JPS59132311A - Optical scale - Google Patents
Optical scaleInfo
- Publication number
- JPS59132311A JPS59132311A JP717283A JP717283A JPS59132311A JP S59132311 A JPS59132311 A JP S59132311A JP 717283 A JP717283 A JP 717283A JP 717283 A JP717283 A JP 717283A JP S59132311 A JPS59132311 A JP S59132311A
- Authority
- JP
- Japan
- Prior art keywords
- scale
- optical
- light source
- beams
- grating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 38
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 3
- 230000001427 coherent effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/36—Forming the light into pulses
- G01D5/38—Forming the light into pulses by diffraction gratings
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optical Transform (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、精密測長の目的で、光源と、一定の格子常数
を持った光学格子から成るスケールと、上記光源から出
る元を上記スケールに投射する光学系と、上記スケール
と同じ格子常数を持った光学格子から成り、上記スケー
ルに対し微/」・1′&l」隔をおいて、双方の光学格
子のパターンが完全に平行か、または僅かに傾いている
ように設けられているインデックス・スケールと、上記
スケールおよび上記インデックス・スケールの双方を透
過したう0を検出する検出器とを含み、上記スケールの
移動に伴って移動するモアレ縞を検出し、光電変換して
、上記スケールの位置信号を得る光学スケールに関する
。[Detailed Description of the Invention] Industrial Application Field The present invention provides a light source, a scale comprising an optical grating having a constant lattice constant, and a source emitted from the light source that is projected onto the scale for the purpose of precision length measurement. and an optical grating having the same lattice constant as the above scale, and the patterns of both optical gratings are completely parallel or slightly spaced apart from the above scale by a minute distance of /''・1'&l''. includes an index scale provided so as to be tilted at The present invention relates to an optical scale that detects and performs photoelectric conversion to obtain a position signal of the scale.
背景技術とその問題点
このような光学スケールは既に広く実用されている。第
1図はこのような従来の光学スケ−/lz (7)主要
部分の斜視図で、図中lは光源、2は光源から出ろ元を
平行光線としてスケールに投射するためのレンズ、3は
一定の格子常数7持った光学格子から成るスケール、4
は上記スケールと同じ格子常数を持つ1こツ0学格子か
ら成り、上記スケールに対し微小間隔暑おいて、双方の
光学格子のパターンが完全に平行か、または価かに傾い
ているように設けられているインデックス・スケールで
、スケール3の移動方向を域別するために、インデック
ス・スケール4は互にl/4波長だけずらされた二つの
yC学格子を持っている。5および5′は上記二つの光
学格子のそれぞれを透過した元を検出するための検出器
、6は上記スケール3の移動刃IoI乞示す矢印である
。高分解能のスケールを構成するには格子常数の不さい
光学格子を用いることが有利であるが、格子常数ン4・
さくする程モアレ縞の明暗のコントラストが落ち、光源
として白熱電球、L、ED(発光ダイオード)ン用いて
4ミクロン程度が実用の限度とされ、8ミクロンかまた
はそれより大きいものが実際に用いられている。BACKGROUND ART AND PROBLEMS Such optical scales are already in widespread use. Figure 1 is a perspective view of the main parts of such a conventional optical scale/lz (7). In the figure, l is a light source, 2 is a lens for projecting parallel light from the light source onto the scale, and 3 is a lens for projecting parallel light onto the scale. A scale consisting of an optical grating with a constant lattice constant 7, 4
The optical grating consists of a single optical grating having the same lattice constant as the above-mentioned scale, and is arranged so that the patterns of both optical gratings are completely parallel to each other or are tilted at a very small distance from the above-mentioned scale. In order to differentiate the direction of movement of the scale 3, the index scale 4 has two yC gratings that are offset from each other by 1/4 wavelength. 5 and 5' are detectors for detecting the source transmitted through each of the two optical gratings, and 6 is an arrow indicating the movable blade IoI of the scale 3. It is advantageous to use an optical grating with a low lattice constant to construct a high-resolution scale, but the lattice constant is 4.
As the light source becomes smaller, the contrast between the brightness and darkness of the moiré fringes decreases, and when using an incandescent lamp, L, or ED (light emitting diode) as a light source, the practical limit is about 4 microns, and 8 microns or larger is actually used. ing.
発明の目的
本発明の目的は、上述の点に鑑み、モアレ縞の明暗のコ
ントラストン低下させることなく、小さな格子常数を有
する光学格子の光学格子の使用が可能で、高い分解能7
有する、冒頭に述づた種類の光学スケール乞提供するこ
とである。OBJECTS OF THE INVENTION In view of the above-mentioned points, an object of the present invention is to enable the use of an optical grating having a small lattice constant without deteriorating the contrast between brightness and darkness of Moiré fringes, and to achieve high resolution 7.
An object of the present invention is to provide an optical scale of the kind mentioned at the outset.
発明の概要
上記目的乞達成するKめに、本発明による光学スケール
は、光源がレーザ光源であり、該レーザ光源から出る元
ビームが回折格子によって複数個のビームに分割され、
それらのビームがスケールに投射されることを侵旨とす
る。SUMMARY OF THE INVENTION To achieve the above object, an optical scale according to the present invention includes a light source that is a laser light source, an original beam emitted from the laser light source that is split into a plurality of beams by a diffraction grating,
It is assumed that these beams are projected onto the scale.
レーザは狭い領域にエネルギーを高密度集めることがで
きろ0とと、可干渉性7有するため、モアレ縞を作る光
学系の光源として有効である。Lasers are effective as light sources for optical systems that create Moiré fringes because they can concentrate energy in a narrow area with high density and have coherence.
以下に、図面を参照しながら、実施例を用いて本発明を
一層詳細に説明するが、それらは例示に過ぎず、・本発
明の枠馨越えることなしにいろいろな変形や改良があり
得ることは勿論である。Hereinafter, the present invention will be explained in more detail using examples with reference to the drawings, but these are merely illustrative, and it is understood that various modifications and improvements may be made without going beyond the scope of the present invention. Of course.
実施例
第2図は本発明の一実施の態様による光学スケールを図
式市に示す構成図で、図中第1図と共通する引用番号は
第1図におけるものと同じ部分7衣わ丁〇
レーザ発振管また準レーザ・イイオーードからなる光源
lから出てユリメータ・レンズ2を通過したビームは先
ず回折格子7を通って複数個のビームに分けられ、スケ
ール3に入射させられる。回折格子7に可干渉性の九が
入射丁れば、通常回折されて0次、土1次、±2次・・
・と多くの光束に分かれる。しかしながら、位相型格子
によって大部分の光量70次、士1次の3ビームに限定
jlcとができるので、モアレ光学系として効率のよい
光源となる。Embodiment FIG. 2 is a schematic diagram showing the configuration of an optical scale according to an embodiment of the present invention, and the reference numbers common to FIG. 1 refer to the same parts as in FIG. 1. A beam emitted from a light source 1 consisting of an oscillator tube or a quasi-laser iode and passing through a uremeter lens 2 is first divided into a plurality of beams through a diffraction grating 7 and made incident on a scale 3. If a coherent beam is incident on the diffraction grating 7, it will normally be diffracted into the 0th order, the 1st order, the ±2nd order, etc.
・It is divided into many luminous fluxes. However, since the phase grating allows most of the light quantity to be limited to three beams, the 70th order and the 1st order, it becomes an efficient light source as a moiré optical system.
第3図(b)および、(C)は本発明による光学スケー
ルで使用される二つの異なった態様のインデックス・ス
ケールの光学格子の正面図、第3図(aハエ第3図(b
)および(cl VC7rX丁格子に対応する位置にあ
るスケールノ光学格子の正面図である。インデックス・
スケール4は、第3図(b)および(C)に示すように
、三つの部分に分けられ、それらの格子常数は第3因(
a)に示す格子のそれと同じであるが、格子の位置は格
子常数なWとして、第3図(a)に示す格子に対してO
9τ、iだげ異なっている。そして三つに分けられたレ
ーザ・ビームはインデックス−スケール4の各部分にそ
れぞれ入射するようにし、両方のスケールな透過したビ
ームは3個のフォトダイオードからなる検出器5. 5
’、 5″で受けられる。3(b) and (C) are front views of two different embodiments of index scale optical gratings used in the optical scale according to the present invention; FIG.
) and (cl) are front views of scale optical gratings at positions corresponding to the VC7r
Scale 4 is divided into three parts, as shown in Figure 3(b) and (C), and their lattice constants are expressed by the third factor (
The lattice position is the same as that of the lattice shown in Figure 3(a), but the position of the lattice is set to W, which is the lattice constant, and O with respect to the lattice shown in Figure 3(a).
9τ, differs by i. The three divided laser beams are made incident on each part of the index-scale 4, and the beams transmitted from both scales are sent to a detector 5, which consists of three photodiodes. 5
', 5'' can be accepted.
インデックス・スケールは三つの部分に分けられなくて
も、第4図に示すように、一つの部分のものであっても
よい。平行線の群8で示す格子常数WV有するパターン
のスケール3に対して平行線の群9で示すインデックス
・スケール4のパターンを小さな角θだけ傾けると、
薯
で表わされる幅Wのモアレ縞が現われる。そこで、前記
三つのビーム乞10.11.12で示すモアレfi4の
ww ’
明暗の位相Os 4 p Z Vc相当する部分に
入射させ、透過光が3個の検出器で受けられる。The index scale does not have to be divided into three parts, but can be of one part, as shown in FIG. When the pattern of index scale 4, shown by group 9 of parallel lines, is tilted by a small angle θ with respect to scale 3 of the pattern with lattice constant WV, shown by group 8 of parallel lines, moiré fringes with width W, represented by yam, appear. . Therefore, the three beams are made incident on a portion corresponding to the light and dark phase Os 4 p Z Vc of the moiré fi4 shown in 10.11.12, and the transmitted light is received by three detectors.
スケールによる回折ビームも生ずるから、インデツクス
eスケール、フォトダイオードによる検出器の数を3を
超える数に増してもよい。これらの位相を異にした充電
出力から位相信号に変換する方法は、例えば特公昭47
−49621号に記載されており、本発明の対象ではな
いから、ここでは述べない。Since a beam diffracted by the scale also occurs, the number of index e-scale, photodiode detectors may be increased to more than three. A method of converting charging outputs with different phases into phase signals is described, for example, in the Japanese Patent Publication No. 47
49621, and is not subject to the present invention, so it will not be described here.
発明の詳細
な説明した通り、本発明によれはモアレ縞の明暗のコン
トラストを低下させることなく、小さな格子常数を有す
る光学格子の光学格子の使用が可能となり、陥い分解能
r有する光学スケールを得ることができる。As described in detail, the present invention enables the use of an optical grating having a small lattice constant without reducing the contrast between bright and dark moiré fringes, thereby obtaining an optical scale with a depth resolution r. be able to.
第1図は従来の光学スケールの主要部分の斜視図、第2
図は本発明の一実施の態様による光学スケール7図式的
に示す構成図、第3図(aJは第3図(b)および(C
)に示す格子に対応する位置にあるスケールの光学格子
の正面図、第3図(b)および(Clは本発明による光
字スケールで使用される二つの異なった態様のインデッ
クスナスケールの光学格子の特開昭59−132311
(3)
正面図、第4図は本発明の他の一つの実施の態様による
スケールの光学格子、インデックス・スケールの光学格
子、および入射光ビームの位置の関係7示すダイヤグラ
ムである。
■・・・i源、2・・・レンズ、3・・・スケール、4
・・・インデックスQスケール、5. 5’、 5“
・−・検出器、6・・・スケールの移動力向を衣わ丁矢
印、7・・・回折格子、8・・−スケールのパターンソ
衣わ丁子行線の群、9・・・インデックス−スケールの
パターンwR:bj平行線の群、10.1]、 12・
・・元ビームの入射位置ン示す円。
特 許 出 願 人 ソニーマグネスケール株式会社
乍2図
稟3図
(0)Figure 1 is a perspective view of the main parts of a conventional optical scale, Figure 2 is a perspective view of the main parts of a conventional optical scale.
FIG. 3 is a block diagram schematically showing an optical scale 7 according to an embodiment of the present invention.
Figure 3(b) and (Cl are two different embodiments of the optical grating of the indexer scale used in the optical scale according to the invention); Japanese Patent Publication No. 59-132311
(3) The front view and FIG. 4 are diagrams showing the relationship 7 among the positions of the scale optical grating, the index scale optical grating, and the incident light beam according to another embodiment of the present invention. ■...i source, 2...lens, 3...scale, 4
...Index Q scale, 5. 5', 5"
- Detector, 6... Arrow indicating the direction of the moving force of the scale, 7... Diffraction grating, 8... - Group of rows of lines indicating the pattern of the scale, 9... Index - Scale pattern wR: bj group of parallel lines, 10.1], 12.
...Circle indicating the incident position of the original beam. Patent applicant: Sony Magnescale Co., Ltd. Figure 2, Figure 3 (0)
Claims (1)
ールと、上記光源から出る元を上記スケールに投射する
光学系と、上記スケールと同じ格子常数を持った光学格
子から成り、上記スケールに対し倣ノ」1間隔をおいて
、双方の光学格子のパターンが完全に平行か、または僅
かに傾いているように設けられているインデックス・ス
ケールと、上記スケールおよび上記インデックス・スケ
ールの双方を透過した元を検出する検出器とを含み、上
記スケールの移動に伴なって移動するモアレを検出し、
光電変換して、上記スケールの位置信号を得る光学スケ
ールにおいて、上記光源がレーザ光源であり、該レーザ
光源から出る元ビームが回折格子によって複数個のビー
ムに分割され、それらのビームが上記スケールに投射さ
れることを特徴とする光学スケール。It consists of a light source, a scale consisting of an optical grating with a constant lattice constant, an optical system that projects an element emitted from the light source onto the scale, and an optical grating with the same lattice constant as the scale. An index scale is provided with an interval of "1" so that the patterns of both optical gratings are completely parallel or slightly inclined, and an index scale that transmits through both the above scale and the above index scale. a detector that detects the original, and detects moiré that moves as the scale moves;
In an optical scale that performs photoelectric conversion to obtain a position signal of the scale, the light source is a laser light source, and the original beam emitted from the laser light source is split into a plurality of beams by a diffraction grating, and these beams are transmitted to the scale. An optical scale characterized by projection.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP717283A JPS59132311A (en) | 1983-01-18 | 1983-01-18 | Optical scale |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP717283A JPS59132311A (en) | 1983-01-18 | 1983-01-18 | Optical scale |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59132311A true JPS59132311A (en) | 1984-07-30 |
Family
ID=11658658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP717283A Pending JPS59132311A (en) | 1983-01-18 | 1983-01-18 | Optical scale |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59132311A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS633221A (en) * | 1986-06-23 | 1988-01-08 | Sharp Corp | Photoelectric rotary encoder |
JPS63172905A (en) * | 1987-01-13 | 1988-07-16 | Nippon Telegr & Teleph Corp <Ntt> | Method and device for separating diffracted light |
EP0747674A2 (en) * | 1995-06-10 | 1996-12-11 | Dr. Johannes Heidenhain GmbH | Photo-electric position measuring device |
JP2013134211A (en) * | 2011-12-27 | 2013-07-08 | Ono Sokki Co Ltd | Optical encoder |
JP2013190432A (en) * | 2005-03-30 | 2013-09-26 | Nanomotion Ltd | Platform transport systems |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4965851A (en) * | 1972-08-21 | 1974-06-26 | ||
JPS57111509A (en) * | 1980-12-29 | 1982-07-12 | Nippon Telegr & Teleph Corp <Ntt> | Fine space positioning device of information retrieval device |
JPS57190215A (en) * | 1981-05-20 | 1982-11-22 | Toshiba Corp | Optical displacement detecting system |
-
1983
- 1983-01-18 JP JP717283A patent/JPS59132311A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4965851A (en) * | 1972-08-21 | 1974-06-26 | ||
JPS57111509A (en) * | 1980-12-29 | 1982-07-12 | Nippon Telegr & Teleph Corp <Ntt> | Fine space positioning device of information retrieval device |
JPS57190215A (en) * | 1981-05-20 | 1982-11-22 | Toshiba Corp | Optical displacement detecting system |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS633221A (en) * | 1986-06-23 | 1988-01-08 | Sharp Corp | Photoelectric rotary encoder |
JPH0478931B2 (en) * | 1986-06-23 | 1992-12-14 | Sharp Kk | |
JPS63172905A (en) * | 1987-01-13 | 1988-07-16 | Nippon Telegr & Teleph Corp <Ntt> | Method and device for separating diffracted light |
EP0747674A2 (en) * | 1995-06-10 | 1996-12-11 | Dr. Johannes Heidenhain GmbH | Photo-electric position measuring device |
EP0747674A3 (en) * | 1995-06-10 | 1998-08-26 | Dr. Johannes Heidenhain GmbH | Photo-electric position measuring device |
JP2013190432A (en) * | 2005-03-30 | 2013-09-26 | Nanomotion Ltd | Platform transport systems |
JP2013134211A (en) * | 2011-12-27 | 2013-07-08 | Ono Sokki Co Ltd | Optical encoder |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4970388A (en) | Encoder with diffraction grating and multiply diffracted light | |
US4091281A (en) | Light modulation system | |
US6552809B1 (en) | Position encoding optical device and method | |
CN87100831A (en) | A kind of device that is used to aim at the method for the first and second object relevant positions and realizes this method | |
GB2186362A (en) | Reference position detecting device and encoder having said device | |
JPH02231525A (en) | Encoder | |
US5424833A (en) | Interferential linear and angular displacement apparatus having scanning and scale grating respectively greater than and less than the source wavelength | |
JPH07119854B2 (en) | Light beam entrance / exit device with integrated optical element | |
JPH048724B2 (en) | ||
EP0458354A2 (en) | A compact reticle/wafer alignment system | |
JP2764373B2 (en) | Multi-coordinate measuring device | |
JPS59132311A (en) | Optical scale | |
JPH06174424A (en) | Length measuring and angle measuring device | |
SU1404809A1 (en) | Optical method of measuring linear displacements | |
JP3808192B2 (en) | Movement amount measuring apparatus and movement amount measuring method | |
JPH0617045Y2 (en) | Optical displacement detector | |
JPH01176914A (en) | Laser interference type encoder | |
JPH0749215A (en) | Photoelectric length or angle measuring device | |
JPH05647B2 (en) | ||
JPH03115920A (en) | Zero-point position detector | |
JPH0638048B2 (en) | Reflective encoder | |
JPH04136716A (en) | Optical type encoder | |
JPH0529851B2 (en) | ||
JPH0444211B2 (en) | ||
JP2619555B2 (en) | Parallel light measuring device |