JPS59139616A - Manufacture of magnetic thin film - Google Patents
Manufacture of magnetic thin filmInfo
- Publication number
- JPS59139616A JPS59139616A JP1395383A JP1395383A JPS59139616A JP S59139616 A JPS59139616 A JP S59139616A JP 1395383 A JP1395383 A JP 1395383A JP 1395383 A JP1395383 A JP 1395383A JP S59139616 A JPS59139616 A JP S59139616A
- Authority
- JP
- Japan
- Prior art keywords
- film
- gas pressure
- argon gas
- torr
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/14—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
- H01F41/18—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physical Vapour Deposition (AREA)
- Thin Magnetic Films (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は磁性薄膜の製造方法に係り、特にマグネトロン
スパッタ法により保磁力の小さい磁性薄膜を製造する方
法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method of manufacturing a magnetic thin film, and particularly to a method of manufacturing a magnetic thin film with a low coercive force by magnetron sputtering.
第1図に、薄膜磁気ヘッドの一種である磁気抵抗効果型
磁気ヘッドの媒体対向面近傍の構造を示すO
磁気抵抗効果型磁気ヘッドは、一般に、セラミック基板
1上にスパッタ法などの薄膜形成技術を用いて、膜厚1
μm以上の磁性膜である下部シールド膜2、膜厚500
A以下の磁性膜である磁気抵抗膜3、導体膜4、膜厚1
μm以上の磁性膜である上部シールド膜5を積層して形
成される。FIG. 1 shows the structure near the medium facing surface of a magnetoresistive magnetic head, which is a type of thin film magnetic head.A magnetoresistive magnetic head is generally manufactured using a thin film forming technique such as sputtering on a ceramic substrate 1. The film thickness is 1 using
Lower shield film 2, which is a magnetic film of μm or more, film thickness 500
Magnetoresistive film 3 which is a magnetic film of A or less, conductor film 4, film thickness 1
It is formed by laminating the upper shield film 5, which is a magnetic film of μm or more.
下部シールド膜2と磁気抵抗膜3、磁気抵抗膜3と上部
シールド膜50間には、それぞれギャップを形成するた
めの絶縁膜6,7が形成されている。Insulating films 6 and 7 are formed between the lower shield film 2 and the magnetoresistive film 3, and between the magnetoresistive film 3 and the upper shield film 50, respectively, for forming gaps.
このような薄膜磁気ヘッドの特性は、磁場中蒸着あるい
はスパッタ法により形成されるパーマロイよりなる前記
磁性膜2.3.5の磁気特性に著しく左右される。磁性
薄膜の磁気特性をもつとも端的に表す量は保磁力である
が、良好なヘッド特性を得るためには、シールド膜(磁
性膜)2,5の磁化容易軸方向の保磁力を少なくとも1
.QO’e以下に、磁気抵抗膜3の容易軸方向の保磁力
を2.56′e 以下に抑えなければならない。The characteristics of such a thin film magnetic head are significantly influenced by the magnetic characteristics of the magnetic film 2.3.5 made of permalloy formed by evaporation in a magnetic field or sputtering method. The coercive force is the quantity that directly represents the magnetic properties of a magnetic thin film, but in order to obtain good head characteristics, the coercive force in the axis of easy magnetization of the shield films (magnetic films) 2 and 5 must be at least 1
.. The coercive force in the easy axis direction of the magnetoresistive film 3 must be kept below 2.56'e so that the QO'e is below.
パーマロイ膜をスパッタ法で形成する場合、保磁力に影
響なおよぼす因子としてアルゴンガス圧力があり、保磁
力を小さくするためには、アルゴンガス圧力を装置の能
力範囲内でなるべく低くする方が望ましい。これは、ス
パッタ中に膜中に吸蔵される活性な不純物ガス(例えば
酸素)の量が゛rルゴンガス圧の減少に伴って少なくな
るため、不純物ガスによる磁気特性の劣化が防止される
がらである。When forming a permalloy film by sputtering, argon gas pressure is a factor that affects coercive force, and in order to reduce coercive force, it is desirable to lower the argon gas pressure as much as possible within the capability of the apparatus. This is because the amount of active impurity gas (for example, oxygen) occluded in the film during sputtering decreases as the argon gas pressure decreases, so deterioration of magnetic properties due to impurity gas is prevented. .
ところで、通常の2極スパツタ装置では、1×10−”
Torr 以上のアルゴンガス圧力下でないと安定し
て放電が持続しないため、油拡散ポンプがダウンしない
ように主弁をほとんど閉じて排気速度が小さい状態で使
用しなければならず、残留ガス(酸素等の活性な不純物
ガス)による保磁力の増大か避けられない。すなわち、
1μm以上の膜の保磁力は通常1.0−、s、oooe
となり、このような高保磁力の膜は薄膜磁気ヘッド用磁
性膜として使用することはできない。By the way, in a normal two-pole sputtering device, 1×10-”
Since the discharge cannot be sustained stably unless the argon gas pressure is over Torr, the main valve must be mostly closed and the pumping speed must be kept low to prevent the oil diffusion pump from going down. An increase in coercive force due to active impurity gas (active impurity gas) is unavoidable. That is,
The coercive force of a film of 1 μm or more is usually 1.0-, s, oooo
Therefore, such a film with high coercive force cannot be used as a magnetic film for a thin film magnetic head.
このようなtf6Mを解決するため、2極スパツタ装置
において基板にバイアス電圧を印加し、基板表面をスパ
ッタエッチしながらスパッタを行う方法も知られている
が、この方法は膜厚が不均一になりやすく、特に、基板
周辺部の膜厚が極端に薄くなりやすいという大きな欠点
があるため、現在のところ実用化されるに至っていない
。In order to solve such tf6M, a method is known in which a bias voltage is applied to the substrate in a two-pole sputtering device and sputtering is performed while sputter-etching the substrate surface, but this method results in non-uniform film thickness. However, it has not been put into practical use at present because it has the major drawback that the film thickness tends to be extremely thin, particularly in the peripheral area of the substrate.
2極スパツタのようような欠点を除去し、1×10 ’
Torr μ下の低アルゴンガス圧下でもスパッタでき
る方法としては、イオンビームスパッタ法、3極あるい
は4極スパツタ法が知られている。Remove defects such as 2-pole spatter, 1 x 10'
Ion beam sputtering, three-pole sputtering, or four-pole sputtering are known as methods that can perform sputtering even under low argon gas pressure under Torr μ.
このウチ、イオンビームスパッタ法は、ターゲットにイ
オンビームを照射してスパッタを行う方法であり、(1
)プラズマフリーの状態で膜を形成できるため、膜形成
中の基板表面温度を低く抑えることができる、(2)膜
形成条件の精密な制御が可能などの特徴を有するため、
スパッタ現象の解明や分析装置において大きな役割を果
してきた。しかしながら、大電流イオン源の開発が困難
なため膜形成速度が遅く、膜形成への応用はプラズマス
パッタ法に比べて著しく遅れている。The ion beam sputtering method is a method in which sputtering is performed by irradiating a target with an ion beam.
) Since the film can be formed in a plasma-free state, the substrate surface temperature during film formation can be kept low; and (2) the film formation conditions can be precisely controlled.
It has played a major role in elucidating sputtering phenomena and in analytical equipment. However, because it is difficult to develop a high-current ion source, the film formation rate is slow, and its application to film formation is significantly delayed compared to plasma sputtering.
一方、プラズマ生成用電子供給源として熱電子放出用の
第3電極を付加した3極あるいは4極スパツタ法は、α
)フィラメントの寿命が短いため、装置の連続運転の障
害となる、?)フィラメントがら出る不純物が膜中に混
入し、膜の特性を変化させるという問題があり、今日で
はほとんど採用されていない。On the other hand, the three-pole or four-pole sputtering method, in which a third electrode for thermionic emission is added as an electron supply source for plasma generation, uses α
) Due to the short life of the filament, it becomes an obstacle to continuous operation of the device. ) There is a problem that impurities from the filament get mixed into the film and change the properties of the film, so it is hardly used today.
マグネトロンスパッタ法は、ターゲット表面に平行な磁
界を印加することによりターゲットがら放出される高速
電子を偏向させ、基板衝突による基板加熱などの悪影響
を抑制すると同時に、アルゴンガスのイオン化に積極的
に利用する。そのため、5×lOTorr 程!の低
アルゴンガス圧下でも、ホトレジストなどの有機絶縁膜
上に高速で膜を形成することができ、薄膜磁気ヘッド用
磁性膜形成方法としでもっとも適した方法といえる。The magnetron sputtering method deflects high-speed electrons emitted from the target by applying a magnetic field parallel to the target surface, suppressing adverse effects such as substrate heating due to substrate collision, and actively using it to ionize argon gas. . Therefore, about 5×lOTorr! It is possible to form a film on an organic insulating film such as a photoresist at high speed even under a low argon gas pressure of 200 mL, making it the most suitable method for forming a magnetic film for a thin-film magnetic head.
しかしながら、発明者等が行った実験によると、通常の
マグネトロンスパッタ法で放電が持続する限界であるI
X 10 ’Torr のアルゴンガス圧下でスパ
ッタを行っても、膜厚1μm以上のパーマ四イ・膜の保
磁力は0.3〜1.2 ′013 の範囲で変動し、保
磁力を常に薄膜磁気ヘッド用磁性膜の実用的限界値であ
る1、0”Oe以下にすることは困難であることが判明
した。However, according to experiments conducted by the inventors, I
Even when sputtering is performed under an argon gas pressure of It has been found that it is difficult to reduce the magnetic film to 1.0" Oe or less, which is the practical limit value for magnetic films for heads.
本発明の目的は、上記の如き従来の欠点を改善するため
、I X 10−’Torr 以下のアルゴンガス圧
下でマグネト四ンスバッタを行うことにより、1.0エ
ルステツド以下の保磁力を有する磁性膜を再現性よく得
ることのできる磁性薄膜の製造方法を提供することにあ
る。The purpose of the present invention is to improve the above-mentioned conventional drawbacks by producing a magnetic film having a coercive force of 1.0 oersted or less by performing magneto 4 sputtering under an argon gas pressure of I x 10-'Torr or less. An object of the present invention is to provide a method for manufacturing a magnetic thin film that can be obtained with good reproducibility.
上記目的を達成するため、本発明は、マグネトロンスパ
ッタ法により磁性膜を形成する際ニ、IX 10 ’T
orr 以上のアルゴンガス圧下で放電を開始し、そ
の後前記アルゴンガス圧をlXl0−8’l’orr
以下にして放電を持続させることを特徴とする0
〔発明の実施例〕
以下、本発明の一実施例を第2〜6図を参照して説明す
る。In order to achieve the above object, the present invention provides a method for forming a magnetic film by magnetron sputtering.
Discharge is started under an argon gas pressure of orr or more, and then the argon gas pressure is increased to lXl0-8'l'orr.
Embodiment of the Invention Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 2 to 6.
第2図は本実施例に用いるマグネトロン型スパッタリン
グ装置の概略図、第3図は、第1図に示すような磁気抵
抗効果型薄膜磁気ヘッド用シールド膜(パーマロイ膜)
2,5を第2図に示したマグネトロン型スパッタリング
装置により形成した時のペルジャー8内ガス圧力の経時
変化を示す。Fig. 2 is a schematic diagram of the magnetron type sputtering device used in this example, and Fig. 3 is a shield film (permalloy film) for a magnetoresistive thin film magnetic head as shown in Fig. 1.
The graph shows the change over time in the gas pressure inside the Pelger 8 when Nos. 2 and 5 were formed using the magnetron type sputtering apparatus shown in FIG. 2.
磁性膜2.5を形成するには、まず洗浄済の基板15を
ペルジャー(真空槽)8内の所定の場所に設置し、拡散
ポンプ10によりI X 10 ’Torrまで排気す
る。その後、基板15をヒルター16により350°C
まで加熱して、トラップ12により残留ガスを排出し、
ペルジャー8内のガス圧がlXl0 Torr に
達した時点で基板15の温度を300°Cまで降下させ
、ペルジャー8内のガス圧がI X 10−8Torr
以上(本実施例においては第3図に示したように5
X I Q−8Torr )になるJ:つに:、7o
−メータ18を監視しつつアルゴンガスをガス導入口1
1から導入する(T工)。To form the magnetic film 2.5, first, a cleaned substrate 15 is placed in a predetermined location in a Pelger (vacuum chamber) 8, and the vacuum is evacuated to I.times.10' Torr using a diffusion pump 10. Thereafter, the substrate 15 was heated to 350°C using a Hilter 16.
the remaining gas is exhausted by the trap 12,
When the gas pressure inside the Pelger 8 reaches lXl0 Torr, the temperature of the substrate 15 is lowered to 300°C, and the gas pressure inside the Pelger 8 reaches IX10-8 Torr.
The above (in this example, 5 as shown in Fig. 3)
X I Q-8Torr) becomes J: Tsuni:, 7o
- Inject argon gas into gas inlet 1 while monitoring meter 18
Install from 1 (T-engineering).
次に、ターゲット14表面を清浄化するため基板15表
面に膜が被着しないようにシャッター17を閉じたまま
でブリスパッタを行う。従来は第3図に破線aで示した
ように、プリスパッタ後も同じアルゴンガス圧力下で放
電を持続させたまま、コイル13により基板15の表面
にl OOOe の磁場を印加しながらシャッター1
7を開いて本スパッタに移行していた。本実施例におい
ては、第2図に実線すで示すように、シャッター17を
開く前に、放電を持続させたままニードルバルブ19を
操作してアルゴンガス圧を減少させ、lXl0”To
(r 以下(本実施例においては第3図に示したように
2X10 Torr)の圧力下で基板15表面にコイ
ル13よりl OO6’e の磁場を印加しながらシ
ャッター17を開いて本スパッタを開始しくT、)、膜
厚1μmのパーマロイ膜を形成した。Next, in order to clean the surface of the target 14, bliss sputtering is performed with the shutter 17 kept closed so as not to deposit a film on the surface of the substrate 15. Conventionally, as shown by the broken line a in FIG. 3, the shutter 1 is applied while applying a magnetic field of l OOOe to the surface of the substrate 15 by the coil 13 while continuing the discharge under the same argon gas pressure after pre-sputtering.
7 and moved on to main sputtering. In this embodiment, as shown by the solid line in FIG. 2, before opening the shutter 17, the needle valve 19 is operated while the discharge is maintained to reduce the argon gas pressure.
The main sputtering is started by opening the shutter 17 while applying a magnetic field of l OO6'e from the coil 13 to the surface of the substrate 15 under a pressure of (r or less (in this example, 2X10 Torr as shown in FIG. 3)). A permalloy film with a thickness of 1 μm was formed.
本スパッタ終了後(T、)は、ペルジャーδ内を排気し
ながら、基板15の冷却を行い、基板温度が50°C以
下になった時点でペルジャー8外へ取出した。After the main sputtering (T,), the substrate 15 was cooled while exhausting the inside of the Pelger δ, and when the substrate temperature became 50° C. or lower, it was taken out of the Pelger 8.
なお、本実施例のように放電しやすいアルゴンガス圧下
(l X I O’Torr以上)で一旦放電を起こさ
せれば、その後アルゴンガス圧を低下させても、放電は
持続することが判明した。It has been found that once the discharge is caused under the argon gas pressure (l X I O'Torr or higher) where discharge is likely to occur as in this example, the discharge continues even if the argon gas pressure is subsequently lowered.
第4図は、81 Ni −19Feパーマロイ薄膜を形
成する際の本スパッタ中のアルゴンガス圧力と、形成さ
れた当該薄膜の容易軸保磁力との関係を示す。第4図中
aは従来のアルゴンガス圧力下で、bは本実施例のアル
ゴンガス圧力下で形成したパーマロイ膜の特性を示す。FIG. 4 shows the relationship between the argon gas pressure during main sputtering when forming an 81 Ni-19Fe permalloy thin film and the easy axis coercive force of the formed thin film. In FIG. 4, a shows the characteristics of the permalloy film formed under the conventional argon gas pressure, and b shows the characteristics of the permalloy film formed under the argon gas pressure of this embodiment.
第4図より、本実施例の如< 、l X 10 To
rr以下のアルゴンガス圧下で形成したパーマロイ薄膜
の容易軸保磁力は小さく、基板間の特性のバラツキ幅C
を考慮しても常に1.0″O゛θ以下になること、また
バラツキ幅Cが小さいことがわかる。一方、従来のよう
に、IX 10 ”Torr 以上のアルゴンガス圧下
で形成したパーマロイ薄膜の容易軸保磁力は大きく、基
板間のバラツキ幅dも大きいため、すべての膜の保磁力
を1.0’Oe以下に抑えることは困難であることがわ
かる。From FIG. 4, it can be seen that in this example,
The easy axis coercive force of permalloy thin films formed under argon gas pressure below rr is small, and the width of variation in properties between substrates C
It can be seen that even when considering It can be seen that it is difficult to suppress the coercive force of all films to 1.0'Oe or less because the easy axis coercive force is large and the variation width d between substrates is also large.
第す図は、算4図に示したパーマロイ膜における異方性
分散角(α90)とアルゴンガス圧力の関係を示す。第
5図中aは、従来のアルゴンガス圧力下で、bは本実施
例のアルゴンガス圧力下で形成したパーマロイ膜の異方
性分散角を示す。Figure 4 shows the relationship between the anisotropic dispersion angle (α90) and argon gas pressure in the permalloy film shown in Figure 4. In FIG. 5, a shows the anisotropic dispersion angle of the permalloy film formed under the conventional argon gas pressure, and b shows the permalloy film formed under the argon gas pressure of this embodiment.
第5図より、本実施例による方法で形成したパーマロイ
膜の異方性分散角は、従来法により形成されたパーマロ
イ膜の異方性分散角と比較して小さく、かつ基板間の異
方性分散角のバラツキ幅eも従来法によるバラツキ幅f
に比べて小さく、磁気特性の良好な磁性膜を再現性よく
得られることがわかる。From FIG. 5, the anisotropic dispersion angle of the permalloy film formed by the method according to this example is smaller than that of the permalloy film formed by the conventional method, and the anisotropic dispersion angle between the substrates is small. The dispersion angle variation width e is also the variation width f according to the conventional method.
It can be seen that a magnetic film that is smaller in size and has good magnetic properties can be obtained with good reproducibility.
第6図は、Sin、 よりなる1μmの磁気ギャップ
6.7と膜厚0.05μmのパーマロイ磁気抵抗膜3、
膜厚0.2pmのfit導体膜4、膜厚1μmのシール
ド膜2,5を備えた磁気抵抗効果型薄膜磁気ヘッドで磁
気ディスク上に記録した孤立反転磁化状態を再生した波
形の半値幅(相対値)と、前記膜厚1μmのシールド膜
2.5の容易軸保磁力との関係を示す。第6図より、容
易軸保磁力の大きさが1. O’Oe以下では再生波形
の半値幅に大差は見られないが、1.0″O′e以上で
は半値幅が増大し、シールド膜の機能が十分に発揮され
ていないことがわかる。このような半値幅の増大は、高
密度記録された情報を再生する際にヘッド出力の低下、
従ってS/N比の低下をもたらすもので好ましくないこ
とが確認された。FIG. 6 shows a 1 μm magnetic gap 6.7 made of Sin, a permalloy magnetoresistive film 3 with a film thickness of 0.05 μm,
The half-width (relative The relationship between the above-mentioned shield film 2.5 and the easy axis coercive force of the shield film 2.5 having a film thickness of 1 μm is shown. From Figure 6, the magnitude of the easy axis coercive force is 1. Below O'Oe, there is no significant difference in the half-width of the reproduced waveform, but above 1.0''O'e, the half-width increases, indicating that the shielding film is not fully functioning. An increase in half-width results in a decrease in head output when reproducing high-density recorded information,
Therefore, it was confirmed that this is not preferable because it causes a decrease in the S/N ratio.
なお、上記実施例においては、高透磁率磁性材料よりな
るシールド膜としてFe −Nt金合金パーマロイ)膜
を形成する場合について述べたが、同様の効果は高透磁
率材料として知られているFe−Ni−Mo、Fe−A
、1−8i、Fe−B、 Co−Ti。In the above embodiment, a case was described in which a Fe--Nt gold alloy (permalloy) film was formed as a shielding film made of a high-permeability magnetic material. Ni-Mo, Fe-A
, 1-8i, Fe-B, Co-Ti.
およびCo −Fe −Bなどの非晶質合金膜において
も認められることが確認された。It was also confirmed that this phenomenon was observed in amorphous alloy films such as Co-Fe-B and Co-Fe-B.
また、上記実施例においては磁気抵抗効果型薄膜磁気ヘ
ッドについて述べたが、同様の効果は誘導型薄膜磁気ヘ
ッドにおいても認められることがl認された。Further, in the above embodiments, a magnetoresistive type thin film magnetic head has been described, but it has been recognized that similar effects can also be observed in an inductive type thin film magnetic head.
このように、マグネトロン型スパッタリング装置を用い
てユ×ユQ ”Torr以下のアルゴンガス圧力下で形
成された磁性薄膜は、保磁力が常に1、 o 6e以下
であるばかりでなく分散角も小さい。As described above, a magnetic thin film formed using a magnetron type sputtering device under an argon gas pressure of less than 1.0 Torr has not only a coercive force of always less than 1.06e but also a small dispersion angle.
更に、同方法により形成された磁性膜を有する薄膜磁気
ヘッドを用いると、高密度記録された情報をもS/N比
を低下させることなく再生することができる。Furthermore, by using a thin film magnetic head having a magnetic film formed by the same method, even information recorded at high density can be reproduced without reducing the S/N ratio.
以上説明したように、本発明によれば、I XIO’T
orr 以下のアルゴンガス圧力下でマグネトロンスパ
ッタを行うことができ、保磁力の小さい磁性膜を再現性
よく製造することができ、製造歩留りを向上させること
ができる。As explained above, according to the present invention, I
Magnetron sputtering can be performed under an argon gas pressure of orr or less, a magnetic film with a small coercive force can be manufactured with good reproducibility, and the manufacturing yield can be improved.
第1図は磁気抵抗効果型薄膜磁気ヘッドの媒体対向面近
傍の構造を示す斜視図、第2図は本発明に用いるマグネ
トロン型スパッタ装置の構成概略を示す図、第3図は本
発明の一実施例における(ルジャー内ガス圧力の経時変
化を示す図、第4図はペルジャー内のアルゴンガス圧力
と該アルゴンガス圧力下で形成されるパーマ四イ薄膜の
容易軸保磁力との関係を示す図、第5図はペルジャー内
のアルゴンガス圧力と該アルゴンガス圧力下で形成され
るパーマ四イ薄膜の分散角との関係を示す図、第6図は
磁気抵抗効果型薄膜磁気ヘッドのシールド膜の容易軸保
磁力と、該ヘッドにおける再生波形の半値幅との関係を
示す図である。
a:従来法におけるアルゴンガス圧力、b:本発明にお
けるアルゴンガス圧力、T工: アルゴンガス導入時間
、T2: 本スパッタ開始時間、T8:本スパッタ終
了時間。FIG. 1 is a perspective view showing the structure of a magnetoresistive thin-film magnetic head near the medium facing surface, FIG. 2 is a diagram showing a schematic configuration of a magnetron sputtering apparatus used in the present invention, and FIG. FIG. 4 is a diagram showing the relationship between the argon gas pressure in the Pelger and the easy-axis coercive force of the permanent four-layer thin film formed under the argon gas pressure. , FIG. 5 is a diagram showing the relationship between the argon gas pressure in the Pelger and the dispersion angle of the permanent thin film formed under the argon gas pressure, and FIG. It is a diagram showing the relationship between the easy axis coercive force and the half width of the reproduced waveform in the head. a: Argon gas pressure in the conventional method, b: Argon gas pressure in the present invention, T: Argon gas introduction time, T2 : Main sputtering start time, T8: Main sputtering end time.
Claims (1)
際に、I X 1’ 0−8Torr 以上のアルゴン
ガス圧力下で放電を開始し、その後前記アルゴンガス圧
力をI X 10 ’Torr 以下にして前記放電
を持続させることを特徴とする磁性薄膜の製造方法。α) When forming a magnetic thin film by magnetron sputtering, discharge is started under an argon gas pressure of I X 1' 0-8 Torr or more, and then the discharge is started by reducing the argon gas pressure to I X 10' Torr or less. A method for producing a magnetic thin film, characterized in that it lasts.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1395383A JPS59139616A (en) | 1983-01-31 | 1983-01-31 | Manufacture of magnetic thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1395383A JPS59139616A (en) | 1983-01-31 | 1983-01-31 | Manufacture of magnetic thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59139616A true JPS59139616A (en) | 1984-08-10 |
JPH035642B2 JPH035642B2 (en) | 1991-01-28 |
Family
ID=11847569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1395383A Granted JPS59139616A (en) | 1983-01-31 | 1983-01-31 | Manufacture of magnetic thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59139616A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4684454A (en) * | 1983-05-17 | 1987-08-04 | Minnesota Mining And Manufacturing Company | Sputtering process for making magneto optic alloy |
JPS62195109A (en) * | 1986-02-21 | 1987-08-27 | Hitachi Ltd | Sputtering device |
US4950556A (en) * | 1987-10-26 | 1990-08-21 | Minnesota Mining And Manufacturing Company | Magneto-optic recording medium |
GB2390376B (en) * | 2002-05-10 | 2005-08-03 | Trikon Technologies Ltd | Shutter |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56118321A (en) * | 1980-02-22 | 1981-09-17 | Nippon Hoso Kyokai <Nhk> | Forming method for preliminary protecting film |
-
1983
- 1983-01-31 JP JP1395383A patent/JPS59139616A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56118321A (en) * | 1980-02-22 | 1981-09-17 | Nippon Hoso Kyokai <Nhk> | Forming method for preliminary protecting film |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4684454A (en) * | 1983-05-17 | 1987-08-04 | Minnesota Mining And Manufacturing Company | Sputtering process for making magneto optic alloy |
JPS62195109A (en) * | 1986-02-21 | 1987-08-27 | Hitachi Ltd | Sputtering device |
US4950556A (en) * | 1987-10-26 | 1990-08-21 | Minnesota Mining And Manufacturing Company | Magneto-optic recording medium |
GB2390376B (en) * | 2002-05-10 | 2005-08-03 | Trikon Technologies Ltd | Shutter |
US6929724B2 (en) | 2002-05-10 | 2005-08-16 | Trikon Technologies Limited | Shutter |
Also Published As
Publication number | Publication date |
---|---|
JPH035642B2 (en) | 1991-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5874010A (en) | Pole trimming technique for high data rate thin film heads | |
US5514477A (en) | Corrosion-resistant laminate which consists of a metal of a single mass number deposited on a substrate | |
US6254747B1 (en) | Magnetron sputtering source enclosed by a mirror-finished metallic cover | |
US4994320A (en) | Thin magnetic film having long term stabilized uniaxial anisotropy | |
JPH0542052B2 (en) | ||
JPS59139616A (en) | Manufacture of magnetic thin film | |
US6398924B1 (en) | Spin valve sensor with improved pinning field between nickel oxide (NiO) pinning layer and pinned layer | |
JP4309979B2 (en) | Method for manufacturing aluminum nitride film and method for manufacturing magnetic head | |
KR20200049865A (en) | High temperature volatilization of sidewall material from patterned magnetic tunnel junction | |
US5411813A (en) | Ferhgasi soft magnetic materials for inductive magnetic heads | |
JPH07110912A (en) | Magnetic head and manufacture thereof | |
JP2000273629A (en) | Formation of low resistance metallic thin film | |
JPH1036963A (en) | Sputtering device and formation of soft magnetic coating using the same | |
JPH11200032A (en) | Sputtering film forming method of insulated film | |
JPH0281409A (en) | Thin magnetic film, manufacture thereof and magnetron sputtering device | |
JP2980266B2 (en) | Sputtering apparatus for forming a laminated film of a magnetic thin film and a non-magnetic thin film | |
JPH059849B2 (en) | ||
JPS6076026A (en) | Production of vertical magnetic recording medium | |
JPH035644B2 (en) | ||
EP0522982B1 (en) | An FeGaSi-based magnetic material with Ir as an additive | |
JPS6127464B2 (en) | ||
JPS63110617A (en) | Manufacture of magnetic thin film | |
JPH0430731B2 (en) | ||
JPH0370889B2 (en) | ||
JPH07272967A (en) | Formation of magnetic thin film |