のバルブを組合わせ作動させ
ることにより、順次排出かつ復圧させ、復圧した後硬化
させてなることを特徴とする複合体の製造法。 a4  減圧下におかれた多孔物質が内在する硬化原料
を、両側にバルブを設けかつ真空教訓装置に繋がれた容
4を介し順次排出かつ復圧し、復圧後硬化させてなるこ
とを特徴とする複合体の製造法。 +151  減圧下におかれた多孔物質力讐内在する硬
化原料を、レベル検出器または重量測定器を設けかつ下
端にゲートを設けた下向き管を介し順次排出かつ復圧し
、復圧後硬化させてなることを特徴とする複合体の製造
法。 uti  減圧下におかれた多孔物質が内在する硬化原
料を、直列に配設された二組のバルブを組合わせ作動さ
せることにより、順次復圧かつ排出し、復圧した後硬化
させてなることを特徴とする複合体の製造法。 Q71  多孔物質が内在する硬化原料を、減圧下の容
器内に導くかまたは各器内に導いた後減圧し、排出かつ
復圧した後硬化させてなることを特徴とする複合体の製
造法。 U& 排出かつ復圧に圧搾空気を利用することを特徴と
する特許請求の範囲第17項記載の複合体の製造法。 uJ  多孔物質が内在する硬化原料を容器に導く時、
拡散板または分散具を介し分散させて導くことを特徴と
する特許請求の範囲第17項及び第1g項記載の複合体
の製造法。 (至) 多孔物質が内在する硬化原料を容器内に設けた
攪拌具で攪拌し、ついで復圧してなることを特徴とする
特許請求の範囲第17項〜第1q項記載の複合体の製造
法。 儲り 減圧下におかれた多孔物質が内在する硬化原料を
、復圧した後含泡させるか発泡させ、これを硬化させて
なることを特徴とする被合体の製造法。 1)上部容器と下部容器の間に開閉自在1よゲートが設
けられており、上記上部容器と下部容器のうちのlまた
はユが真空吸引装置に繋がれていることを特徴とする複
合体の製造装置。 @ 上部容器とF部容器の/またはユに攪拌具が設けら
れていることを特徴とする特許請求の範囲第ユニ項記載
の被合体の製造装置。 例 下部容器内に拡散板かまたは分散具が設けられてい
ることを特徴とする特許請求の範囲第22項及び第23
項記載の複合体の製造装置。 □□□変形可能な容器と、該容器に圧力を加えて変形さ
せる押圧具と、上記容器内を真空吸引する真空吸引装置
とを具備したことを特徴とする複合体の製造装置。 (至)押圧具が直線型往復動または及び円運動を行うも
のであることを特徴とする特許請求の範囲第、2夕項記
載の複合体の製造装置。 127)  押圧具が膨張狭搾自在な佑であることを特
徴とする特許請求の範囲第25項記載の複合体の製造装
置。 d 供給装置に間欠的または連続的排出装置が設けられ
ていることを特徴とする複合体の製造装置。 (至)間欠的排出装置が直列に配設された二または3組
のパルプによって構成されていることを特徴とする特許
請求の範囲第25項記載の複合体の製造装置。 囚 間欠的排出装置が、真空吸引装置に繋がれかつ両側
にバルブが設けられた容器であることを特徴とする特許
請求の範囲第ユに項記載の複合体の製造装置。 c3])間欠的排出装置が、レベル検出器かまたは重量
測定器を設けかつ下端に開閉自在なゲートを設けたF向
き管であることを特徴とする特許請求の範囲第2g項記
載の複合体の製造装置。 C33連続的排出装置が、半円形のゲージングと、この
内側に宿つ℃配設された可撓管と、該可撓管を押圧して
摺接円運動を行う回転ローラによって構成されるポンプ
であることを特徴とする特許請求の範囲第2g項記載の
複合体の製造装置。 1)供給装置が連続供給装置であることを特徴とする特
許請求の範囲第、2g項〜第3,2項記載の複合体の製
造装置。 (至)供給装置が連続ミキサーであることを特徴とする
特許請求の範囲第−g項〜第3,2項記載の複合体の製
造装置。 (至)導入口と排出口を設けた容器に真空吸引装置或い
は更にコンプレッサーを繋いだことを特徴とする複合体
の製造装置。 (至) 真空吸引装置とコンプレッサーがシリンダであ
ることを特徴とする特許請求の範囲第35項記載の複合
体の製造装置。 67)容器内に攪拌具が設けられていることを特徴とす
る特許請求の範囲第35項及び第3L項記載の複合体の
製造装置。 賭 容器内に拡散板かまたは分散具が設けられているこ
とを特徴とする特許請求の範囲第35項〜第37項記載
の複合体の製造装置。
(9) Stir the hardened raw material containing porous material that has fallen into the lower container and placed under reduced pressure with a stirring tool installed in the lower container, either during stirring, at the same time as stirring is stopped, or when stirring is stopped. A method for producing a composite according to claims 7 and g, characterized in that the pressure inside the rear lower container is restored. liα A porous material and a hardening raw material are placed in a deformable container, the container is sealed, and the porous material and hardening material are kneaded by applying pressure to the container from the outside to deform the container, and the inside of the container is 1. A method for producing a composite, which comprises reducing the pressure and further cross-talking, then restoring the pressure in the container, taking out the hardening raw material containing the porous material and hardening it. Old) A hardening raw material containing a porous substance, or a porous material and a hardening raw material, are placed in a container, the container is moved back and forth to knead and the pressure inside the container is reduced, and then the container is moved back and forth, or 1. A method for producing a composite, which comprises restoring the pressure in a container at the same time as the motion stops or after stopping the reciprocating motion, and taking out and curing the hardening raw material containing the porous material. The method for manufacturing a composite body according to claim 1, wherein the uz'& backward motion is a linear reciprocating motion, an oscillating reciprocating motion, or a circular reciprocating motion. 03 Curing raw materials containing porous materials placed under reduced pressure are sequentially discharged and restored to pressure by operating three sets of valves arranged in series, and cured after being restored to pressure. A method for producing a complex characterized by: a4 A curing raw material containing a porous substance placed under reduced pressure is sequentially discharged and depressurized through a container 4 equipped with valves on both sides and connected to a vacuum training device, and is cured after being depressurized. A method for producing a complex. +151 The hardening raw material contained in the porous material under reduced pressure is sequentially discharged and depressurized through a downward pipe equipped with a level detector or weight measuring device and a gate at the lower end, and is cured after being depressurized. A method for producing a composite, characterized by: uti A hardening raw material containing porous material placed under reduced pressure is sequentially restored and discharged by operating two sets of valves arranged in series, and cured after being restored to pressure. A method for producing a complex characterized by: Q71: A method for producing a composite material, which comprises introducing a hardening raw material containing a porous material into a container under reduced pressure or into each container, reducing the pressure, discharging and returning the pressure, and then curing the material. 18. The method for producing a composite according to claim 17, characterized in that compressed air is used for U& discharge and repressurization. uJ When the hardening raw material containing the porous material is introduced into the container,
A method for producing a composite according to claims 17 and 1g, characterized in that the composite is dispersed and guided through a diffusion plate or a dispersion device. (To) A method for producing a composite according to claims 17 to 1q, characterized in that the hardened raw material containing a porous material is stirred with a stirring tool provided in a container, and then the pressure is restored. . Profitability A method for producing a composite material, which is characterized by curing a hardened raw material containing a porous material under reduced pressure, restoring the pressure, foaming or foaming the material, and curing the material. 1) A complex characterized in that a gate 1 which can be opened and closed is provided between the upper container and the lower container, and l or y of the upper container and the lower container are connected to a vacuum suction device. Manufacturing equipment. @ An apparatus for manufacturing a combined object according to claim 1, characterized in that a stirring tool is provided in the upper container and/or in the F section container. Example Claims 22 and 23, characterized in that a diffusion plate or a dispersion device is provided in the lower container.
Apparatus for producing the composite described in Section 1. □□□ An apparatus for producing a composite body, comprising a deformable container, a pressing tool that applies pressure to the container to deform it, and a vacuum suction device that vacuums the inside of the container. (to) The apparatus for manufacturing a composite body according to claim 2, wherein the pressing tool makes a linear reciprocating motion or a circular motion. 127) The apparatus for manufacturing a composite body according to claim 25, wherein the pressing tool is a bell that can be expanded and compressed. d. A composite manufacturing device, characterized in that the feeding device is provided with an intermittent or continuous discharge device. 26. The apparatus for producing a composite according to claim 25, wherein the intermittent discharge device is constituted by two or three sets of pulps arranged in series. The apparatus for producing a composite body according to claim 1, wherein the intermittent ejection device is a container connected to a vacuum suction device and provided with valves on both sides. c3]) The complex according to claim 2g, wherein the intermittent discharge device is an F-directed pipe equipped with a level detector or a weight measuring device and a gate that can be opened and closed at its lower end. manufacturing equipment. The C33 continuous discharge device is a pump consisting of a semicircular gauge, a flexible tube located inside the gauge, and a rotating roller that presses the flexible tube to perform a sliding circular motion. An apparatus for producing a composite according to claim 2g, characterized in that: 1) An apparatus for producing a composite body according to claims 2g to 3 and 2, wherein the feeding device is a continuous feeding device. (to) An apparatus for manufacturing a composite according to claims 3-g to 3 and 2, characterized in that the feeding device is a continuous mixer. (To) An apparatus for manufacturing a composite body, characterized in that a vacuum suction device or a compressor is connected to a container provided with an inlet and an outlet. (to) The apparatus for manufacturing a composite body according to claim 35, wherein the vacuum suction device and the compressor are cylinders. 67) The apparatus for producing a composite according to claims 35 and 3L, characterized in that a stirring tool is provided in the container. 38. The composite manufacturing apparatus according to claim 35, wherein a diffusion plate or a dispersion device is provided in the container.
JP58016252A 1983-02-04 1983-02-04 Composite body manufacture and device Pending JPS59146971A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58016252A JPS59146971A (en) 1983-02-04 1983-02-04 Composite body manufacture and device
PCT/JP1984/000032 WO1984003063A1 (en) 1983-02-04 1984-02-04 Method and apparatus for producing hydraulic inorganic composite using porous substance as aggregate or reinforcement
AU24916/84A AU2491684A (en) 1983-02-04 1984-02-04 Method and apparatus for producing hydraulic inorganic composite using porous substance as aggregate or reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58016252A JPS59146971A (en) 1983-02-04 1983-02-04 Composite body manufacture and device

Publications (1)

Publication Number Publication Date
JPS59146971A true JPS59146971A (en) 1984-08-23

Family

ID=11911366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58016252A Pending JPS59146971A (en) 1983-02-04 1983-02-04 Composite body manufacture and device

Country Status (2)

Country Link
JP (1) JPS59146971A (en)
WO (1) WO1984003063A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104985693A (en) * 2015-06-29 2015-10-21 句容泰博尔机械制造有限公司 Multifunctional concrete mixer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1340899C (en) * 1988-03-09 2000-02-15 Andre Bardy Procede de preparation de complexes nitruro 99m tc, 186 re ou 188 re utilisables comme produits radiopharmaceutiques

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242977B2 (en) * 1971-12-10 1977-10-27

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4738037Y1 (en) * 1968-09-13 1972-11-17
JPS4728751U (en) * 1971-04-13 1972-12-01
JPS5331167B2 (en) * 1973-03-12 1978-08-31
JPS5336254B2 (en) * 1973-04-09 1978-10-02
JPS5183625A (en) * 1975-01-21 1976-07-22 Denki Kagaku Kogyo Kk KIHOKONKURIITONOSEIZOHO
JPS54102660A (en) * 1978-01-30 1979-08-13 Daito Kikai Kk Mixer
JPS54127916A (en) * 1978-03-29 1979-10-04 Ito Yasuro Adjustment of raw concrete or raw mortar
JPS5530962A (en) * 1978-08-28 1980-03-05 Katsushi Nakagawa Method of and apparatus for producing concrete employing porous material for aggregate
JPS5530983A (en) * 1978-08-29 1980-03-05 Katsushi Nakagawa Method of producing concrete employing porous material for aggregate
JPS5748586Y2 (en) * 1980-09-25 1982-10-25
JPH0796219B2 (en) * 1981-04-03 1995-10-18 株式会社北川鉄工所 Equipment for manufacturing raw concrete

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242977B2 (en) * 1971-12-10 1977-10-27

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104985693A (en) * 2015-06-29 2015-10-21 句容泰博尔机械制造有限公司 Multifunctional concrete mixer

Also Published As

Publication number Publication date
WO1984003063A1 (en) 1984-08-16

Similar Documents

Publication Publication Date Title
CN109496180A (en) Head box and forming station for the production of fiber-reinforced cement plate
CN112171906B (en) A mixer for anti concrete that splits
JP2010508178A (en) Process and apparatus for supplying cement slurry for fiber reinforced structural cement panels
CN215395955U (en) Iron tailing brick making molding equipment
CN101180166A (en) Method and apparatus for manufacturing blocks of conglomerate stone or ceramic material
CN107803930A (en) A kind of concrete high-efficiency stirring conveying device
CN107650261A (en) A kind of construction site continuously stirs device with dry-mixed mortar
CN115247395B (en) Efficient concrete pouring device and pouring method
CN109333760A (en) Processing device of autoclaved energy-saving and environment-friendly aerated concrete block and its use method
CN112643890A (en) Concrete production is with dividing sieve dosing unit
CN113171824A (en) Preparation method of modified aluminate cement
CN207256471U (en) A kind of construction material cement tile automatic rolling forming and automatic printing equipment
JPS59146971A (en) Composite body manufacture and device
US4004782A (en) Machine for mixing aggregate and resin
CN206937598U (en) A kind of wear-resistant dry-mixed mortar mixing device
CN111608372B (en) Plaster smashing, spraying and trowelling equipment
US7887738B2 (en) Brick and method for its manufacture
JPS588330B2 (en) Continuous mixing method and device
CN111484280A (en) Building mortar and preparation process thereof
US3669418A (en) Method of spraying concrete
CN207224280U (en) A kind of building and ornament materials cement tile automatically controls blanking equipment
CN213648023U (en) Feeding mechanism of commercial concrete residual material brick making device
EP0378437B1 (en) Method of applying a mortar material to a surface
CN207290390U (en) A kind of building and ornament materials cement tile automatic blanking roller head machine
CN218249717U (en) Polyurethane terrace material apparatus for producing