[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS59135783A - Josephson memory device - Google Patents

Josephson memory device

Info

Publication number
JPS59135783A
JPS59135783A JP58008775A JP877583A JPS59135783A JP S59135783 A JPS59135783 A JP S59135783A JP 58008775 A JP58008775 A JP 58008775A JP 877583 A JP877583 A JP 877583A JP S59135783 A JPS59135783 A JP S59135783A
Authority
JP
Japan
Prior art keywords
wiring
line
insulating film
superconductor
disposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58008775A
Other languages
Japanese (ja)
Other versions
JPS6317346B2 (en
Inventor
Hideo Suzuki
秀雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58008775A priority Critical patent/JPS59135783A/en
Publication of JPS59135783A publication Critical patent/JPS59135783A/en
Publication of JPS6317346B2 publication Critical patent/JPS6317346B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To increase density and the degree of integration while reducing inductance, and to accelerate working speed further by forming a return wire for currents in three-dimensional wiring structure arranged under a base section electrode layer while widening the wiring width of the return wire. CONSTITUTION:An insulating film OX1 is formed on a ground-plane GP, which is disposed on a substrate and consists of a superconductor, and a return wire wiring layer 31' for a bias wire consisting of a superconductor and a wiring 33' for control currents are formed on the insulating film OX1. The layer 31' and the wiring 33' are coated with an insulating film OX2, a base section electrode EB is formed, and two tunnel insulating films OXt are formed separated mutually on the electrode EB. An opposite electrode EC consisting of a superconductor is disposed on the two tunnel insulating films OXt in a cross-linking manner. A plurality of control wires 33 consisting of a superconductor are arranged on the opposite electrode EC through an insulating film. The width of the return wire 31' is windened in order to reduce its inductance.

Description

【発明の詳細な説明】 (a)  発明の技術分野 本発明はジョセフソン記憶製箔に係り、特にジョセフソ
ン・メモリセルアレイの借造に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to Josephson memory foil fabrication, and more particularly to borrowing of Josephson memory cell arrays.

(b)  従来技術と問題点 ジョフンン記憶装置に於て、メモリセルをアレイ状に配
置するに際してぼ、第1図に示すよ′)vこメモIJ 
セル(MO)のパイ’yスs(Y#)11、入方向に配
置した第1の制御線(X線i2、動作マージンを増すた
めに隣りのメモリセルアレイ中の対向するメモリセルと
は異るメモリセルへ延在され、従って該メモリセルアレ
イ間では斜め方向に延在配百さ几た第2の制御線(d線
)13、動作点を設定するだめの第3の制御線CI) 
cオフ七ソト線)14が七れぞn、直列に接続される。
(b) Prior art and problems When arranging memory cells in an array in a memory device, the problem is as shown in Figure 1.
The first control line (X-ray i2) placed in the input direction is different from the opposing memory cell in the adjacent memory cell array in order to increase the operating margin. A second control line (d line) 13 extending diagonally to the memory cells located between the memory cell arrays, and a third control line CI for setting the operating point.
c off seven soto wires) 14 are connected in series.

セしてジョセフソン素子に於ては、上記セルぞjの線に
電流を流すことによって動作するた17.) Uζそt
lぞtlの線に対するα流の戻り線が必要で、特にバイ
アス線11及び制御線工3に関して(1,1y方向の素
子列ごとに戻り線11′及び配#IA′が必要であ4)
17. The Josephson element operates by passing a current through the line of the cell j. ) Uζ sot
An α-flow return line for the tl line is required, especially for the bias line 11 and the control line 3 (return line 11' and wiring #IA' are required for each element row in the y-direction 4).
.

従来ジョセフソン・メモリ回路に於ては、・ト面配線方
式がとられており、従って第2図に示す透親子面図(イ
)及びその人−A′矢視断面図のように、上記戻り線1
1;及び配線13′は基部電極(ベース!L極)E++
と同層の電極層を用い、X方向の素子列間に平面的に配
設されていた。同図敵於てGpはグランド・ブレーノ若
しくば超伝導基板、OXI、。
Conventionally, Josephson memory circuits have adopted the -plane wiring method, and therefore the above-mentioned return line 1
1; and the wiring 13' is the base electrode (base!L pole) E++
The same electrode layer was used, and the electrode layer was arranged in a plane between the element rows in the X direction. In the same figure, Gp is a ground brain or superconducting substrate, OXI.

OX2.OX3 l−i絶縁膜、Jt、J2はジョフソ
ン接合、ECは対向電極(カウンタ電極)、を示してい
もそのため従来の構造に於て一つのメモリセルが占有す
る面積は、第2図(→に示すように、メモリセルの幅(
Ax )に戻り線11′配線13’と第2の制御線13
が配設される領域の幅(dx+)を加えた領域の幅(−
gxx)とメモリ筆ルの長さく−gy)を掛は合わせた
面積([XIXAy)となっていた。
OX2. Although OX3 l-i insulating film, Jt and J2 are Joffson junctions, and EC is a counter electrode (counter electrode), the area occupied by one memory cell in the conventional structure is as shown in Figure 2 (→). As shown, the width of the memory cell (
Ax) to return line 11' wiring 13' and second control line 13
The width of the area (-) is the sum of the width (dx+) of the area where
The area ([XIXAy) was the sum of the memory brush length (gxx) and the length of the memory brush - gy).

ここで上記戻り線1.1’ 、 13’及び第2の制御
線13が配接されろ領域の幅(dx)は、プロセスに於
て形成可能なパターン幅によって限定されるので大幅な
縮小は期待できない。
Here, the width (dx) of the region where the return lines 1.1', 13' and the second control line 13 are arranged is limited by the pattern width that can be formed in the process, so a large reduction is not possible. I can't wait.

従って」−把子面配線方式の従来構造に於てに、メモリ
セルを微細化して、セルアレイの高密度高′集積化を図
る際、該戻り線配役領域の占有する広い面積によって、
その高集積化が阻害さ几るという問題が生じていた。
Therefore, when miniaturizing memory cells and achieving high-density and high-integration of cell arrays in the conventional structure of the grip-plane wiring method, the large area occupied by the return line wiring area
A problem has arisen in which the high degree of integration is hindered.

なおか75)る講成に於て、対向電極IDcを通して例
t F−f、メモリ・セルMO+  のバリアス線に流
入したバイアスイ流ぼ、該メモリーセルMCi 内のジ
ョセフソン接合J1及びJ2を通して基z1b電・11
メI(IIに流れる。そしてメモリ・セルMO2に・b
っC(″1該基部或極EBから該メモIJ 、セル[〜
(02内+7)ジョセフソン接合J1及び、12を通し
て対向電極ECへ流it、該対向電極Frcの延長部に
配置されたメモリ・セルへ(C3(図示せt″)へ流几
る。
In addition, in the course of 75), the bias current flowing into the barrier line of the memory cell MO+ through the counter electrode IDc, the bias current flowing into the barrier line of the memory cell MO+, and the base z1b through the Josephson junctions J1 and J2 in the memory cell MCi. Telephone 11
Flows to memory cell MO2 (flows to memory cell MO2).
C(''1 from the base or pole EB to the note IJ, cell [~
(+7 in 02) It flows to the counter electrode EC through the Josephson junctions J1 and 12, and flows to the memory cell (C3 (t″ in the figure)) arranged in the extension of the counter electrode Frc.

(C)  発明の目的 本発明の目的に、1流の戻り線を基部4極層の下に配置
した立体的な配線構造に1−、てジョセフノン記憶装置
の高密度集積化を実現ジろとともに、戻り線の配線幅を
広くすることでそ゛の/ノダクタノスを減少して、より
高速な動作速度を有−4−るジョセフソンΔ己1意束1
幌を提供することにある。
(C) Purpose of the Invention The purpose of the present invention is to realize high-density integration of a Josephnon memory device by using a three-dimensional wiring structure in which a first-stream return line is placed below a base quadrupole layer. At the same time, by widening the wiring width of the return line, the /noduct noise can be reduced, resulting in faster operation speed.
The goal is to provide a hood.

(d)  発明の溝成 即ち本発明はジョセ7ノノ記憶装健に於て基板と、基板
上に配設された超伝導体よりなるグランド・プI/−ン
と、亥グランドーブレーン上に配設された超伝導体より
なるバイアス線の戻り線配線層及び制御線配線層と、該
戻り線上に配設された絶縁膜と、該絶縁膜上に前記バイ
アス線の戻9線配線層及び制御線配線層とに斗たがって
配設された基部電極と、該基部電極−にに相互に離隔し
て、配設さn、た耳1及び第2のトンネル絶縁膜と、該
第1のトンネル絶縁膜と第2のトンネル絶縁膜との上に
橋絡状に配設された超伝導体よりなる対向電極と、該対
向電極上に絶縁膜を介して配設された超伝導体よりなる
複数本の制御線とを有する記憶素子を備えてなることを
特徴とする。
(d) The groove of the invention, that is, the present invention is a memory device having a substrate, a ground plane made of a superconductor disposed on the substrate, and a ground plane on the ground plane. A return line wiring layer and a control line wiring layer of the bias line made of a superconductor arranged therein, an insulating film arranged on the return line, a return line wiring layer of the bias line and a control line wiring layer disposed on the insulating film. a base electrode disposed along the control line wiring layer; a second tunnel insulating film disposed on the base electrode at a distance from each other; a counter electrode made of a superconductor disposed in a bridging manner on a tunnel insulating film and a second tunnel insulating film; and a counter electrode made of a superconductor disposed on the counter electrode with an insulating film interposed therebetween. It is characterized by comprising a memory element having a plurality of control lines.

(e)  発明の実施例 以F本発明を一実施例について、第3図に示すメモリセ
ルアレイの配置図及び第4図に示すメモリセル構造の透
視上面図(イ)及びA−&矢視断面図(嗜を用いて詳細
に説明する。
(e) Embodiments of the Invention Regarding one embodiment of the present invention, a layout diagram of a memory cell array shown in FIG. 3, a perspective top view (A) of a memory cell structure shown in FIG. 4, and a cross section taken along the line A-& This will be explained in detail using diagrams.

本発明に薄膜層配線の近傍に作られる磁界の強さが該配
線の幅に反比例すること即ちインダクタンスの値が配線
幅に反比例tろ(−ど、及び超伝導のグ:77ドブレー
ン(超伝導の接地面)と該ゲランドブlノーン上部に配
設さ才1.た第1の超伝導配イrlとの間に狭−まれた
第1の超電導(配線と同程度の幅を有する第2の超伝導
配線は、こ7’Lに電流を131ulた際ぞの一ヒ詞I
′i:は殆んど磁界を形成しないという超伝導体特有の
性質を利用して、メモリ素子の特性に影響を与えずにメ
モリセルへのバイアス1,1流の戻り線、及び隣り合う
メモリセルアレイ間で斜め方向に延在する制御線の戻り
線の配線を、基部心極層とグランド・ブレーンとの間に
設(′)1.、)1.うにしたものである。
In the present invention, the strength of the magnetic field created in the vicinity of a thin film layer wiring is inversely proportional to the width of the wiring, that is, the value of inductance is inversely proportional to the wiring width. The first superconducting wire (the second superconducting wire having the same width as the wire) is narrowed between the first superconducting wire (the ground plane of The superconducting wiring is the same as when a current of 131 ul is applied to this 7'L.
'i: takes advantage of the unique property of superconductors that almost no magnetic field is formed, and connects the bias 1, 1 current return line to the memory cell and the adjacent memory without affecting the characteristics of the memory element. A return line of a control line extending diagonally between cell arrays is installed between the base core layer and the ground brain (')1. ,)1. It was made by sea urchin.

第3図は本発明の一実施例に於けるメモリセルアレイの
要部のみを示した透視上向模式図で、図中Meはメモリ
セル、:31(はバイアス線(y線入32はX方向の1
1ilJ御線、33は刷め方向の制用ト呆33は斜め方
向の制御a1線、34は動作点4・没定仁るための制御
線(D Cオフセット線) 、31’ぼバイアス4流の
戻り線、33′に斜め方向の制御准・ML用配線(戻り
線)、Cは配線接続部、1yFjバイアメlft流、I
dfっ丁斜め方向の制御4流を表わしている。
FIG. 3 is a schematic perspective view showing only the essential parts of a memory cell array in an embodiment of the present invention, in which Me is a memory cell, 31 is a bias line (y-line input 32 is an X-direction 1
1ilJ control line, 33 is the control line for the printing direction, 33 is the control line for the diagonal direction, 34 is the control line for operating point 4 and sinking (DC offset line), 31' is the bias 4th flow. return line, 33' is diagonal control/ML wiring (return line), C is wiring connection part, 1yFj Biame lft style, I
df represents four diagonal control flows.

該メモリセルアレイに於ける1個のメモリセル領域を示
したものが、第4図の透視上面図(イ)及びそのA −
A’矢視断面図P)である。
One memory cell area in the memory cell array is shown in the transparent top view (A) of FIG. 4 and its A-
A' arrow sectional view P).

同図に於て、():P(qグランド9プレーン又(1超
伝導基板、)うBは基部+1極(べ・−スTu極)、F
rCは対向覗極(カウンタ電極)31はバイアス線、3
2ばX方向の制御線、33は斜め方向の制御線34は動
作点を設定するための制御線(DCオフセント線)、3
1’にバイアス電流の戻り線、33゜は隣り合うメモリ
セルアレイ間で斜め方向に延在する制御線に流れる制御
電流用配線Cは配線接続部1.TI、J2はジョセフソ
ン接合、OX t 、 OX2゜OX3.OX4は絶縁
11g、oxtは酸化膜を示しひる。
In the same figure, (): P (q ground 9 planes or (1 superconducting substrate), B is base + 1 pole (base - base Tu pole), F
rC is an opposing viewing electrode (counter electrode) 31 is a bias line, 3
2 is a control line in the X direction, 33 is a diagonal control line 34 is a control line (DC offset line) for setting the operating point, 3
1' is a bias current return line, and 33° is a control current line C that flows through a control line extending diagonally between adjacent memory cell arrays. TI, J2 are Josephson junctions, OX t , OX2°OX3. OX4 represents the insulation 11g, and oxt represents the oxide film.

そして上記グランド働プレーン()Pl−I蒸着法で形
成した例えばgさ3000 (A、 )程度のニオブ(
Nb) 超伝導膜からなり、基部成極EB、対向電極F
rC,バイアス腺31.X方向の制御線32゜斜め方向
の制御線33.DCオ7セソl−保、34゜戻り線31
.配線33は、いずノシも蒸着法藺ご1ヒ成した厚さ2
500〜5o++o(X)4呈度の鉛(、P)t)−イ
ンジウム(In)−金(−Au)・合金等の超伝導合金
層からなっていイ)。又絶 膜(→XI。
Then, the ground plane (2) is formed using the Pl-I vapor deposition method, for example, a niobium (3000 (A, ))
Nb) consists of a superconducting film, with base polarization EB and counter electrode F.
rC, bias gland 31. Control line in the X direction 32° Control line in the diagonal direction 33. DC O7 seso l-keep, 34° return line 31
.. The wiring 33 is made using the Izunoshi vapor deposition method and has a thickness of 2.
It consists of a superconducting alloy layer such as a lead (,P)t)-indium (In)-gold (-Au) alloy with a degree of conductivity of 500 to 5o++o(X)4. Insulating film (→XI.

OX2.OX3.OX4ばいずれも蒸着法で形成し71
、−厚さ50(〕〜3000 (人〕程度の一酸化ンリ
ー1ソ(、’l i O)層等からなっており、トンネ
ル酸化膜OXtは基!!(!電極EB面に高周波プラズ
マ酸化法を用いて形成した厚さ50 (’A )桿1W
の鉛・インジウムの酸化膜(PbO・In203)2%
から1.(つfいる。なお同図に於て表面保護用絶縁膜
等は省略しである。
OX2. OX3. In case of OX4, both are formed by vapor deposition method71
The tunnel oxide film OXt is formed by high-frequency plasma oxidation on the electrode EB surface. Thickness 50 ('A) rod 1W formed using the method
lead/indium oxide film (PbO/In203) 2%
From 1. (Note that the surface protection insulating film and the like are omitted in this figure.

L記の図から明らかなように、本実肩側の構造に於ては
バイアスα流の戻り線31′及び制御1F、流用配線3
3′が基部電極EBとグラノド・ブレーンGpの間に絶
縁膜OXI及びOX2り介して配設ンΣf1.乙。従っ
て従来戻り線の配役領域であった隣接セルとの間隔dx
2i、例えば配線幅及び相rj間隔をそれぞれ3 (、
m )とした場合従来に比べ+ 2−(71111:l
縮小さtI、ろ。1シ11ち図中二点鎖線で囲んだ1閘
のセル領域の酊漬0x2×石)rが七に間隔が縮小され
た分だけ従来に比べて縮小され、メモリセルアレイの1
1密度へ積比か図れる。
As is clear from the figure L, in the structure on the main shoulder side, the return line 31' of the bias α flow, the control 1F, and the diversion wiring 3
Σf1. Otsu. Therefore, the distance dx between adjacent cells, which was the conventional return line casting area
2i, for example, the wiring width and phase rj interval are each 3 (,
m) compared to the conventional case, +2-(71111:l
Reduced tI, ro. The cell area of 1 cell area surrounded by the two-dot chain line in the figure is reduced to 7, and the space is reduced to 7.
The product ratio can be calculated to 1 density.

又戻り線31′及び配線3;イの幅Wy/及びwti’
(zセル間隔+1xの拡大に無関係に基部iiI極EB
の下部をf重用して図のように広く形l戊できるので、
これら戻り線のインダクタンス(・ユ減少し、メモリ動
作がより高速化される。
Also, the return line 31' and the wiring 3; width Wy/ and wti'
(base ii pole EB regardless of the expansion of z cell spacing + 1x
You can make a wide shape as shown in the figure by using the lower part of the f, so
The inductance of these return lines is reduced, making memory operation faster.

(1) 発明の詳細 な説明したように本発明によれば、ジョセフソン・メモ
リセルをアレイ伏に配置α後続する際しξバイアス線や
制(IIII線の一部を4部五極の下IIIIIVC配
設する立体的な配線イ、冑造が実現δt+、jl一つ配
線インダクタンスが減少できろ。
(1) As described in detail, according to the present invention, when Josephson memory cells are arranged face down in an array α, a portion of the ξ bias line and control line (III line) is placed under the 4th part and the 5th pole. 3-dimensional wiring by arranging the VC, the wiring inductance can be reduced by δt+, jl.

従って本発明はジョセフン/記憶装置の高密度高41S
債化及び高速化に付(7て極めて有効である。
Therefore, the present invention provides high-density high-density high-41S storage devices.
It is extremely effective for debt consolidation and speeding up.

なお本発明ばrレイ宿直以外にも適用できる。It should be noted that the present invention can be applied to things other than lay shifts.

【図面の簡単な説明】[Brief explanation of the drawing]

1’fr I L:ン1rよ従来のジ−9セフソン・メ
モリセルアレイの配t6状態を示す模式半面図、第1己
図QL従宋のジョセフソン拳メモリセルの透γ兄千10
1図(イ)及び7〜− A、/矢視1所面図(ロ)、第
3図は本発明の一′寿雇911 pc於ケるジョセフソ
ン會メモリセルアレ・1の自己1〆萌入態を示す模式平
面図、第4図は木兄1す1(り一部)蒲1t−1tC於
けるジョセフソン・メモリセルの透硯十面区1(1)&
びA −lV矢祝1更面図(ロ)てらる。 図に於て、MOはメモリセル、] 1 、 :3115
1ノくイアス線、12,32ijx、IN向の:til
l XI 線、13゜33ぼ1498−9メモリセルア
レイ間で・+F) 、+’)方間Vこ延圧する制御線、
14,34・1劾作点を設定rろプこめの制f、Iu線
、31’lj:バイアス、電流の幌り線、3:イは科め
方向の1lilJ I+ttl混流用配・腺 Q (は
1配線接続部、G pはグラ/ドープレーン、EBは早
2部11敵ト〕Cは対問4極、Jl、J2はジョセフソ
フ可合、(、)Xt。 OX2.OX3,0X4F、f、絶縁膜、oxt v:
r、 ) y ネル酸化膜・り・ノ」です。 特許出願人 L業技術院1是石板誠−
1'fr I L: N1r A schematic half-view showing the layout of the conventional Jean-9 Sefson memory cell array, 1st self-diagram QL Toru γ brother-sen10 of the Josephson fist memory cell of the Congo and Song Dynasty.
Figures 1 (a), 7 to 7-A, / 1-point view (b), and Figure 3 show the memory cell array 1 of the Josephson Society memory cell array 1 in which the present invention is installed. A schematic plan view showing the state of initiation, Figure 4 shows the transparent inkstone ten-sided section 1 (1) &
and A-lV Yaho 1 further view (b). In the figure, MO is a memory cell,] 1, :3115
1st line, 12,32ijx, IN direction: til
l
14, 34・1 Set the cropping point r loop control f, Iu line, 31'lj: Bias, current hood wire, 3: A is 1lilJ I+ttl mixed flow line/gland Q ( is 1 wiring connection part, G p is graph/dope plane, EB is early 2 parts 11 enemies] C is interpolation 4 poles, Jl, J2 are Joseph Soft possible, (,) Xt. OX2.OX3,0X4F, f, insulating film, oxtv:
r, ) y Nell oxide film, ri, no. Patent applicant: Makoto Ishiita, Ltd.

Claims (1)

【特許請求の範囲】 基板と、基板−ヒに配設された起伝導体よりなるゲラン
ドープl/・−ンと、該グランド−プレーン上に配設さ
れた超伝導体よりなるバイアス線の戻り線配線層及び制
御線配線層と、該戻り線上に配設された絶縁膜と、該絶
縁)]α−Lvc前記バイアス線の戻り線配線J裔及び
111]御線配線層とにまたがって配設され、た基部電
他と、該基部、E極上に相〃に離隔し7て配設さノシた
:T!1及び第2のトンネル絶縁膜ム該第1のトンネル
絶縁膜と第2のトンネル絶縁膜との一ヒに橋絡状に配設
された超伝導体よりなる対向電極と、該対向電極子に絶
縁jjqを介して配設された超伝導体よりなる複数本の
制御線とを有する記憶素子を備えて・′〔ることを特徴
とするジョセフソン記憶装置。
[Scope of Claims] A substrate, a Guerlain dope made of a conductor disposed on the substrate, and a return line of a bias line made of a superconductor disposed on the ground plane. The wiring layer, the control line wiring layer, the insulating film disposed on the return line, and the return line wiring layer of the bias line and the control line wiring layer. The base electrodes and the other base electrodes were arranged spaced apart from each other on the base and E poles: T! a counter electrode made of a superconductor disposed in a bridging manner between the first tunnel insulating film and the second tunnel insulating film; A Josephson memory device comprising: a memory element having a plurality of control lines made of a superconductor disposed via insulation jjq.
JP58008775A 1983-01-24 1983-01-24 Josephson memory device Granted JPS59135783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58008775A JPS59135783A (en) 1983-01-24 1983-01-24 Josephson memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58008775A JPS59135783A (en) 1983-01-24 1983-01-24 Josephson memory device

Publications (2)

Publication Number Publication Date
JPS59135783A true JPS59135783A (en) 1984-08-04
JPS6317346B2 JPS6317346B2 (en) 1988-04-13

Family

ID=11702257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58008775A Granted JPS59135783A (en) 1983-01-24 1983-01-24 Josephson memory device

Country Status (1)

Country Link
JP (1) JPS59135783A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022118464A1 (en) * 2020-12-04 2022-06-09 日本電気株式会社 Quantum device and method for manufacturing same
WO2022118463A1 (en) * 2020-12-04 2022-06-09 日本電気株式会社 Quantum device and method for producing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022118464A1 (en) * 2020-12-04 2022-06-09 日本電気株式会社 Quantum device and method for manufacturing same
WO2022118463A1 (en) * 2020-12-04 2022-06-09 日本電気株式会社 Quantum device and method for producing same

Also Published As

Publication number Publication date
JPS6317346B2 (en) 1988-04-13

Similar Documents

Publication Publication Date Title
US4193125A (en) Read only memory
TW201232554A (en) Memory device and method of operating the same
TW201232548A (en) Memory architecture of 3D array with improved uniformity of bit line capacitances
KR102527965B1 (en) Vertical superinductor device
JP4917205B2 (en) Electrically stabilized thin film high temperature superconductor and method of manufacturing the same
JP3647323B2 (en) Semiconductor integrated circuit
JP3382588B2 (en) Use of ion implantation to create normal layers during superconducting-normal-superconducting Josephson junctions
JPS59135783A (en) Josephson memory device
JPH0834320B2 (en) Superconducting element
JP5062508B2 (en) Superconducting element and manufacturing method thereof
JPS5923120B2 (en) Josephson integrated circuit with multilayer structure
JPS6146081A (en) Manufacture of josephson junction element
US5304817A (en) Superconductive circuit with film-layered josephson junction and process of fabrication thereof
JP3564539B2 (en) Pattern layout method for superconducting logic integrated circuits
JPS6215869A (en) Manufacture of josephson device
JP2504498B2 (en) Semiconductor device
JP2001257392A (en) Superconducting element and method of manufacturing the same
JP2994304B2 (en) Superconducting integrated circuit and method of manufacturing superconducting integrated circuit
US6147360A (en) Superconducting device and a method of manufacturing the same
CN115666211A (en) Superconducting quantum interferometer and preparation method thereof
JPH0786644A (en) Superconducting wiring device
US3346829A (en) Cryotron controlled storage cell
JP2825374B2 (en) Superconducting element
JP3202631B2 (en) Method for producing copper oxide superconducting thin film
JP2656364B2 (en) Superconducting element manufacturing method