[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS59129438A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59129438A
JPS59129438A JP336383A JP336383A JPS59129438A JP S59129438 A JPS59129438 A JP S59129438A JP 336383 A JP336383 A JP 336383A JP 336383 A JP336383 A JP 336383A JP S59129438 A JPS59129438 A JP S59129438A
Authority
JP
Japan
Prior art keywords
film
recess
forming
substrate
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP336383A
Other languages
Japanese (ja)
Inventor
Akira Kurosawa
黒沢 景
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP336383A priority Critical patent/JPS59129438A/en
Publication of JPS59129438A publication Critical patent/JPS59129438A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76237Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials introducing impurities in trench side or bottom walls, e.g. for forming channel stoppers or alter isolation behavior

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To obtain a field oxide film by a method wherein a part of the narrow groove provided on a semiconductor substrate is filled up using poly Si, and it is converted to a thermally oxidized film. CONSTITUTION:A recessed part is provided on the surface (100) of a p type Si substrate 21 by superposing an SiO2 film 22 and Si3N4 film 23 using Al 24 as a mask, and B-ion implanted layer 25 is formed. Then, an SiO2 film 26 is buried leaving a narrow groove on the circumference of the recessed part by performing a sputtering method, for example. The above is processed in O2 at 1,000 deg.C and an SiO2 film 27 is covered thereon. Poly Si 28 is deposited approximately one half of the depth of the groove or thereabout, an anisotropic dry etching is performed, and poly Si 29 is left on the side face of the groove alone. When a wet oxidation is performed at a high temperature, the poly Si 29 is converted to SiO2, and the narrow groove is filled up making a flat surface. The Si3N4 23 is removed, a gate oxide film 31 and a gate electrode 32 are attached as usual, and an MOS device is completed. According to this constitution, a relatively thick insulating film can be buried in a field region in such a manner that the surface will be made flat.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明はフィールド領域に比較的厚いフィールド絶縁膜
を表面が平坦になるように埋めこむ半導体装置の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a method of manufacturing a semiconductor device in which a relatively thick field insulating film is embedded in a field region so that the surface thereof is flat.

〔従来技術とその問題点〕[Prior art and its problems]

半導体としてシリコンを用いた半導体装置、特にMO8
型半導体装置においては寄生チャネルによる絶縁不良を
なくシ、力≧つ寄生容量を小さくする為に、素子間のい
わゆるフィールド領域には厚い絶縁膜が形成される。
Semiconductor devices using silicon as a semiconductor, especially MO8
In a type semiconductor device, a thick insulating film is formed in a so-called field region between elements in order to eliminate insulation defects due to parasitic channels and to reduce parasitic capacitance.

従来このような老子間分、雄法としては選択酸化法が良
く知られている。これは素子形成領域を耐酸化性マスク
、代表的にはシリコン窒化膜で覆い、高温if化をおこ
なってフィールド領域にのミ選択的に厚い酸化膜を形成
する技術である。しかしこのような選択峙化法において
は、上記高温酸化中。
A selective oxidation method has been well known as a conventional method for such oxidation. This is a technique in which the element formation region is covered with an oxidation-resistant mask, typically a silicon nitride film, and a thick oxide film is selectively formed in the field region by performing high-temperature IF heating. However, in such a selective oxidation method, during the above-mentioned high temperature oxidation.

シリコン窒化膜の下端部からフィールド酸化膜が鳥のく
ちばしくバーズビーク)状にくいこむ。このため素子形
成領域の寸法誤差の原因となり、更に集積回路の高集積
化を妨げている。
The field oxide film is embedded in the shape of a bird's beak from the bottom edge of the silicon nitride film. This causes dimensional errors in the element formation region, and further impedes higher integration of integrated circuits.

これに対し、上記バーズビークをなくシ、素子間分離用
の厚い酸化膜を形成する方法として、フィールド領域を
エツチングして溝を彫り、ここにフィールド酸化膜を埋
込む技術が知られている。
On the other hand, as a method of eliminating the bird's beak and forming a thick oxide film for isolation between elements, a technique is known in which a field region is etched to form a groove and a field oxide film is buried in the groove.

以下にこの従来法の工程を第1図を甲いて@単に説明す
る。第1図+a+に示すように、たとえばシリコン基板
1■に熱酸化膜12を形成しその上にA/膜I3を堆積
し、通常の写真食刻工程を用いてレジスト膜14で素子
形成領域をおおい、Al!膜13および熱酸化膜12を
パターニングする。そしてAI!膜13をマスクとして
(blに示すようにシリコン基板11を所望のフィール
ド絶縁膜厚に相当する深さに反応性イオンエツチングに
てエツチングした後、やは)Al膜■3をマスクとして
用いてフィールド反転防止のために、シリコン基板11
と同導電型の不純物、たとえばP型基板の場合はホウ素
をイオン注入し反転防止層15を形成する。その後te
lに示す如く、全面に溝の深さより厚いプラズマCVD
5 fotll莫16+を堆積し、そのまま弗化アンモ
ニウム溶液で1分程変エツチングする。このとき素子形
成領域周囲の側壁に堆積したプラズマCVl) S i
 Ox膜は、他の部位のS tO,膜よりエツチングが
急速に進むので、側壁部のSio、膜が選択的に除去さ
れ、細溝が形成される。その後素子形成領域上のAl膜
13を除去すると、その上に堆積したプラズマCVD5
iO*嘆が゛リフトオフされ、(d)に示した構造にな
る。次に(e)に示す如く前記細溝を埋めこむように全
面にCVD5 i O! W 16 t  を堆積し、
更にその表面の四部を叩めこんで表面を平坦化するよう
に、流NQ+性で、力)っ後述のエツチング工程で5i
0211休16+、16□と同じエツチング速度を有す
る例えばレジスト膜17を塗布形成する。
The steps of this conventional method will be briefly explained below with reference to FIG. As shown in FIG. 1+a+, for example, a thermal oxide film 12 is formed on a silicon substrate 1, an A/film I3 is deposited thereon, and an element forming area is formed with a resist film 14 using a normal photolithography process. Hey, Al! The film 13 and thermal oxide film 12 are patterned. And AI! Using the film 13 as a mask (after etching the silicon substrate 11 by reactive ion etching to a depth corresponding to the desired field insulating film thickness as shown in BL), the field is etched using the Al film 3 as a mask. To prevent reversal, the silicon substrate 11
The inversion prevention layer 15 is formed by ion-implanting an impurity of the same conductivity type as, for example, boron in the case of a P-type substrate. then te
As shown in 1, plasma CVD is applied to the entire surface to a thickness greater than the depth of the groove.
5. Deposit 16+ fotll and etch it with ammonium fluoride solution for about 1 minute. At this time, plasma CVl) S i deposited on the side wall around the element formation region
Since the Ox film is etched more rapidly than the S tO film in other parts, the Sio film on the sidewalls is selectively removed and narrow grooves are formed. After that, when the Al film 13 on the element formation region is removed, the plasma CVD 5 deposited thereon is removed.
iO* is lifted off, resulting in the structure shown in (d). Next, as shown in (e), CVD5 i O! is applied to the entire surface so as to fill the narrow grooves. depositing W 16 t;
Furthermore, in order to flatten the surface by hammering in the four parts of the surface, the etching process (described later) is performed using a 5i
For example, a resist film 17 having the same etching speed as 0211-16+ and 16□ is coated and formed.

その後+f)に示す如く、レジスト)漠17及びCVD
 SiOtHa l 6.、 I 6zを均一エツチン
グして素子形成領域を4出させる。fglはこのΦ素子
形成領」或にゲート酸化膜18を介してゲート市1嵐■
9を形成した状態を示している。
After that, as shown in +f), resist) 17 and CVD
SiOtHa l 6. , I6z is uniformly etched to form four element forming regions. fgl is this Φ element formation region' or gate city 1 storm through gate oxide film 18.
9 is shown.

この従来法に於いては、シリコン基板のエツチングに反
応件イオンエツチングを用いることにより、素子領域の
寸法は写真食刻工程で形成したマスクの寸法によって規
定され、素子領域の寸法変喚差はゼロにすることができ
る。
In this conventional method, by using reactive ion etching for etching the silicon substrate, the dimensions of the element area are defined by the dimensions of the mask formed in the photolithography process, and the difference in dimension variation of the element area is zero. It can be done.

しや為しながら上述の従来法では、前述したフィールド
領域周辺に形成した細溝を埋め込むのに、CVD S 
i O! 腰を埋め込んでいるが、このようなcvns
;ot膜は熱酸化膜に比べて弗や処理によるエツチング
速度がはやいため、希弗酸処理を含むウェハー処理工程
によって通常の熱噴化嘆より多くエツチング除去されて
しまう。
However, in the conventional method described above, CVD S is used to fill the narrow groove formed around the field region.
i O! Although the waist is buried, cvns like this
;Since the etching rate of the OT film is faster than that of a thermally oxidized film, the wafer processing process including the dilute hydrofluoric acid process etches more than the normal thermal oxidation film.

そのため、素子領域とフィールド領域の境界部でCVD
5 io、膜が薄くなり、素子領域の半導体基板表面と
の間に一部段差が形成される。この表面段差は素子分離
工程後のリソグラフィー精度の低下及び表面段差部での
金属配線の信頼性低下の原因となる。またこのような段
差部では素子領域の半導体基板の側面が一部露出する事
になる。その後例えばMOS)ランジスタを製造すると
、ゲート酸化膜を介してゲート電極で覆われた上記露出
した側面で寄生のチャネルが形成されトランジスタがO
FF状態でのリーク電流の原因にな力、素子特性の低下
をまねく。
Therefore, CVD is applied at the boundary between the element region and the field region.
5 io, the film becomes thinner, and a partial step is formed between the element region and the surface of the semiconductor substrate. This surface step causes a decrease in lithography accuracy after the element isolation process and a decrease in reliability of metal wiring at the surface step. Further, in such a stepped portion, a portion of the side surface of the semiconductor substrate in the element region is exposed. After that, when a transistor (for example, MOS) is manufactured, a parasitic channel is formed on the exposed side surface covered with the gate electrode through the gate oxide film, and the transistor becomes
This causes leakage current in the FF state, leading to deterioration of device characteristics.

そのため、従来法において、前述の細溝に埋め込む絶縁
膜はCVD5iO,膜より基板シリコン又は多結晶シリ
コンを酸化して形成した熱酸化膜であることが好ましい
Therefore, in the conventional method, it is preferable that the insulating film buried in the above-mentioned narrow groove be a thermal oxide film formed by oxidizing the substrate silicon or polycrystalline silicon rather than the CVD5iO film.

〔発明の目的〕[Purpose of the invention]

本発明は上記従来法の問題に鑑みて々されたもので、上
記細溝の少なくとも一部に多結晶シリコンを埋め込み、
次にこれを熱酸化する事により熱酸化膜に変え、上dピ
細iin ′fI:熱酸化膜で43pめ込む半導体装置
の製造方法を、用供するものである。
The present invention has been made in view of the problems of the conventional method, and includes embedding polycrystalline silicon in at least a portion of the narrow groove,
Next, this is converted into a thermal oxide film by thermal oxidation, and a method for manufacturing a semiconductor device is provided in which 43p of the thermal oxide film is inlaid on the upper d-pi.

〔発明の概要〕[Summary of the invention]

本発明の方法では、まず半導体基板表面の分離領域外を
、マスク材で覆い、これを用いて半導体基板をエツチン
グし分離領域に凹部をつ(る。その後凹部をまず第一の
埋め込みエイ呈で周辺に細を薄晶シリコンを堆積し、′
4゛一方性エッチングを行う事により上記多結晶シリコ
ンを上記細溝の少なくとも一部に残置する。その後熱酸
化処理を行う事により上記多結晶シリコンをシリコン酸
化膜に変える事により該細溝をシリコン酸化膜で埋め込
み、第一の埋め込みエイ♀で形醐した酸化膜とともにフ
ィールド酸化膜とする。
In the method of the present invention, first, the outside of the isolation region on the surface of the semiconductor substrate is covered with a mask material, and the semiconductor substrate is etched using the mask material to form a recess in the isolation region.The recess is then first filled with a first filling pattern. Deposit thin crystalline silicon around the periphery,
4. By performing unilateral etching, the polycrystalline silicon is left in at least a portion of the narrow groove. Thereafter, thermal oxidation treatment is performed to convert the polycrystalline silicon into a silicon oxide film, thereby burying the narrow groove with the silicon oxide film and forming a field oxide film together with the oxide film formed by the first buried ray ♦.

〔発明の効果〕〔Effect of the invention〕

本発明の方法にれは多結晶シリコンを熱酸化した膜で該
細溝を埋め込めるためCV D S i O* @を埋
め込んでいた従来法に比べて、酸化膜の眠気的信頼性が
丁ぐれている。その之め素子特性の信頼性が向上する。
In the method of the present invention, since the narrow grooves can be filled with a film made by thermally oxidizing polycrystalline silicon, the drowsy reliability of the oxide film is significantly lower than that of the conventional method in which CVD SiO*@ is filled. ing. This improves the reliability of the device characteristics.

また弗酸によるエツチング速度が遅いため弗酸を用いた
ウェハー処理工程による酸化膜の膜減シが小さい。その
ため表面の平坦性が得られる。これは前述のように、そ
の後のリソグラフィー精度と、金属配線の信頼性とを向
上させるのに有効である。また酸化膜の膜ベシが小さい
事は、前述のMOS)ランジスタにおける寄生チャネル
形成を抑えるのに効果的であり素子特性の内水発明方法
を、第2図の実施例により詳細に説明する。
Furthermore, since the etching speed with hydrofluoric acid is slow, the reduction in oxide film caused by the wafer processing step using hydrofluoric acid is small. Therefore, surface flatness can be obtained. As described above, this is effective in improving the accuracy of subsequent lithography and the reliability of metal wiring. Furthermore, the small thickness of the oxide film is effective in suppressing the formation of parasitic channels in the above-mentioned MOS transistors.A method for inventing device characteristics will be explained in detail with reference to the embodiment shown in FIG.

まず、比抵抗5−50pcm程度のP型(100)シリ
コン基板21を用意し、素子形成予定領域表面にシリコ
ン酸化膜22およびシリコン窒化膜23゜さらにマスク
材例えばAI膜24を形成した後、tat図に示すよう
に分離領域のシリコン基板21をエツチングして凹部を
設ける。さらに同じマスクを用いて凹部内シリコン基板
中にフィールド反転防止のためのボロンイオン注入76
25 =に形成する。
First, a P-type (100) silicon substrate 21 with a resistivity of about 5-50 pcm is prepared, and after forming a silicon oxide film 22, a silicon nitride film 23, and a mask material such as an AI film 24 on the surface of a region where an element is to be formed, a tat As shown in the figure, the silicon substrate 21 in the isolation region is etched to form a recess. Furthermore, using the same mask, boron ions are implanted into the silicon substrate inside the recess to prevent field reversal 76
25=.

次に(b1図に示すように上記凹部の周辺に、γ用い溝
を残して第一の埋め込み工程により第一のシリコン酸化
力P26をまず埋め込む。上述の第一のIllめ込み方
法としては例えば全面にプラズマ雰囲気中で。
Next, (as shown in Figure b1), a first silicon oxidizing force P26 is first embedded in the periphery of the recessed part by a first embedding process, leaving a γ groove. Fully in a plasma atmosphere.

CVD 酸化膜を堆積した後、段差部に亜inシたプラ
ズマCVD 酸化膜が平坦部に、111:積した膜に比
べてはやくエツチングされる特質を用いて、緩衝弗酸液
で段差部に堆積した膜を除去し、さらにA/膜膜種4除
去する債によりAJIla上のプラズマCVD  酸化
膜を除去する方法がある。上述の特質を持つ膜としては
プラズマCVD酸化膜の他に、減FECVD法で形成し
たリン硅化ガラス、スパッタ法で形成した酸化膜等が知
られてGζる。
After depositing the CVD oxide film, the plasma CVD oxide film is deposited on the step part using a buffered hydrofluoric acid solution, which is etched more quickly than the 111: layered film. There is a method in which the plasma CVD oxide film on AJIla is removed by removing the deposited film and then removing the A/film type 4 film. In addition to the plasma CVD oxide film, films having the above-mentioned characteristics include phosphorus silicide glass formed by a reduced FECVD method, an oxide film formed by a sputtering method, and the like.

次に(c1図に示すように例えば1000℃酸素雰囲気
中で熱処理するとシリコン窒化膜23の働きで前1周辺
の細溝(「1す面のシリコン線板が酸化され。
Next, when heat treatment is performed in an oxygen atmosphere at, for example, 1000° C. (as shown in Figure c1), the silicon wire plate on the front 1 periphery is oxidized due to the action of the silicon nitride film 23.

酸化膜27が形成される。さらに凹部に囲め込まれた。An oxide film 27 is formed. It was further surrounded by a recess.

上記プラズマCVD酸化膜26とシリコン基板の界面付
近のシリコン基板が酸化される。
The silicon substrate near the interface between the plasma CVD oxide film 26 and the silicon substrate is oxidized.

次に(d1図に示すように、全面に多結晶シリコン膜(
28)を厚さ例えばフィールド凹部の深さの1/2程度
堆積する。
Next, as shown in Figure d1, a polycrystalline silicon film (
28) is deposited to a thickness of, for example, about 1/2 of the depth of the field recess.

次にte1図に示すように異方性のドライエツチング技
術を用いて多結晶シリコン膜をエツチングすると上記細
溝の側面にのみ多結晶シリコン29を残置する事ができ
る。
Next, as shown in FIG. te1, the polycrystalline silicon film is etched using an anisotropic dry etching technique, so that the polycrystalline silicon 29 can be left only on the side surfaces of the narrow grooves.

次にげ)図に示すように例えば1000℃の水蒸気雰囲
気中で30分程熱処理すると残置した多結晶シリコン2
9は酸化され前記細い溝はシリコン酸化膜で、実質的に
表面が平坦になるように埋め込まれる。
Next) As shown in the figure, for example, after heat treatment for about 30 minutes in a steam atmosphere of 1000°C, the remaining polycrystalline silicon 2
Reference numeral 9 is oxidized and the narrow groove is filled with a silicon oxide film so that the surface is substantially flat.

その後は、素子領吠上のシリコン窒化膜23シリコン酸
化暎を順次除去し、素子領域表面を露出する。次に!g
1図に示すように、通常のMO8型半導体装置の裂令方
法に従いゲート酸化膜31およびゲートm極32を形成
する。
Thereafter, the silicon nitride film 23 and the silicon oxide layer on the device region are sequentially removed to expose the surface of the device region. next! g
As shown in FIG. 1, a gate oxide film 31 and a gate m-pole 32 are formed in accordance with a conventional method for forming an MO8 type semiconductor device.

この実施例によれば多結晶シリコンを熱酸化した酸化膜
がフィールド周辺の細い溝に埋め込まれるため、CVD
酸化膜を用いる従来法に比べて素(11) 子持性の信頼性が同上する。さらにフィールド酸化膜の
膜減りも減少し素子特性の向上がはかれる。
According to this embodiment, since the oxide film obtained by thermally oxidizing polycrystalline silicon is buried in the narrow grooves around the field, CVD
Compared to the conventional method using an oxide film, the reliability of child bearing performance is the same as above. Furthermore, the thickness loss of the field oxide film is also reduced, and device characteristics are improved.

また、本発明においては多結晶シリコンを残置し。Further, in the present invention, polycrystalline silicon is left behind.

絶縁酸化膜に変える方法を述べたが1本発明は例えばA
I膜を残置しこれをアルミナ膜に変えて、アルミナ膜を
埋め込む事もできる。アルミナ膜を用いればフィールド
の膜減りは減少し、かつ、すぐれたU気的絶縁特性が得
られるため、やはり素子特性の向上を実現できる。
Although the method of changing to an insulating oxide film has been described, one example of the present invention is A.
It is also possible to leave the I film and replace it with an alumina film, and then embed the alumina film. If an alumina film is used, field thinning is reduced and excellent U gas insulation properties can be obtained, so it is possible to improve device characteristics.

この実施例によればシリコン窒化膜24を用いているが
このシリコン窒化膜により第2図(C)に示すように凹
部の側面に選択的に熱酸化膜27を形成しさらにプラズ
マ噸化膜26とシリコンの界面を酸化できる。そのため
フィールド酸化膜とシリコン基板の界面特性を改善する
事ができ、やはり素子特性を改善するのに有効である。
According to this embodiment, a silicon nitride film 24 is used, and this silicon nitride film selectively forms a thermal oxide film 27 on the side surface of the recess as shown in FIG. can oxidize the interface between silicon and silicon. Therefore, the interface characteristics between the field oxide film and the silicon substrate can be improved, which is also effective in improving device characteristics.

さらにこのシリコン窒化膜は第2図(elにおいて多結
晶シリコン膜を異方性のドライエツチングする場合異方
性のドライエツチングのストッパーとして働き素子領域
表面のシリコン基板を保護する事ができる。
Furthermore, when the polycrystalline silicon film is subjected to anisotropic dry etching as shown in FIG.

(12) また以上ではMO8型半導体装置を説明したが。(12) Furthermore, the MO8 type semiconductor device has been described above.

この発明はバイポーラ型半導体装置の素子分離にも適用
できることは勿論である。
Of course, the present invention can also be applied to element isolation of bipolar semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(at〜(glは従来法の素子分離工程例を示す
工程断面図%@2I¥I (a1〜(g)は、本発明の
一実施例の素子分離工程を示す工程断面図である。 11.21・・・シリコン基板、12,22.27・・
・熱酸化膜、13.24・・・AIt膜、14・・・レ
ジスト膜。 15.25・・・ボロンイオン注入層、16.26.3
0・・・酸化膜、17・・・レジスト膜、IFI、31
・・・ゲート酸化膜、19.32・・・ゲートt’+b
、23・・・シリコン窒化M1.28.29・・・多結
晶シリコン膜。 代理人弁理士 則 近 憲 佑(ほか1名)第1図 第1図 IE
FIG. 1 (at~(gl) is a process cross-sectional view showing an example of the element isolation process of the conventional method %@2I\I (a1~(g) is a process cross-sectional view showing the element isolation process of an example of the present invention. Yes. 11.21...Silicon substrate, 12,22.27...
・Thermal oxide film, 13.24...AIt film, 14...resist film. 15.25...Boron ion implantation layer, 16.26.3
0...Oxide film, 17...Resist film, IFI, 31
...gate oxide film, 19.32...gate t'+b
, 23...Silicon nitride M1.28.29...Polycrystalline silicon film. Representative Patent Attorney Noriyuki Chika (and 1 other person) Figure 1 Figure 1 IE

Claims (1)

【特許請求の範囲】 この凹部の周辺に空溝が残された状態で第1の絶縁II
’(r埋め込む工程と、その上に第2の膜を形成する工
程と、前記第2の膜を異方性エツチングすることにより
少なくとも上記溝部の側壁に前記第2の膜を残置せしめ
る工程と、前記残置せしめた前記第2の膜の少な(とも
一部を絶縁性の第3の膜に−M第3の膜で埋め込む工程
と、前記間”部に第1および第3の絶縁膜を残して素子
形成予定領域の前記基板表面を露出させる工程と、1〕
客出した前記基体に素子を形成する工程とを備えたこと
を特徴とする半導体装置の製造方法。 (2)第1の絶縁膜は、プラズマCVD5iO,膜又は
プラズマCVD5 fsNnN’J又はスパッタ蒸着し
た810゜膜又はLPCVD法で形成したリン硅化ガラ
ス膜であることを特徴とする特許 記載の半導体装置の製造方法。 (3)素子分離領域に凹部を形成するためのマスク材は
少なくとも耐酸化性の膜を含み、第1の絶縁膜を埋め込
んだ後、耐酸化性膜を用いて少なくとも前記凹部の側壁
および第1の絶縁膜と,凹部底面の基体との界面領域の
半導体基体を熱酸化する(4)マスク材は少々くとも耐
酸化性のli−を含み。 四部周辺の側壁に残置した多結晶シリコン膜の選記載の
半導体装置の製造方法。 (5)半導体甚体上の素子分離領域以外をマスク材で會
う工程と、前記マスク材を用いて前記分離領域に四部を
形成する工程と、前rマスク材を不純物注入マスクとし
て前記凹部から基体中に不純物を注入する工程と、基体
全体にわたって表面に絶縁膜を形成する工程と、前記凹
部の1則壁部に堆積した絶縁膜を選択的にエツチング除
去して、前記凹部の周辺に字消を形成する工程と、マス
ク材をエツチングして同時にマスク材上に堆積している
前記絶縁膜を除去する工程と、前記基体表面全体に多結
晶シリコン膜を堆積する工、1−と、前記多結晶シリコ
ン膜を異方性のドライエツチングする#:により、少な
くとも前記凹部の側壁に多結晶シリコン膜を残置せしめ
る工程と、熱酸化処理を行うことにより少な(とも前記
残置した多結晶シリコン膜の一部を熱酸化膜に変え前記
凹部周辺の溝を埋め込む工程と、前記基体の素子形成領
域をI落出させる工程と、・、落出した前記基体に素子
を形成する工程を具備した半導体・模1々の1!lツ造
方法。 (6)第1の絶縁1模はプラズマCVD5IOt膜又は
プ2ラズマCVD S I s N4 n%又はスパッ
タ蒸着したStO。 膜又はLPCVD法で形成したリン硅化ガラス膜である
ことを特徴とする特許請求のダ囲′45項肥載の半導体
装置の製造方法。 (7)素子分離領域に四部を形成するだめのマスク材は
少なくとも耐酸化性の膜を含み、第1の絶縁膜を埋め込
んだ後、耐酸化性嘆を用いて少なくとも前記四部の側壁
および第1の絶縁膜と、凹部底面の基体との界面領域の
半導体基体を熱酸化する(8)マスク材は少なくとも耐
酸化性の膜を含み、四部周辺の側壁に残置した多結晶シ
リコン膜の選の半導体装置の製造方法。
[Claims] The first insulator II is formed with an empty groove left around the recess.
'(r filling step, forming a second film thereon, and leaving the second film on at least the side wall of the groove by anisotropic etching the second film, a step of burying a small portion of the second film left in the insulating third film with a third film, and leaving the first and third insulating films in the “interval” portion; exposing the surface of the substrate in the area where the element is to be formed; 1)
A method for manufacturing a semiconductor device, comprising the step of forming an element on the substrate. (2) The semiconductor device described in the patent is characterized in that the first insulating film is a plasma CVD5iO film, a plasma CVD5 fsNnN'J film, a sputter-deposited 810° film, or a phosphosilicate glass film formed by an LPCVD method. Production method. (3) The mask material for forming the recess in the element isolation region includes at least an oxidation-resistant film, and after burying the first insulating film, the oxidation-resistant film is used to cover at least the side walls of the recess and the first insulating film. (4) The mask material contains at least a small amount of oxidation-resistant Li-. A method of manufacturing a semiconductor device according to the present invention, wherein a polycrystalline silicon film is left on a side wall around four parts. (5) A step of meeting areas other than the element isolation region on the semiconductor body with a mask material, a step of forming four parts in the isolation region using the mask material, and a step of forming four parts in the isolation region using the former mask material as an impurity implantation mask. A step of injecting impurities into the substrate, a step of forming an insulating film on the surface over the entire substrate, and a step of selectively etching away the insulating film deposited on the regular walls of the recess to form a pattern around the recess. a step of etching the mask material and simultaneously removing the insulating film deposited on the mask material; and a step of depositing a polycrystalline silicon film over the entire surface of the substrate; The polycrystalline silicon film is anisotropically dry etched to leave at least the polycrystalline silicon film on the side walls of the recess, and the remaining polycrystalline silicon film is removed by thermal oxidation treatment. A semiconductor device comprising the steps of: converting a part of the base body into a thermal oxide film to fill the groove around the recess; dropping the element formation region of the base body; and forming an element on the base body that has fallen off. 1!L manufacturing method for each pattern. (6) The first insulation 1 pattern is a plasma CVD 5IOt film, a plasma CVD SI s N4 n%, or a sputter-deposited StO film or a phosphorus silicide film formed by the LPCVD method. A method for manufacturing a semiconductor device according to Paragraph 45 of the patent claim, characterized in that the film is a glass film. (7) The mask material for forming the four parts in the element isolation region includes at least an oxidation-resistant film. , after embedding the first insulating film, thermally oxidize at least the side walls of the four parts and the semiconductor substrate in the interface region between the first insulating film and the base at the bottom of the recess using an oxidation-resistant layer (8) mask; A method of manufacturing a semiconductor device in which the material includes at least an oxidation-resistant film, and a polycrystalline silicon film is left on the sidewalls around the four parts.
JP336383A 1983-01-14 1983-01-14 Manufacture of semiconductor device Pending JPS59129438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP336383A JPS59129438A (en) 1983-01-14 1983-01-14 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP336383A JPS59129438A (en) 1983-01-14 1983-01-14 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS59129438A true JPS59129438A (en) 1984-07-25

Family

ID=11555262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP336383A Pending JPS59129438A (en) 1983-01-14 1983-01-14 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59129438A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4764483A (en) * 1986-09-19 1988-08-16 Matsushita Electric Industrial Co., Ltd. Method for burying a step in a semiconductor substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4764483A (en) * 1986-09-19 1988-08-16 Matsushita Electric Industrial Co., Ltd. Method for burying a step in a semiconductor substrate

Similar Documents

Publication Publication Date Title
US5151381A (en) Method for local oxidation of silicon employing two oxidation steps
JP3539483B2 (en) Method for manufacturing semiconductor device
JPH0574927A (en) Production of semiconductor device
JPS58202545A (en) Manufacture of semiconductor device
JPH06163532A (en) Method for isolation of semiconductor element
JPS61137338A (en) Manufacture of semiconductor integrated circuit device
JP3039978B2 (en) Method of forming an electric field isolation structure and a gate structure in an integrated MISFET device
JPS59232437A (en) Manufacture of semiconductor device
JPH0964319A (en) Soi substrate and its manufacture
JPS59129438A (en) Manufacture of semiconductor device
JP2757358B2 (en) Method for manufacturing semiconductor device
JPS6123363A (en) Semiconductor device and manufacture of the same
JPH0521592A (en) Manufacture of semiconductor device and semiconductor device
JPH07106413A (en) Trench isolation semiconductor device and fabrication thereof
JPS59177941A (en) Manufacture of element isolation region
JPS62232143A (en) Manufacture of semiconductor device
JPH0370385B2 (en)
JPS6020529A (en) Manufacture of semiconductor device
JPS62211952A (en) Manufacture of semiconductor device
JPS594047A (en) Fabrication of semiconductor device
JPS61241941A (en) Manufacture of semiconductor device
JPS5963741A (en) Manufacture of semiconductor device
JPS6116545A (en) Manufacture of semiconductor integrated device
JPH0445980B2 (en)
JPH0429354A (en) Manufacture of semiconductor integrated circuit device