[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS59123730A - Method for recovering iridium from metallic electrode - Google Patents

Method for recovering iridium from metallic electrode

Info

Publication number
JPS59123730A
JPS59123730A JP57227595A JP22759582A JPS59123730A JP S59123730 A JPS59123730 A JP S59123730A JP 57227595 A JP57227595 A JP 57227595A JP 22759582 A JP22759582 A JP 22759582A JP S59123730 A JPS59123730 A JP S59123730A
Authority
JP
Japan
Prior art keywords
iridium
hydrochloric acid
soln
added
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57227595A
Other languages
Japanese (ja)
Other versions
JPS6254849B2 (en
Inventor
Teru Asano
浅野 煕
Takayuki Shimamune
孝之 島宗
Masashi Hosonuma
正志 細沼
Tamotsu Hayashi
保 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP57227595A priority Critical patent/JPS59123730A/en
Publication of JPS59123730A publication Critical patent/JPS59123730A/en
Publication of JPS6254849B2 publication Critical patent/JPS6254849B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To recover efficiently iridium as a hydrochloric acid soln. of a chloride by dissolving and stripping the coating layer of an electrode base body, adding hydrochloric acid thereto, and separating the hydroxide of a heavy metal then making the soln. acidic and passing the soln. through an ion exchange resin. CONSTITUTION:The surface of a used metallic electrode is treated with a molten salt of an alkali metal hydroxide contg. an oxidizing agent, and the coating layer contg. iridium oxide is dissolved and stripped. Water is added thereto after cooling to prepare an aq. soln., and the metal hydroxide of heavy metal formed by neutralization with a hydrochloric acid is separated away. A hydrochloric acid is further added to such aq. soln. to make the soln. acidic and the soln. is brought into contact with a cation exchange resin whereby the alkali metal and residual ion of heavy metal, etc. coexisting therein are removed. Iridium is obtd. as a pure hydrochloric acid soln. by the above-mentioned treatment. The iridium hydrochloric acid soln. of iridium is reusable for producing the metallic electrode, etc.

Description

【発明の詳細な説明】 本発明は、金属電極からイリジウムを回収する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recovering iridium from metal electrodes.

近年、チタン等の弁金属基体上にルテニウムやイリジウ
ムの酸化物等を含む電極被覆を設けた不溶性金属電極が
、種々の電気化学の分野、特に食塩電解工業における不
溶性電極として多量に使用されている。
In recent years, insoluble metal electrodes in which an electrode coating containing ruthenium or iridium oxides is provided on a valve metal substrate such as titanium have been widely used as insoluble electrodes in various fields of electrochemistry, especially in the salt electrolysis industry. .

このよう含金属電極は、かなシの長寿命を有するもので
おるが、使用中に電極被覆が徐々に消耗或いは低活性化
し、一定の性能を維持できなくなった際には、新しい電
極に取シ替える必要がある。こうした使用済の金属電極
には、周相当量の高価なイリジウム等の貴金属成分が被
覆中に残存し、これを回収し、有効利用することは、工
業上重要である。
These metal-containing electrodes have a long lifespan, but if the electrode coating gradually wears out or becomes less active during use, and it becomes impossible to maintain a certain level of performance, it is necessary to replace the electrode with a new one. It needs to be replaced. In such used metal electrodes, an equivalent amount of precious metal components such as expensive iridium remains in the coating, and it is industrially important to recover and effectively utilize this.

従来、この種の技術に関連するものと17て、特公昭4
6−26978号及び特公昭48−15144号によシ
、金属電極被覆を溶融塩を用いて除去する方法が知られ
ている。
Previously, there were 17 related technologies related to this type of technology.
No. 6-26978 and Japanese Patent Publication No. 48-15144 disclose a method of removing a metal electrode coating using a molten salt.

また、特開昭51−68493号には、ルテニウム又は
その化合物を含む難溶性物質の可溶化法が、特開昭51
−68498号には、可溶性ルテニウム又はその化合物
の酸化蒸留法が記載されている。更に、特開昭51−6
8499号にはルテニウム又はその化合物を含む難溶性
物質を処理してルテニウムを回収する方法が示されて込
る。
In addition, JP-A No. 51-68493 describes a method for solubilizing poorly soluble substances containing ruthenium or its compounds.
No. 68498 describes an oxidative distillation process for soluble ruthenium or its compounds. Furthermore, JP-A-51-6
No. 8499 discloses a method for recovering ruthenium by treating a poorly soluble substance containing ruthenium or a compound thereof.

しかし、これらの方法は、いずれも金属電極から貴金属
を回収する部分工程か、ルテニウムの回収に関するもの
で、金属電極から被覆中のイリジウムを回収する方法は
知られていなかった。
However, all of these methods involve a partial process of recovering precious metals from metal electrodes or recovery of ruthenium, and no method was known for recovering iridium in the coating from metal electrodes.

本発明は、斜上の事情に鑑みてなされたもので、その目
的は、金属電極から容易に、かつ効率良くイリジウムを
回収する方法を提供することにある。
The present invention was made in view of the above-mentioned situation, and an object of the present invention is to provide a method for easily and efficiently recovering iridium from a metal electrode.

本発明は、金属電極からイリジウムを回収する方法にお
いて、金属電極基体上のイリジウム酸化物を含む被覆層
を、酸化剤を含むアルカリ金属水酸化物溶融塩に溶解し
、冷却後、水を加えて水溶液とし、塩酸を加えて中和し
、生成する弁金属水酸化物を分離した後、更に塩酸を加
えて該溶液を酸性にし、次いで陽イオン交換樹脂を用い
てアルカリ金属を除去して、イリジウム塩化物の塩酸溶
液を得ることを特徴とするものである。
The present invention provides a method for recovering iridium from a metal electrode, in which a coating layer containing iridium oxide on a metal electrode substrate is dissolved in a molten alkali metal hydroxide salt containing an oxidizing agent, and after cooling, water is added. After making an aqueous solution and neutralizing it by adding hydrochloric acid to separate the produced valve metal hydroxide, further adding hydrochloric acid to make the solution acidic, then removing the alkali metal using a cation exchange resin, iridium This method is characterized by obtaining a hydrochloric acid solution of chloride.

本発明において弁金属とは、電極基体又は電極被覆成分
として通常用いられるチタン、タンタル、ジルコニウム
、ニオブを意味する。
In the present invention, the valve metal means titanium, tantalum, zirconium, and niobium that are commonly used as electrode substrates or electrode coating components.

以下、本発明をよシ詳細に説明する。Hereinafter, the present invention will be explained in detail.

先ず、酸化イリジウムを含む被覆層を有する使用済等の
金属電極表面を、酸化剤を含むアルカリ金属水酸化物溶
融塩に浸漬等により接触させて、被覆層を溶解、剥離す
る。該酸化剤としては、NaN0m 、KNOs等のア
ルカリ金属硝酸塩、Na1O1,KIOl等のアルカリ
金属過酸化物、アルカリ土類金属過酸化物、過マンガン
酸カリウム等が使用でき、その量は、溶融物全量基準で
約20X以下とすることが好ましい。該アルカリ金属水
酸化物としては、KOH,NaOHが好適に用いられる
。溶融塩溶解工程における溶融塩温度は約550〜60
0℃が適当であシ処理時間は通常5〜30分程度で、電
極基体を損傷することなく容易に被覆層を溶解すること
ができる。
First, the surface of a used metal electrode having a coating layer containing iridium oxide is brought into contact with a molten alkali metal hydroxide salt containing an oxidizing agent by immersion or the like to dissolve and peel off the coating layer. As the oxidizing agent, alkali metal nitrates such as NaN0m and KNOs, alkali metal peroxides such as Na1O1 and KIO1, alkaline earth metal peroxides, potassium permanganate, etc. can be used, and the amount thereof is determined based on the total amount of the melt. It is preferable to set it to about 20X or less on a standard basis. As the alkali metal hydroxide, KOH and NaOH are preferably used. The molten salt temperature in the molten salt dissolution step is approximately 550 to 60
A temperature of 0° C. is suitable, and the treatment time is usually about 5 to 30 minutes, and the coating layer can be easily dissolved without damaging the electrode substrate.

次いで、前記溶融塩溶解工程で得られたイリジウムを含
む溶融物を冷却し、水を加えて水溶液とした後、塩酸を
加えて中和する。加える水の量は、溶融物の約2〜10
倍量とすることが好適である。溶融物水溶液はアルカリ
性であシ、これに塩酸を加えて中性付近に中和して、溶
解していた、被覆層中或は電極基体からの弁金属を水酸
化物として析出・沈澱させる。そして、該生成した弁金
属水酸化物をr別等により分離除去した後、更に塩酸を
加えて酸性にし、次に該溶液を陽イオン交換樹脂に接触
させて、共存しているアルカリ金属及び残存弁金属イオ
ン等を完全に除去する。
Next, the iridium-containing melt obtained in the molten salt dissolving step is cooled, water is added to form an aqueous solution, and hydrochloric acid is added to neutralize the solution. The amount of water added is approximately 2-10% of the melt
It is preferable to double the amount. The aqueous melt solution is alkaline and is neutralized to around neutrality by adding hydrochloric acid to precipitate the dissolved valve metal in the coating layer or from the electrode base as a hydroxide. After the generated valve metal hydroxide is separated and removed by r separation, etc., hydrochloric acid is added to make it acidic, and then the solution is brought into contact with a cation exchange resin to remove coexisting alkali metals and residual Completely removes valve metal ions, etc.

かくして、イリジウムは、純粋な塩酸溶液として得るこ
とができる。該塩酸溶液中でイリジウムは塩化イリジウ
ム酸イオンの状態で存在していると考えられる。該イリ
ジウム塩酸溶液は、そのt″!!、又は温度の濃度に調
製して金属電極の製造用等に再び使用することができ、
更に1〜650 vaHg + 110℃以下の条件で
減圧蒸留し、濃縮固化して、塩化イリジウムとして回収
することもできる。また、塩化イリジウムを還元処理し
て金属イリジウムとして回収することも勿論可能である
。一方、被覆層を除去した金属基体は、そのまま電極基
体として再利用することができる。
Iridium can thus be obtained as a pure hydrochloric acid solution. It is believed that iridium exists in the form of chloroiridate ions in the hydrochloric acid solution. The iridium hydrochloric acid solution can be adjusted to a concentration of t″!! or temperature and used again for manufacturing metal electrodes, etc.
Furthermore, it can be distilled under reduced pressure under conditions of 1 to 650 vaHg + 110°C or less, concentrated and solidified, and recovered as iridium chloride. Of course, it is also possible to reduce iridium chloride and recover it as metallic iridium. On the other hand, the metal base from which the coating layer has been removed can be reused as it is as an electrode base.

以上、詳記した通シ、本発明の方法によシ、イリジウム
酸化物を含む被覆層を有する金属電極よシ、イリジウム
を容易に高純度で回収することができる。イリジウムの
回収率は、以下の実施例で示す如く、被覆層イリジウム
含有量基準で85%以上とすることが可能である。
As detailed above, by the method of the present invention, iridium can be easily recovered in high purity from a metal electrode having a coating layer containing iridium oxide. As shown in the following examples, the recovery rate of iridium can be 85% or more based on the iridium content of the coating layer.

実施例1゜ 溶融塩の溶融剤として水酸化ナトリウム50?、酸化剤
として過マンガン酸カリウム5tを用い、ニッケルルツ
ボ中で500℃に保持して溶融塩を形成した。これに6
×3個のチタン基体上に酸化イリジウムを含む被覆層を
有する電極を20分間浸漬したところ、被覆層は完全に
溶融塩中に溶解した。チタン基材を除去した該溶融塩を
室温に冷却し、これに150cr、の水を加え水溶液と
した後、塩酸を加えて中和した。チタン水酸化物等の沈
澱が十分生成する迄、液を放置してから、沈澱物をr過
分離し、f液に塩酸を等量加えた。得られた液をH型に
した陽イオン交換樹脂層(三菱化成工業■製DIAIO
N −8KIB )に通し、ナトリウム、カリウム等の
アルカリ金属イオンを分離除去し、流出液としてイリジ
ウム塩化物の塩酸溶液を得た。
Example 1 Sodium hydroxide 50% as a melting agent for molten salt A molten salt was formed by using 5 tons of potassium permanganate as an oxidizing agent and maintaining the temperature at 500° C. in a nickel crucible. 6 for this
When three electrodes having coating layers containing iridium oxide on titanium substrates were immersed for 20 minutes, the coating layers were completely dissolved in the molten salt. The molten salt from which the titanium base material had been removed was cooled to room temperature, 150 cr of water was added thereto to form an aqueous solution, and then hydrochloric acid was added to neutralize it. The solution was allowed to stand until a sufficient amount of precipitate such as titanium hydroxide was formed, and then the precipitate was separated by separation, and an equal amount of hydrochloric acid was added to the solution. A cation exchange resin layer in which the obtained liquid was made into H type (DIAIO manufactured by Mitsubishi Chemical Corporation)
N-8KIB) to separate and remove alkali metal ions such as sodium and potassium to obtain a hydrochloric acid solution of iridium chloride as an effluent.

又、この溶液を15mmHg 、 40℃で減圧蒸留し
塩化イリジウムの固体を得ることもできた。イリジウム
の回収率は87%であった。
In addition, solid iridium chloride could be obtained by distilling this solution under reduced pressure at 15 mmHg and 40°C. The recovery rate of iridium was 87%.

尚、比較のため、酸化剤K M n O4の量を0.5
Fにして同様に行ったところ回収率は72%であった。
For comparison, the amount of oxidizing agent K M n O4 was set to 0.5
When the same procedure was carried out using F, the recovery rate was 72%.

実施例Z 酸化剤としてKNOs 5りを用いた以外は実施例1と
同様にしてイリジウムの回収を行った。
Example Z Iridium was recovered in the same manner as in Example 1 except that KNOs 5 was used as the oxidizing agent.

回収率は86%であった。The recovery rate was 86%.

実施例6゜ 溶融塩の溶融剤としてKOH50yを用い、他は実施例
1と同様にして、イリジウムの回収を行った。
Example 6 Iridium was recovered in the same manner as in Example 1 except that KOH50y was used as the melting agent for the molten salt.

回収率は89%であった。The recovery rate was 89%.

特許出願人patent applicant

Claims (4)

【特許請求の範囲】[Claims] (1)金属電極基体上のイリジウム酸化物を含む被覆層
を、酸化剤を含むアルカリ金属水酸化物溶融塩に溶解し
、冷却後、水を加えて水溶液とし、塩酸を加えて中和し
、生成する弁金属水酸化物を分離した後、更に塩酸を加
えて該溶液を酸性にし、次いで陽イオン交換樹脂を用い
てアルカリ金属を除去してイリジウム塩化物の塩酸溶液
を得ることを特徴とする、金属電極からイリジウムを回
収する方法。
(1) A coating layer containing iridium oxide on a metal electrode substrate is dissolved in a molten alkali metal hydroxide salt containing an oxidizing agent, and after cooling, water is added to make an aqueous solution, and hydrochloric acid is added to neutralize it, After separating the produced valve metal hydroxide, hydrochloric acid is further added to make the solution acidic, and then the alkali metal is removed using a cation exchange resin to obtain a hydrochloric acid solution of iridium chloride. , a method for recovering iridium from metal electrodes.
(2)  溶融塩による溶解を350〜600℃で行う
請求の範囲第(1)項の方法。
(2) The method according to claim (1), wherein the dissolution with the molten salt is carried out at 350 to 600°C.
(3)被覆層溶解後の溶融塩に、2〜10倍量の水を加
える請求の範囲第(1)項の方法。
(3) The method according to item (1), wherein 2 to 10 times the amount of water is added to the molten salt after dissolving the coating layer.
(4)  イリジウム塩化物の塩酸溶液を1〜650冨
Hg、110℃以下で減圧蒸留し、濃縮固化する請求の
範囲第(1)項の方法。
(4) The method according to claim (1), wherein a hydrochloric acid solution of iridium chloride is distilled under reduced pressure at 1 to 650 Hg and below 110°C to concentrate and solidify.
JP57227595A 1982-12-28 1982-12-28 Method for recovering iridium from metallic electrode Granted JPS59123730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57227595A JPS59123730A (en) 1982-12-28 1982-12-28 Method for recovering iridium from metallic electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57227595A JPS59123730A (en) 1982-12-28 1982-12-28 Method for recovering iridium from metallic electrode

Publications (2)

Publication Number Publication Date
JPS59123730A true JPS59123730A (en) 1984-07-17
JPS6254849B2 JPS6254849B2 (en) 1987-11-17

Family

ID=16863382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57227595A Granted JPS59123730A (en) 1982-12-28 1982-12-28 Method for recovering iridium from metallic electrode

Country Status (1)

Country Link
JP (1) JPS59123730A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195230A (en) * 1987-02-10 1988-08-12 Tanaka Kikinzoku Kogyo Kk Refining method for platinum group metal
JP2002088494A (en) * 2000-09-13 2002-03-27 Furuya Kinzoku:Kk Method for recovering platinum group metal from metallic electrode
JP2002212650A (en) * 2001-01-12 2002-07-31 Furuya Kinzoku:Kk Method for recovering platinum group metals from metallic electrode
KR20140098159A (en) 2011-11-21 2014-08-07 페르메렉덴꾜꾸가부시끼가이샤 Method for exfoliating coating layer of electrode for electrolysis
WO2016034301A1 (en) * 2014-09-03 2016-03-10 Heraeus Deutschland GmbH & Co. KG Process for the preparation and/or purification of ruthenium(iii) chloride
EP2998275A1 (en) * 2014-09-19 2016-03-23 Heraeus Deutschland GmbH & Co. KG Process for the preparation and/or purification of ruthenium(III) chloride
JP2018511707A (en) * 2015-04-21 2018-04-26 ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー Method for decomposing a mixture of solid particles of metal iridium and / or iridium oxide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627255U (en) * 1992-09-16 1994-04-12 矢崎総業株式会社 Grommet structure

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195230A (en) * 1987-02-10 1988-08-12 Tanaka Kikinzoku Kogyo Kk Refining method for platinum group metal
JP2002088494A (en) * 2000-09-13 2002-03-27 Furuya Kinzoku:Kk Method for recovering platinum group metal from metallic electrode
JP4607303B2 (en) * 2000-09-13 2011-01-05 株式会社フルヤ金属 Method for recovering platinum group metals from metal electrodes
JP2002212650A (en) * 2001-01-12 2002-07-31 Furuya Kinzoku:Kk Method for recovering platinum group metals from metallic electrode
JP4700815B2 (en) * 2001-01-12 2011-06-15 株式会社フルヤ金属 Method for recovering platinum group metals from metal electrodes
KR20140098159A (en) 2011-11-21 2014-08-07 페르메렉덴꾜꾸가부시끼가이샤 Method for exfoliating coating layer of electrode for electrolysis
WO2016034301A1 (en) * 2014-09-03 2016-03-10 Heraeus Deutschland GmbH & Co. KG Process for the preparation and/or purification of ruthenium(iii) chloride
CN106660827A (en) * 2014-09-03 2017-05-10 贺利氏德国有限两合公司 Method for producing and/or purifying ruthenium (III) trichloride
US9994458B2 (en) 2014-09-03 2018-06-12 Heraeus Deutschland GmbH & Co. KG Process for the preparation and/or purification of ruthenium(III) chloride
EP2998275A1 (en) * 2014-09-19 2016-03-23 Heraeus Deutschland GmbH & Co. KG Process for the preparation and/or purification of ruthenium(III) chloride
JP2018511707A (en) * 2015-04-21 2018-04-26 ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー Method for decomposing a mixture of solid particles of metal iridium and / or iridium oxide

Also Published As

Publication number Publication date
JPS6254849B2 (en) 1987-11-17

Similar Documents

Publication Publication Date Title
US4944851A (en) Electrolytic method for regenerating tin or tin-lead alloy stripping compositions
JPS59123730A (en) Method for recovering iridium from metallic electrode
JPS604892B2 (en) How to recover metal from copper refining anode slime
CA2006893A1 (en) Process for extracting noble metals
JPS59104438A (en) Recovery of ruthenium from metal electrode
JPS59145739A (en) Method for recovering ruthenium and iridium from metallic electrode
US3975244A (en) Electrolytic refining
JP2008081837A (en) Recovering method of insoluble electrode
US20090145856A1 (en) Acid recycle process with iron removal
JPH0841560A (en) Treatment of ito deposited with brazing filler metal
JPS5997536A (en) Method for recovering ruthenium from metallic electrode
JPS63502600A (en) How to recycle solder stripping solution
JP4607303B2 (en) Method for recovering platinum group metals from metal electrodes
JP2016222977A5 (en)
JP2002088494A5 (en)
US4670115A (en) Electrolytic silver refining process and apparatus
JP4700815B2 (en) Method for recovering platinum group metals from metal electrodes
JPS6179736A (en) Recovering method of platinum group metal
JPS6293319A (en) Method for selectively recovering sn from sn coated material
JP4450945B2 (en) Method for recovering precious metals from metal electrodes
US1429131A (en) Purification of metallic solutions
JP2965457B2 (en) Regeneration method of iron chloride waste liquid containing nickel
JP4996023B2 (en) Prevention of lead elution from lead-containing copper alloy materials
JPS62270735A (en) Recovering method for tin
JP2005281827A (en) Electrolytic refining method for silver