JPS5913317Y2 - Air-fuel ratio feedback control device - Google Patents
Air-fuel ratio feedback control deviceInfo
- Publication number
- JPS5913317Y2 JPS5913317Y2 JP1980025520U JP2552080U JPS5913317Y2 JP S5913317 Y2 JPS5913317 Y2 JP S5913317Y2 JP 1980025520 U JP1980025520 U JP 1980025520U JP 2552080 U JP2552080 U JP 2552080U JP S5913317 Y2 JPS5913317 Y2 JP S5913317Y2
- Authority
- JP
- Japan
- Prior art keywords
- air
- fuel ratio
- oxygen concentration
- output
- engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Description
【考案の詳細な説明】
本考案はエンジンに供給される空気−燃料混合気の空燃
比を排気ガス中の酸素濃度に応じて帰還補正するように
した空燃比帰還式燃料噴射制御装置に関するものである
。[Detailed description of the invention] The present invention relates to an air-fuel ratio feedback type fuel injection control device that feedback-corrects the air-fuel ratio of the air-fuel mixture supplied to the engine according to the oxygen concentration in the exhaust gas. be.
従来エンジンへの燃料供給は、エンジンの吸入空気量に
対応して設定した空燃比特性をプログラムしておき、こ
のプログラムに従って燃料の調量を行なっている。Conventionally, when supplying fuel to an engine, an air-fuel ratio characteristic set corresponding to the intake air amount of the engine is programmed, and the amount of fuel is adjusted according to this program.
この場合、吸気負圧、機関温度等のエンジンパラメータ
を検出して制御しても、時々刻々と変化する運転条件、
個々のエンジン差となる機差等を補正して予定した空燃
比で運転することは極めて困難であり、このことは特に
排気浄化の為の触媒浄化装置等を取付けた場合に大きな
障害となってしまうという欠点がある。In this case, even if engine parameters such as intake negative pressure and engine temperature are detected and controlled, operating conditions that change from moment to moment,
It is extremely difficult to operate at the planned air-fuel ratio by correcting machine differences that result from individual engine differences, and this becomes a major obstacle, especially when a catalytic purification device for exhaust purification is installed. It has the disadvantage of being stored away.
本考案は上記の欠点を解消できる空燃比帰還式燃料噴射
制御装置を提供することを目的とするものである。An object of the present invention is to provide an air-fuel ratio feedback type fuel injection control device that can eliminate the above-mentioned drawbacks.
即ち、本考案装置は、通常は排気ガス中の酸素濃度を検
出し、その出力を積分処理した積分出力に従って、エン
ジンに供給する混合気の空燃比を帰還補正することによ
り、一定の空燃比でエンジンを運転することができ、か
つ排気ガス温度が、酸素濃度検出器が正常作動する許容
温度に達するまでの間は、積分手段を初期状態に設定し
て、前記積分出力をその出力変動範囲内における中間値
に保持し、それにより空燃比の帰還補正を実質的に停止
させることにより、エンジンを含めた帰還制御システム
の状態に適合した空燃比の制御ができると共に、その特
定の状態が解消されたときには、常に積分出力の変動範
囲内における中間値より積分動作を開始させることがで
きるため、積分動作の方向に制約がなくなり、空燃比の
機関補正動作の追従性を向上でき、しかも帰還補正が開
始した時点で空燃比の帰還補正量を実質的に零にしてお
くことができ、排気浄化や運転性の面で改善効果を高め
ることができるものであります。In other words, the device of the present invention normally detects the oxygen concentration in the exhaust gas and performs feedback correction on the air-fuel ratio of the air-fuel mixture supplied to the engine according to the integrated output obtained by integrating the output, thereby maintaining a constant air-fuel ratio. Until the engine can be operated and the exhaust gas temperature reaches a permissible temperature at which the oxygen concentration detector can operate normally, the integrating means is set to the initial state and the integrated output is kept within its output fluctuation range. By maintaining the air-fuel ratio at an intermediate value and thereby substantially stopping feedback correction of the air-fuel ratio, it is possible to control the air-fuel ratio in accordance with the state of the feedback control system including the engine, and to eliminate that specific state. Since the integral operation can always be started from an intermediate value within the integral output fluctuation range, there is no restriction on the direction of the integral operation, improving the followability of the engine correction operation of the air-fuel ratio, and moreover, the feedback correction is This allows the amount of feedback correction for the air-fuel ratio to be set to virtually zero at the start of the process, increasing the effectiveness of improvements in terms of exhaust purification and drivability.
以下本考案を図面に示す一実施例について説明するが、
本実施例では電子式燃料噴射制御装置に空燃比帰還制御
を適用し、空燃比の帰還制御を停止するエンジンの特定
状態の一例としてエンジン低温状態を選んでいる。An embodiment of the present invention shown in the drawings will be described below.
In this embodiment, air-fuel ratio feedback control is applied to an electronic fuel injection control device, and an engine low temperature state is selected as an example of a specific engine state in which air-fuel ratio feedback control is stopped.
第1図のブロック線図において、1は積分定数変換器で
、エンジン回転数吸気負圧、吸入空気量等を検出し、こ
の検出電圧を電源電圧VBの半分となる基準電圧VB/
2からの偏差に変換して負電圧の積分定数を取出すもの
である。In the block diagram of FIG. 1, 1 is an integral constant converter that detects the engine rotation speed, intake negative pressure, intake air amount, etc., and converts this detected voltage to a reference voltage VB/VB, which is half of the power supply voltage VB.
2 to obtain the integral constant of the negative voltage.
2は反転増幅器で、前記積分定数を反転させて正電圧の
反転出力を発生するものである。Reference numeral 2 denotes an inverting amplifier, which inverts the integral constant to generate an inverted positive voltage output.
3は酸化ジルコン等の固体電解質よりなる酸素濃度検出
器で、エンジン13の排気管14に配設して排気ガス中
の酸素濃度を検出するものであり、排気ガスの温度が4
50°C〜600°Cの許容温度以上になると前記酸素
濃度に応答して正常作動し濃度検出信号を発生するもの
である。Reference numeral 3 denotes an oxygen concentration detector made of a solid electrolyte such as zircon oxide, which is installed in the exhaust pipe 14 of the engine 13 to detect the oxygen concentration in the exhaust gas.
When the temperature exceeds the permissible temperature range of 50 DEG C. to 600 DEG C., it operates normally in response to the oxygen concentration and generates a concentration detection signal.
4はサーミスタよりなる温度検出器で、排気ガスの温度
を検出するものである。Reference numeral 4 denotes a temperature detector consisting of a thermistor, which detects the temperature of the exhaust gas.
5は許容温度検出回路で、前記温度検出器4の出力信号
により排気温度が許容温度に達すると検出出力を発生す
るものである。Reference numeral 5 denotes an allowable temperature detection circuit which generates a detection output when the exhaust gas temperature reaches an allowable temperature based on the output signal of the temperature detector 4.
6はゲート回路で、前記許容温度検出回路5より検出出
力が発生せず許容温度以下のときはゲートを閉じて前記
酸素濃度検出器3の濃度検出信号を阻止し、前記検出出
力が発生するとゲートを開いて前記濃度検出信号を通過
させるものである。Reference numeral 6 denotes a gate circuit, which closes the gate to block the concentration detection signal of the oxygen concentration detector 3 when the permissible temperature detection circuit 5 does not generate a detection output and the temperature is below the permissible temperature, and when the detection output occurs, the gate closes. is opened to allow the concentration detection signal to pass through.
7は比較的で、通常は前記酸素濃度検出器3よりの濃度
検出信号と空燃比帰還制御の目標値として予め設定した
空燃比設定値VHとを比較して、“0”レベル或いは“
1”レベルの比較出力を発生するものである。7 is comparative, and normally the concentration detection signal from the oxygen concentration detector 3 is compared with the air-fuel ratio setting value VH, which is preset as the target value of the air-fuel ratio feedback control, and the signal is set to the "0" level or "
It generates a comparison output of 1" level.
8はスイッチング回路で、前記比較出力に応じて前記積
分定数変換器1よりの負電圧の積分定数および反転増幅
器2よりの正電圧の反転出力を選択して出力に発生する
ものである。Reference numeral 8 denotes a switching circuit which selects an integral constant of the negative voltage from the integral constant converter 1 and an inverted output of the positive voltage from the inverting amplifier 2 according to the comparison output, and generates the output.
9は積分器で、前記負電圧の積分定数、或いは正電圧の
反転出力を積分するもので、この積分出力にて空燃比の
補正量を指示するものである。Reference numeral 9 denotes an integrator that integrates the integral constant of the negative voltage or the inverted output of the positive voltage, and uses this integral output to indicate the amount of air-fuel ratio correction.
10は補正停止手段をなす出力保持用帰還回路で、前記
積分器9の積分出力を入力とし、前記許容温度検出回路
5より検出出力が発生していないときに前記ゲート回路
6を通して帰還作用するものであり前記積分器9の積分
出力を基準電圧VB/2に保持して酸素濃度に応じた空
燃比の補正を停止するものである。Reference numeral 10 denotes an output holding feedback circuit serving as a correction stopping means, which inputs the integrated output of the integrator 9 and performs a feedback operation through the gate circuit 6 when no detection output is generated from the allowable temperature detection circuit 5. The integrated output of the integrator 9 is held at the reference voltage VB/2 and correction of the air-fuel ratio according to the oxygen concentration is stopped.
11は一般周知の電子式燃料噴射制御装置の演算部で、
吸気負圧、機関温度等のエンジンパラメータに応じて時
間幅の噴射パルスを予めプログラム設定しである空燃比
特性に従って発生するものであり、前記積分器9よりの
積分出力と基準電圧VB/2との偏差に応じて前記噴射
パルスの時間幅を補正して空燃比を補正する。11 is a calculation unit of a generally known electronic fuel injection control device;
The injection pulse is generated according to the air-fuel ratio characteristics by pre-programming an injection pulse with a time width according to engine parameters such as intake negative pressure and engine temperature. The time width of the injection pulse is corrected in accordance with the deviation of the air-fuel ratio.
12は電磁弁で、前記演算部11よりの噴射パルスによ
り開弁作動して要求燃料を噴射するものである。Reference numeral 12 denotes a solenoid valve which is opened by an injection pulse from the arithmetic unit 11 and injects the requested fuel.
上記構成においてその作動を説明するが、積分器9の積
分出力が基準電圧VB/2と等しくなったとき、排気ガ
ス中の酸素濃度に応じて帰還をがける帰還制御系の補正
量を零とし、基本の要求燃料を噴射するようにしである
。The operation will be explained with the above configuration. When the integrated output of the integrator 9 becomes equal to the reference voltage VB/2, the correction amount of the feedback control system that performs feedback according to the oxygen concentration in the exhaust gas is set to zero. , so that the basic required fuel is injected.
今エンジンの低温始動時のごとく、排気ガスの温度が許
容検出温度以下になっていると、酸素濃度検出器3が排
気ガス中の酸素濃度に応答せず、その出力は発生しない
。If the temperature of the exhaust gas is below the permissible detection temperature, such as when the engine is started at a low temperature, the oxygen concentration detector 3 will not respond to the oxygen concentration in the exhaust gas and will not generate any output.
この状態は燃料が薄いときの検出状態と同じであるため
、このときはこの酸素濃度検出器3の出力をゲート回路
6にて阻止すべき許容温度検出回路5の検出信号が作用
する。Since this state is the same as the detection state when the fuel is thin, the detection signal of the permissible temperature detection circuit 5 which should block the output of the oxygen concentration detector 3 by the gate circuit 6 acts at this time.
すなわち、温度検出器4および許容温度検出回路5によ
り排気ガスの温度が許容温度に達していないことを検出
して前記ゲート回路6を作動させるための検出出力を発
生する。That is, the temperature detector 4 and the permissible temperature detection circuit 5 detect that the temperature of the exhaust gas has not reached the permissible temperature, and generate a detection output for operating the gate circuit 6.
これにより、出力保持用帰還回路10が作動して積分器
9の積分出力を空燃比補正量が零であることを示す基準
電圧VB/2の値に保持し、演算部11より基本の要求
燃料に応じた噴射パルスを発生し、電磁弁12を介して
エンジン13に燃料を噴射供給している。As a result, the output holding feedback circuit 10 operates to hold the integrated output of the integrator 9 at the value of the reference voltage VB/2, which indicates that the air-fuel ratio correction amount is zero, and the calculation unit 11 calculates the basic required fuel. The engine 13 generates an injection pulse corresponding to the engine speed, and injects fuel to the engine 13 via the electromagnetic valve 12.
したがって、エンジンには予め設定されている空燃比特
性に従った空燃比の混合気が供給され、特にエンジンの
低温始動時に適した空燃比の混合気を供給可能である。Therefore, the engine is supplied with an air-fuel mixture having an air-fuel ratio that conforms to preset air-fuel ratio characteristics, and it is possible to supply an air-fuel mixture with an air-fuel ratio that is particularly suitable for starting the engine at a low temperature.
次に、排気ガスの温度が許容温度以上になると酸素濃度
検出器3が排気ガス中の酸素濃度に応答するようになる
とともに、ゲート回路6が開いて酸素濃度検出器3の検
出信号を比較器7に通すようになる。Next, when the temperature of the exhaust gas exceeds the allowable temperature, the oxygen concentration detector 3 begins to respond to the oxygen concentration in the exhaust gas, and the gate circuit 6 opens to convert the detection signal of the oxygen concentration detector 3 into a comparator. 7 will pass.
この状態において、排気ガス中の酸素濃度が高く燃料が
薄いとき、前記酸素濃度検出器3の濃度検出信号が低レ
ベルになっており、この低レベルの検出信号がゲート回
路6を介して比較器7に加わる。In this state, when the oxygen concentration in the exhaust gas is high and the fuel is thin, the concentration detection signal of the oxygen concentration detector 3 is at a low level, and this low level detection signal is passed through the gate circuit 6 to the comparator. Join 7.
これにより、この比較器7が空燃比設定値VHと比較し
て“0”レベル信号を発生し、この“0“レベル信号に
よりスイッチング回路8が選択作動して反転増幅器2の
正電圧の反転出力を積分器9に導く。As a result, this comparator 7 compares it with the air-fuel ratio set value VH and generates a "0" level signal, and this "0" level signal selectively activates the switching circuit 8 to output an inverted positive voltage from the inverting amplifier 2. is led to the integrator 9.
従って、この積分器9が前記反転出力を積分して次第に
電圧の低下する積分出力を発生する。Therefore, this integrator 9 integrates the inverted output and generates an integrated output whose voltage gradually decreases.
この積分出力により演算部11より噴射パルスの時間幅
が徐々に長くなり燃料の増量を行なって供給燃料を濃く
する。Based on this integral output, the time width of the injection pulse is gradually lengthened by the calculation unit 11, and the amount of fuel is increased, thereby enriching the supplied fuel.
この作用が進むことによって、排気ガス中の酸素濃度が
徐々に低くなる。As this action progresses, the oxygen concentration in the exhaust gas gradually decreases.
そして、この酸素濃度が所定値まで低くなると酸素濃度
検出器3の検出信号が高レベルになり、この高レベルの
検出信号か゛ゲート回路6を介して比較器7に加わり、
その空燃比設定値VHより高くなると、この比較器7か
らの“199レベル信号により、スイッチング回路8が
選択作動して積分定数変換器1の出力となる負電圧の積
分定数出力を積分器9に導く。When this oxygen concentration drops to a predetermined value, the detection signal of the oxygen concentration detector 3 becomes high level, and this high level detection signal is applied to the comparator 7 via the gate circuit 6.
When the air-fuel ratio becomes higher than the set value VH, the switching circuit 8 is selectively activated by the "199 level signal from the comparator 7, and the integral constant output of the negative voltage which becomes the output of the integral constant converter 1 is sent to the integrator 9. lead
従って、この積分器9が前記積分定数出力を積分して次
第に電圧の上昇する積分出力を発生する。Therefore, this integrator 9 integrates the integration constant output and generates an integrated output whose voltage gradually increases.
この積分出力により演算部11よりの噴射パルスの時間
幅が短くなり、燃料の減量を行なって最適の空燃比に近
づくように制御できる。This integral output shortens the time width of the injection pulse from the calculation unit 11, allowing control to reduce the amount of fuel and approach the optimum air-fuel ratio.
すなわち、上述の帰還制御により、排気ガスの温度が許
容温度以上のときエンジン13に供給される燃料が排気
ガス中の酸素濃度に応じて補正され、混合気の空燃比を
目標とする一定値に制御することができる。That is, by the feedback control described above, the fuel supplied to the engine 13 when the exhaust gas temperature is equal to or higher than the allowable temperature is corrected according to the oxygen concentration in the exhaust gas, and the air-fuel ratio of the air-fuel mixture is kept at a constant target value. can be controlled.
上述の作動を得るための要部具体的回路は第2図に示す
ものである。The main part specific circuit for obtaining the above-mentioned operation is shown in FIG.
この第2図は第1図中の符号1乃至10にて示す部分の
具体的回路であり、1a、IBは吸気負圧、エンジン回
転数に応じた電圧を発生する積分定数検出器、1a1,
1a2,1a3゜2a、5a、7a、9a、10aはオ
ペアンプ、6b1,6b2,6b3,8b1,8b2は
トランジスタ、9Cは積分コンテ゛ンサ、6d1,6d
2はリレーであり、VBは正電圧VBが加わる電源端子
、Gは接地端子である。This FIG. 2 shows a specific circuit of the parts indicated by numerals 1 to 10 in FIG.
1a2, 1a3゜2a, 5a, 7a, 9a, 10a are operational amplifiers, 6b1, 6b2, 6b3, 8b1, 8b2 are transistors, 9C is an integrating capacitor, 6d1, 6d
2 is a relay, VB is a power supply terminal to which positive voltage VB is applied, and G is a ground terminal.
Aは電源電圧VBをλに分圧する分圧回路で、各回路2
. 5. 9.10への基準電圧を作り出すもので゛あ
る。A is a voltage dividing circuit that divides the power supply voltage VB into λ, and each circuit 2
.. 5. 9.10 to create a reference voltage.
なお前記酸素濃度検出器3の検出信号による帰還制御系
も上述の実施例に限ることなくどのようなものでもよい
ことはいうまでもない。It goes without saying that the feedback control system based on the detection signal of the oxygen concentration detector 3 is not limited to the above-mentioned embodiment and may be of any type.
以上述べたように本考案装置においては、通常は排気ガ
ス中の酸素濃度を検出し、その出力を積分処理した積分
出力に従ってエンジンに供給する混合気の空燃比を補正
しているから、一定の空燃比でエンジンを運転すること
ができ、かつ排気ガス温度が酸素濃度検出器が正常作動
する許容温度に達するまでの間は積分手段を初期状態に
設定して、前記積分出力をその出力変動範囲内における
中間値に保持し、それにより空燃比の帰還補正を実質的
に停止させているから、エンジンを含めた帰還制御シス
テムの状態に適合した空燃比の制御ができると共に、そ
の特定の状態が解消されたときには常に積分出力の変動
範囲内における中間値を基点にして増加、減少のうちの
任意の方向に積分動作を開始させることができるため、
積分動作の方向に制約がなくなり、空燃比の帰還補正動
作の追従性を向上でき、しかも帰還補正が開始した時点
で空燃比の帰還補正量を実質的に零にしておくことがで
き、従って帰還補正開始時点での空燃比の変動を抑え、
排気浄化や運転性の面で非常に改善できるという優れた
効果がある。As mentioned above, the device of the present invention normally detects the oxygen concentration in the exhaust gas and corrects the air-fuel ratio of the mixture supplied to the engine according to the integrated output obtained by integrating the output. Until the engine can be operated at the air-fuel ratio and the exhaust gas temperature reaches the permissible temperature at which the oxygen concentration detector operates normally, the integrating means is set to the initial state, and the integrated output is controlled within its output fluctuation range. Since the feedback correction of the air-fuel ratio is essentially stopped, the air-fuel ratio can be controlled in accordance with the state of the feedback control system including the engine, and the specific state When the problem is resolved, the integral operation can be started in any direction, either increasing or decreasing, based on the intermediate value within the range of variation of the integral output.
There is no restriction on the direction of the integral operation, and the followability of the air-fuel ratio feedback correction operation can be improved.Moreover, the amount of air-fuel ratio feedback correction can be set to substantially zero at the time the feedback correction starts, so the feedback correction Suppresses fluctuations in air-fuel ratio at the start of correction,
It has the excellent effect of greatly improving exhaust purification and drivability.
第1図は本考案による空燃比帰還式燃料噴射制御装置の
一実施例を示すブロック線図、第2図は本考案装置にお
ける要部詳細回路の一実施例を示す電気結線図である。
3・・・・・・酸素濃度検出器、4・・・・・・温度検
出器、5゜6・・・・・・第2の手段の要部をなす許容
温度検出回路、ゲート回路、9・・・・・・積分器、1
0・・・・・・第1の手段をなす出力保持用帰還回路、
11.12・・・・・・燃料噴射制御手段の要部をなす
演算部、電磁弁、13・・・・・・エンジン、14・・
・・・・排気管。FIG. 1 is a block diagram showing an embodiment of an air-fuel ratio feedback type fuel injection control device according to the present invention, and FIG. 2 is an electrical wiring diagram showing an embodiment of a detailed circuit of a main part of the device according to the present invention. 3...Oxygen concentration detector, 4...Temperature detector, 5゜6......Allowable temperature detection circuit forming the main part of the second means, gate circuit, 9 ...Integrator, 1
0... Output holding feedback circuit constituting the first means,
11.12... Arithmetic unit, electromagnetic valve, which forms the main part of fuel injection control means, 13... Engine, 14...
····Exhaust pipe.
Claims (1)
出器と、この酸素濃度検出器の出力信号に応じて積分処
理して積分出力を形成する積分手段と、少なくともこの
積分手段の積分出力に応じてエンジンに供給する混合気
の空燃比を帰環補正する燃料噴射制御手段と、前記積分
手段を初期状態に設定して前記積分出力をその変動範囲
内における中間値に固定する第1の手段と、エンジンの
排気ガス温度が、前記酸素濃度検出器が正常作動する許
容温度に達するまでの間、前記第1の手段を作動させて
前記積分出力を前記中間値に保持し、それりより空燃比
の帰還補正を実質的に停止させる第2の手段とを備えた
ことを特徴とする空燃比帰還式燃料噴射制御装置。an oxygen concentration detector that detects the oxygen concentration in the exhaust gas of the engine; an integrating means that performs an integral process to form an integral output according to the output signal of the oxygen concentration detector; a first means for setting the integrating means to an initial state and fixing the integral output to an intermediate value within its fluctuation range; , the first means is operated to maintain the integral output at the intermediate value until the exhaust gas temperature of the engine reaches an allowable temperature at which the oxygen concentration detector normally operates; and second means for substantially stopping the feedback correction of the air-fuel ratio feedback type fuel injection control device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1980025520U JPS5913317Y2 (en) | 1980-02-27 | 1980-02-27 | Air-fuel ratio feedback control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1980025520U JPS5913317Y2 (en) | 1980-02-27 | 1980-02-27 | Air-fuel ratio feedback control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55142638U JPS55142638U (en) | 1980-10-13 |
JPS5913317Y2 true JPS5913317Y2 (en) | 1984-04-20 |
Family
ID=28866044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1980025520U Expired JPS5913317Y2 (en) | 1980-02-27 | 1980-02-27 | Air-fuel ratio feedback control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5913317Y2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5021137A (en) * | 1973-06-28 | 1975-03-06 | ||
JPS5154127A (en) * | 1974-11-06 | 1976-05-13 | Nissan Motor | Kunenhifuiidobatsukuseigyosochi |
-
1980
- 1980-02-27 JP JP1980025520U patent/JPS5913317Y2/en not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5021137A (en) * | 1973-06-28 | 1975-03-06 | ||
JPS5154127A (en) * | 1974-11-06 | 1976-05-13 | Nissan Motor | Kunenhifuiidobatsukuseigyosochi |
Also Published As
Publication number | Publication date |
---|---|
JPS55142638U (en) | 1980-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6311679B1 (en) | System and method of controlling air-charge in direct injection lean-burn engines | |
JP2855971B2 (en) | Air-fuel ratio sensor | |
JPH032688Y2 (en) | ||
JPH06100124B2 (en) | Air-fuel ratio controller for alcohol internal combustion engine | |
US4121554A (en) | Air-fuel ratio feedback control system | |
JPS6354133B2 (en) | ||
JPS5917259B2 (en) | Air fuel ratio control device | |
JPH06200842A (en) | Method and apparatus for controlling engine idle speed | |
JPH0146697B2 (en) | ||
JPH0135170B2 (en) | ||
JPS5913317Y2 (en) | Air-fuel ratio feedback control device | |
JP2671146B2 (en) | Idle speed control device | |
US4391256A (en) | Air-fuel ratio control apparatus | |
JPS63285239A (en) | Transient air-fuel ratio learning control device in internal combustion engine | |
JP2509183B2 (en) | Method for controlling the idling speed of an internal combustion engine | |
USRE29741E (en) | Air-fuel ratio feed back type fuel injection control system | |
JPS6321343A (en) | Engine speed control device for internal combustion engine | |
JPH0480653A (en) | Correction of output of air/fuel ratio sensor | |
JPS6232241A (en) | Electronic internal combustion engine controller | |
JPS638293B2 (en) | ||
JPS6233092Y2 (en) | ||
JPH01147139A (en) | Air-fuel ratio detector for internal combustion engine | |
JPS63295832A (en) | Air-fuel ratio control device for electronically controlled fuel-injection internal combustion engine | |
JPS587815B2 (en) | kuunenpikikanshikinenriyoufunshiyaseigiyosouchi | |
JPS638826Y2 (en) |