JPS591117B2 - How to treat organic wastewater - Google Patents
How to treat organic wastewaterInfo
- Publication number
- JPS591117B2 JPS591117B2 JP53106817A JP10681778A JPS591117B2 JP S591117 B2 JPS591117 B2 JP S591117B2 JP 53106817 A JP53106817 A JP 53106817A JP 10681778 A JP10681778 A JP 10681778A JP S591117 B2 JPS591117 B2 JP S591117B2
- Authority
- JP
- Japan
- Prior art keywords
- wastewater
- added
- substances
- organic
- waste
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Description
【発明の詳細な説明】
本発明は、有機性物質を含有する排水の処理方法に関す
るものであり、更に詳しくは、有機性物質を含有する排
水中の有機物ならびに色度成分の除去を主目的とする新
規な処理法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating wastewater containing organic substances, and more specifically, to a method for treating wastewater containing organic substances. This paper concerns a new treatment method.
近時、環境保全に対する関心がとみに高まり、法的にも
各種の規制が施行されるに伴ない、公害防止技術の進歩
も著しいものがあるが、未だ技術的、経済的に早急な解
決が望まれている分野が多く残されている。In recent years, interest in environmental conservation has increased rapidly, and various legal regulations have been enacted.Although there have been significant advances in pollution prevention technology, there is still a need for an immediate technical and economic solution. There are many areas left unfinished.
特に閉鎖水域への放流水質の規制は、益々強化され、特
に化学的酸素要求量(以下CODMnと略す)は通常1
0 ppm以下であることが要求されるようになり、又
CODMnの総量規制の導入とあいまって早急に解決が
望まれている。In particular, regulations on the quality of water discharged into closed water bodies are becoming increasingly strict, and in particular, chemical oxygen demand (hereinafter abbreviated as CODMn) is normally 1.
0 ppm or less is now required, and combined with the introduction of total CODMn quantity regulations, an immediate solution is desired.
通常有機性排出の処理に用いられる生物学的処理方式で
は、生物学的酸素要求量(以下BOD5と略す)は低下
するもののCODMnは排水中の生物難分解性物質ある
いは又、生物学的処理の過程でされる生物代謝老廃物質
であるムコ多糖体、フミン酸、フルボ酸を主体とする高
分子物質が処理水中に蓄積するため必ずしも満足する結
果が得られないばかりでなく放流水が黒、褐色あるいは
淡黄色に着色しているのが現状である。In the biological treatment method normally used to treat organic wastewater, although the biological oxygen demand (BOD5) decreases, CODMn is reduced by the biologically persistent substances in the wastewater or by the biological treatment. Polymer substances mainly consisting of mucopolysaccharide, humic acid, and fulvic acid, which are biometabolic waste substances generated during the process, accumulate in the treated water, which not only does not always give satisfactory results, but also causes the effluent water to become black or brown. Or, the current situation is that it is colored pale yellow.
例えば、廃棄物理立場浸出汚水についてみれば生ごみあ
るいは不燃物埋立て後、長期間にわたり埋立層内で廃棄
物中の有機物が嫌気性あるいは好気性分解を受ける結果
廃棄物理立場浸出汚水中に含有する有機物は、生物易分
解性の糖、蛋白、脂肪酸類を一部含む他は、生物難分解
性物質、あるいは生物代謝の結。For example, when looking at waste leached sewage, organic matter in the waste undergoes anaerobic or aerobic decomposition in the landfill layer for a long period of time after food waste or non-combustible materials are landfilled. Organic matter includes some easily biodegradable sugars, proteins, and fatty acids, as well as non-biodegradable substances or the result of biological metabolism.
未排出される老廃物質であるムコ多糖体、フミン酸、フ
ルボ酸等の有機高分子物質かほとんどであり、有機物汚
濁負荷量が高く、黒又は褐色に着色しており生物学的処
理方法のみでは高度に浄化することは不可能である。Most of them are organic polymer substances such as mucopolysaccharide, humic acid, and fulvic acid, which are waste substances that are not excreted.They have a high organic pollution load and are colored black or brown, so biological treatment methods alone cannot treat them. It is not possible to purify to a high degree.
又、高度処理が叫ばれているし尿処理においては、シ尿
中に多量に含有されている有機性物質は通常嫌気性消化
、好気性消化あるいはその併用法を用いて処理されてい
るが生物学的処理法では生物易分解性有機物質を分解除
去する反面、し尿中に含有されている生物難分解性物質
あるいは生物学的処理の過程で新たに蓄積する生物代謝
老廃物質のため、CODMnの除去効果は低く、かつ又
、し尿中に含有されている胆汁色素の除去が不充分なば
かりでなく、生物学的処理の過程で蓄積される生物代謝
老廃物質の色度とあいまって色度の除去効果も低く褐色
を呈している。In addition, in the treatment of human waste, which requires advanced treatment, the organic substances contained in large amounts in human waste are usually treated using anaerobic digestion, aerobic digestion, or a combination of these methods, but biological While the organic treatment method decomposes and removes easily biodegradable organic substances, it is difficult to remove CODMn because it is a persistent biodegradable substance contained in human waste or a biometabolic waste substance that newly accumulates during the biological treatment process. The effect is low, and not only is the removal of bile pigments contained in human waste insufficient, but also the removal of chromaticity is difficult due to the chromaticity of biometabolic waste substances accumulated in the biological treatment process. It is less effective and has a brown color.
又、醸造、醗酵工業の排水は、既に生産工程で、原料の
有機物質(特に大豆、米、麦等の穀類)を酵母、菌類等
の微生物で長期間に亘って醗酵分解させる結果、これら
の工程より排出される排水は高度に微生物分解の作用を
受けているため、生物易分解性の低級脂肪酸糖類、低級
アルコール、蛋白、アミノ酸は生物学的処理方法で除去
が期待されるものの生物代謝老廃物質である生物難分解
性物質を多量に含有し、褐色乃至淡黄色を呈しているの
が普通である。In addition, wastewater from the brewing and fermentation industries is already a result of fermentation and decomposition of raw organic substances (particularly grains such as soybeans, rice, and wheat) over a long period of time with microorganisms such as yeast and fungi during the production process. Since the wastewater discharged from the process is highly subject to microbial decomposition, biodegradable lower fatty acid saccharides, lower alcohols, proteins, and amino acids are expected to be removed by biological treatment methods, but they are no longer biometabolic waste. It contains a large amount of biodegradable substances and is usually brown to pale yellow in color.
このように、廃棄物理立場浸出汚水、シ尿、下水あるい
は各種産業より排出される有機性排出の処理方法として
は通常生物学的処理方法が設備費、ランニングコストの
低置さから排水処理に利用されているが、生物易分解性
有機物質の分解除去法としては優れているものの当然の
ことながら生物難分解性物質の処理および生物代謝の結
果生成される老廃物質の蓄積のため有機性排水の高度処
理方法として必ずしも満足するものではない。As described above, biological treatment methods are usually used for wastewater treatment due to their low equipment costs and running costs as a treatment method for wastewater, human waste, sewage, and organic waste discharged from various industries. However, although it is an excellent method for decomposing and removing easily biodegradable organic substances, it is of course difficult to treat organic wastewater due to the treatment of non-biodegradable substances and the accumulation of waste substances produced as a result of biological metabolism. This method is not necessarily satisfactory as an advanced processing method.
生物難分解性物質あるいは、生物代謝老廃物質を含む排
水の処理方法として各種処理方法が開発されているが、
その中での代表的なものとして活性炭吸着法、オゾン酸
化法等の物理化学処理を主体とする方法がある。Various treatment methods have been developed to treat wastewater containing biorefractory substances or biometabolic waste substances.
Typical of these methods include methods based on physical and chemical treatments such as activated carbon adsorption and ozone oxidation.
これらの方法は、汚濁負荷量の高い排水処理においては
、大規模な設備、膨大なランニングコストがかかる一方
、処理技術上の本質にかかる問題を持っている。These methods require large-scale equipment and enormous running costs when treating wastewater with a high pollution load, and they also have problems concerning the essence of treatment technology.
つまり活性炭吸着法では生物学的処理水中に蓄積してい
る生物代謝老廃物質が糖蛋白、フミン酸、フルボ酸等の
分子量数千〜数万に達する有機高分子化合物であるため
、活性炭中の細孔への吸着、拡散が著しく悪く、有機物
除去効果が低い。In other words, in the activated carbon adsorption method, the biometabolic waste substances accumulated in biologically treated water are organic polymer compounds with molecular weights of several thousand to tens of thousands, such as glycoproteins, humic acids, and fulvic acids. Adsorption into pores and diffusion are extremely poor, and the organic matter removal effect is low.
オゾン処理法は、排水中の有機高分子化合物を酸化分解
し一部CODMnを低下させるもののその処理効果は低
く、酸化分解の過程で生成した低分子化合物は、生物易
分解性物質に転換され、BOD5を増大させる欠陥を有
することが認められ両方式共実用上大きな問題になって
いる。Although the ozone treatment method oxidizes and decomposes organic polymer compounds in wastewater and partially reduces CODMn, its treatment effect is low, and the low molecular compounds generated during the oxidative decomposition process are converted into easily biodegradable substances. Both types have been found to have defects that increase BOD5, and have become a major problem in practice.
本発明者らは、かかる状況下において、鋭意研究を重ね
た結果、有機性排水中の懸濁物質、有機物質ならびに色
度成分を高度に除去し得る優れた方法を見出し、本発明
を完成するに至った。Under such circumstances, as a result of extensive research, the present inventors have discovered an excellent method that can highly remove suspended solids, organic substances, and chromatic components in organic wastewater, and have completed the present invention. reached.
すなわち、本発明は、有機性排水中の生物難分解性物質
、生物代謝老廃物質をはじめとする有機物質及び色度成
分を、処理方法が簡便で、処理コストが低置、かつ極め
て高率に除去することが可能な方法に関するものである
。In other words, the present invention provides a method for treating organic substances such as biorefractory substances and biometabolic waste substances and color components in organic wastewater using a simple method, low processing cost, and extremely high efficiency. It relates to a method that can be removed.
本発明の処理対象になる有機性排水は、廃棄物埋立処理
場浸出汚水ならびにその生物学的処理を行った処理水、
下水、し尿および有機性工場排水が望ましく、有機性排
水中に生物学的易分解性の各種糖類、脂肪酸、アルコー
ル類およびその他の水溶性、有機物質が含有されている
場合は、あらかじめ活性汚泥、散水p床、回転円盤ある
いは嫌気性消化等の生物学的処理方法を用いてBOD5
を100 ppm以下まで極力低下させておくことが、
鉄塩触媒、過酸化水素等の薬剤使用量を大巾に減少させ
るため必要な前処理である。The organic wastewater to be treated by the present invention includes sewage leached from a waste landfill, treated water that has been subjected to biological treatment,
Sewage, human waste, and organic industrial wastewater are preferable, and if the organic wastewater contains biologically easily degradable various sugars, fatty acids, alcohols, and other water-soluble and organic substances, activated sludge, BOD5 using biological treatment methods such as watered p-beds, rotating disks or anaerobic digestion.
It is important to reduce the amount to 100 ppm or less as much as possible.
This pretreatment is necessary to greatly reduce the amount of chemicals used such as iron salt catalysts and hydrogen peroxide.
本発明の方法は具体的には、次の工程から成り立ってい
る。Specifically, the method of the present invention consists of the following steps.
(イ)有機性排水に、第2鉄塩を主とする凝集剤を添加
し、pHを3乃至5.5に調整後、懸濁物質、有機物お
よび色度成分を水酸化第2鉄フロツクと共に凝集分離す
る第1工程、
(0) 第1工程の処理水に新たに鉄塩および過酸化
水素を添加して有機物および色度成分を酸化分解する第
2工程、
(ハ)酸化処理水をそのままか、もしくは未反応の過酸
化水素が残留する場合は還元剤を加えて過酸化水素を分
解除去すると同時に、アルカリを加えてpH4以上に中
和して、鉄塩を水酸化鉄フロックとして析出分離させる
第3工程、
からなる。(b) After adding a flocculant mainly containing ferric salt to organic wastewater and adjusting the pH to 3 to 5.5, suspended solids, organic matter, and color components are removed together with ferric hydroxide flocs. 1st step of coagulation and separation; (0) 2nd step of adding new iron salt and hydrogen peroxide to the water treated in the 1st step to oxidize and decompose organic matter and chromatic components; (c) oxidation-treated water as it is; Or, if unreacted hydrogen peroxide remains, add a reducing agent to decompose and remove the hydrogen peroxide, and at the same time add an alkali to neutralize to pH 4 or higher, and precipitate and separate iron salts as iron hydroxide flocs. The third step consists of:
特に本発明の特徴は、第1工程より第3工程で示される
如く、一連の工程を含むことを特徴とする処理方法であ
るので、図を用いて本発明の実施態様を説明する。In particular, the present invention is characterized by a processing method that includes a series of steps as shown from the first step to the third step, so embodiments of the present invention will be described with reference to the drawings.
第1図において処理すべき有機性排水は管8を通って第
1混和槽1に導かれ、攪拌されつつ、第2鉄塩を主とす
る凝集剤16を所定量添加し、第1 pH調整槽2で所
定のpHに調整されて排水中の有機物ならびに色度成分
が水酸化鉄フロックと共に凝集する。In FIG. 1, organic wastewater to be treated is led to a first mixing tank 1 through a pipe 8, and while being stirred, a predetermined amount of a flocculant 16 mainly composed of ferric salt is added, and a first pH adjustment is performed. In tank 2, the pH is adjusted to a predetermined value, and organic matter and chromaticity components in the wastewater coagulate together with iron hydroxide flocs.
ここで使用される第2鉄塩を主とする凝集剤は、硫酸第
2鉄、塩化第2鉄、硝酸第2鉄あるいはポリ硫酸鉄のい
ずれでも処理に使用することが出来るが通常は硝酸第2
鉄は処理水に与える影響を考慮して用いられない。The flocculant mainly composed of ferric salt used here can be ferric sulfate, ferric chloride, ferric nitrate or polyferrous sulfate, but usually ferric nitrate is used. 2
Iron is not used due to its impact on treated water.
第2鉄塩を主とする凝集剤の添加量は、汚水中に含まれ
る有機物量によりその添加量に差はあるものの、第2鉄
塩の添加量に比例して処理効果は良好になるが、通常は
鉄原子換算で10ppm乃至11000pp添加される
。Although the amount of coagulant, mainly ferric salt, added varies depending on the amount of organic matter contained in the wastewater, the treatment effect improves in proportion to the amount of ferric salt added. , is usually added in an amount of 10 ppm to 11,000 ppm in terms of iron atoms.
第2鉄塩の添加と同時に第1混和槽1に酸、あるいはア
ルカリを添加して水酸化第2鉄フロツクを生成させるこ
とも可能であるが、凝集時のpHを3乃至5,5、好ま
しくはpH4乃至4.5の範囲に厳密に維持する事が本
発明の重要な構成要因をなしているので、別に第1pH
調整槽2を設けpHを調整する。It is also possible to add acid or alkali to the first mixing tank 1 at the same time as the addition of the ferric salt to generate ferric hydroxide flocs, but the pH at the time of aggregation is preferably 3 to 5.5. Since it is an important component of the present invention to strictly maintain the pH within the range of 4 to 4.5, the first pH
An adjustment tank 2 is provided to adjust the pH.
第1 pH調整槽2でのpH調整は排水の性質により酸
又は、アルカリの一方が添加され最適pHに維持される
。For pH adjustment in the first pH adjustment tank 2, either acid or alkali is added depending on the nature of the waste water to maintain the optimum pH.
有機性排水の生物学的処理はNH4+のpH緩衝性のた
め、強酸性の第2鉄塩を添加してもpH3乃至5.5の
至適pH値迄低下しない場合には硫酸、塩酸等の鉱酸を
添加するが、通常は第2鉄塩の添加と供にpHは4以下
に低下するため、アルカリを添加して至適pHに調整す
る。Biological treatment of organic wastewater is performed using sulfuric acid, hydrochloric acid, etc., if the pH does not drop to the optimum pH value of 3 to 5.5 even after adding strongly acidic ferric salts due to the pH buffering property of NH4+. A mineral acid is added, but since the pH usually drops to 4 or less with the addition of a ferric salt, an alkali is added to adjust the pH to an optimal value.
中和に用いるアルカリは苛性ソーダ、苛性カリ、消石灰
、生石灰等の強アルカリであれば良いが価格、沈降性等
を考慮して消石灰が用いられる。The alkali used for neutralization may be any strong alkali such as caustic soda, caustic potash, slaked lime, quicklime, etc., but slaked lime is used in consideration of cost, settling properties, etc.
中和に要する時間は通常の強酸、強アルカリの中和反応
と同様1乃至20分程度で完了し生成する水酸化第2鉄
は酸性下でコロイド粒子として析出する分子量数千乃至
数万の生物難分解性物質、生物代謝老廃物質、色度成分
と共に凝集する。The time required for neutralization is the same as for normal strong acid/strong alkali neutralization reactions, and is completed in about 1 to 20 minutes. It aggregates with persistent substances, biometabolic waste substances, and chromaticity components.
pH調整液は管10を通って中間固液分離槽3に導かれ
、凝集助剤18が加えられ凝集沈澱あるいは凝集加圧浮
上等により有機物あるいは色度成分を凝集した水酸化第
2鉄フロツクは管22により分離除去され、必要に応じ
設けられるスラッジ濃縮槽で濃縮され、脱水後中和剤を
混入し中性にしたのち処分される。The pH adjustment liquid is led to the intermediate solid-liquid separation tank 3 through a pipe 10, where a flocculation aid 18 is added and the ferric hydroxide flocs which flocculate organic substances or color components by flocculation sedimentation or flocculation pressure flotation are produced. The sludge is separated and removed through a pipe 22, concentrated in a sludge concentration tank provided as needed, dehydrated, mixed with a neutralizing agent to make it neutral, and then disposed of.
第1工程で固液分離された処理水は管11を通り、第2
工程の第2混和槽4に導かれ攪拌されつつ、新たに酸化
触媒としての鉄塩19及び酸化剤として過酸化水素20
を添加する。The treated water separated into solid and liquid in the first step passes through the pipe 11 and passes through the second
While being led to the second mixing tank 4 of the process and being stirred, iron salt 19 as an oxidation catalyst and hydrogen peroxide 20 as an oxidizing agent are newly added.
Add.
酸化触媒として添加される鉄塩は硫酸第1鉄塩、塩化第
1鉄塩等のFe(If)イオン、硫酸第2鉄塩、塩化第
2鉄塩、ポリ硫酸鉄等のFe(III)イオンを有する
化合物およびその水溶液であり、硝酸第1鉄塩、硝酸第
2鉄塩等の硝酸塩は酸化触媒作用は充分期待されるもの
の富栄養化等の問題を考慮して特別の場合を除き用いら
れず、通常は酸化触媒能が高く価格が低床なことから硫
酸第1鉄塩が用いられる。The iron salts added as oxidation catalysts include Fe(If) ions such as ferrous sulfate salts and ferrous chloride salts, and Fe(III) ions such as ferric sulfate salts, ferric chloride salts, and polyferrous sulfate salts. Although nitrates such as ferrous nitrate and ferric nitrate are expected to have sufficient oxidation catalytic activity, they are not used except in special cases due to problems such as eutrophication. First, ferrous sulfate is usually used because it has high oxidation catalytic ability and is inexpensive.
酸化触媒である鉄塩は排水中で過酸化水素と反応して強
力な酸化性を有する水酸基ラジカルを生成すると共に加
水分解し、反応至適のpH4以下になるが必要に応じ最
適反応pHに調整するためpH調整剤17を添加する。Iron salt, which is an oxidation catalyst, reacts with hydrogen peroxide in waste water to generate hydroxyl radicals with strong oxidizing properties and is hydrolyzed, resulting in the optimum reaction pH of 4 or less, but it can be adjusted to the optimum reaction pH as necessary. To do this, pH adjuster 17 is added.
酸化触媒としての鉄塩の添加量は、被酸化性物質の種類
、過酸化水素の注入量、反応時間、ならびに酸化反応後
の固液分離方法等により決定されるものであるが、鉄塩
触媒の添加量は数ppm程度から効果を発揮し、多量に
なる程排水中の有機物質および色度成分の除去効果は良
好になるが、一方ではスラッジの発生量が増大するので
、通常は鉄原子換算で5 ppm乃至11000ppの
範囲で添加される。The amount of iron salt added as an oxidation catalyst is determined by the type of oxidizable substance, the amount of hydrogen peroxide injected, the reaction time, and the solid-liquid separation method after the oxidation reaction. The amount of addition of iron becomes effective from a few ppm, and the larger the amount, the better the effect of removing organic substances and chromaticity components in wastewater becomes.However, on the other hand, the amount of sludge generated increases, so it is usually It is added in a range of 5 ppm to 11,000 ppm in terms of conversion.
又過酸化水素の添加量は、特に限定はないが排水中の被
酸化性物質の種類、濃度および処理水質目標等により決
定されるが通常は排出中のCODMn量に対し過酸化水
素中の有効酸素換算で0.1乃至2倍の範囲で添加され
る。The amount of hydrogen peroxide added is determined depending on the type and concentration of oxidizable substances in the wastewater, the target quality of the treated water, etc., although there are no particular limitations. It is added in an amount of 0.1 to 2 times the amount of oxygen.
混和液は管12を通って酸化反応槽5に導かれ酸化反応
が行われる。The mixed liquid is led to the oxidation reaction tank 5 through the pipe 12, where an oxidation reaction is carried out.
酸化反応槽は機械攪拌、あるいは空気攪拌される。The oxidation reaction tank is mechanically or air agitated.
反応槽での酸化反応時間は、排水中の被酸化性物質の種
類、濃度、反応温度、鉄塩触媒量、過酸化水素量により
異なる。The oxidation reaction time in the reaction tank varies depending on the type and concentration of the oxidizable substance in the wastewater, the reaction temperature, the amount of iron salt catalyst, and the amount of hydrogen peroxide.
反応温度は高い程迅速に効率良く反応する傾向があるが
、常温においても充分本発明の目的は達成されるので、
反応温度については特に限定されるものではなく、又反
応時間は、例えば廃棄物理立場浸出汚水等の如く短時間
で反応が完結する排水の場合には、第2混和槽内での反
応で充分であるが、通常は酸化反応槽を設は常温で5分
乃至24時間の滞留時間で充分反応は完結する。The higher the reaction temperature, the more quickly and efficiently the reaction tends to occur, but the purpose of the present invention can be sufficiently achieved even at room temperature.
The reaction temperature is not particularly limited, and the reaction time is sufficient for the reaction in the second mixing tank in the case of wastewater where the reaction is completed in a short time, such as waste water leached from a physical wastewater tank. However, when an oxidation reaction tank is installed, the reaction is usually completed within a residence time of 5 minutes to 24 hours at room temperature.
次に酸化反応処理水は、管13を通って中和槽6に攪拌
されつつ導かれアルカリ剤17′あるいは又必要に応じ
て還元剤21が添加される。Next, the oxidation reaction treated water is led to the neutralization tank 6 through a pipe 13 while being stirred, and an alkaline agent 17' or a reducing agent 21 is added thereto as required.
アルカリ剤17′は水に溶解し、アルカリ性を呈するも
のであれば良や苛性ソーダ、苛性カリ、消石灰、生石灰
を用いてFe(Ill)イオンの場合にはpH4以上、
あるいはFe(損イオンが混入している場合はpH9以
上で鉄イオンを水酸化鉄フロックとして析出させると同
時に排水中の有機物をも合せて凝集分離する。The alkaline agent 17' can be anything that dissolves in water and exhibits alkalinity, such as caustic soda, caustic potash, slaked lime, or quicklime.
Alternatively, Fe (if loss ions are mixed in, iron ions are precipitated as iron hydroxide flocs at pH 9 or higher, and at the same time, organic matter in the waste water is also coagulated and separated.
゛ 又還元剤は酸化反応において未反応の過酸化水素が
残留する場合にはCODMn測定時においてCODMn
値として検出され、見掛けのCODMn値を増加させる
ため第1鉄塩つまり硫酸第1鉄塩、塩化第1鉄塩、硫酸
第1鉄塩のFe(I)イオン、あるいは亜硫酸ソーダ、
チオ硫酸ソーダ等の還元剤が未反応の残留せる過酸化水
素を分解するために添加されるが、通常は過剰の還元剤
を注入しても、pH7以上での曝気により容易にFe(
110に酸化され、又pH9以上で水酸化第1鉄として
分離除去される第1鉄塩が用いられる。゛ Also, if unreacted hydrogen peroxide remains in the oxidation reaction, the reducing agent will reduce CODMn during CODMn measurement.
Fe(I) ions of ferrous salts, ferrous sulfate, ferrous chloride, ferrous sulfate, or sodium sulfite, to increase the apparent CODMn value.
A reducing agent such as sodium thiosulfate is added to decompose residual unreacted hydrogen peroxide, but normally even if an excess of reducing agent is injected, Fe(
A ferrous salt that is oxidized to 110 and separated and removed as ferrous hydroxide at pH 9 or higher is used.
中和処理水は管14を通って、最終固液分離槽7で通常
は凝集助剤18が添加され、沈澱、あるいは又浮上法に
よって、固液分離され、水酸化鉄フロックと処理水に分
けられ、処理水は管15を通って必要に応じpH再調整
を行ない放流されるか又はより高度の処理を目的として
他の処理工程に送られる。The neutralized water passes through a pipe 14, and a flocculation aid 18 is usually added to the final solid-liquid separation tank 7, where it is separated into solid-liquid by sedimentation or flotation, and separated into iron hydroxide flocs and treated water. The treated water is then discharged through the pipe 15 after readjusting the pH if necessary, or is sent to another treatment process for the purpose of higher-level treatment.
一方最終固液分離槽で分離された水酸化鉄は管23を通
って搬出され処分される。On the other hand, the iron hydroxide separated in the final solid-liquid separation tank is carried out through pipe 23 and disposed of.
以上の如く本発明は、従来処理が著しく困難であった生
物難分解性物質、生物代謝老廃物質をはじめとする有機
物、あるいは又色度成分を含有する排水の高度処理のた
めの工業的処理法としてきわめて価値が高いものである
。As described above, the present invention provides an industrial treatment method for the advanced treatment of wastewater containing organic substances such as biorefractory substances, biometabolic waste substances, and color components, which have been extremely difficult to treat in the past. It is of extremely high value.
次に実施例をあげて本発明の方法をさらに具体的に説明
するが、本発明はこれらの実施例のみに限定されるもの
ではない。Next, the method of the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.
実施例 1
廃棄物理立場浸出汚水の生物学的硝化脱窒処理水に対し
て第2鉄塩としてFeCA3を鉄原子換算で600 p
pm添加し、苛性ソーダでpHを4に調整し浸出汚水中
の有機物ならびに色度成分を水酸化第2鉄フロツクと共
に凝集分離した第1工程処理水と、第1工程処理水に鉄
塩触媒としてF e S 04を鉄原子換算で600
ppmと過酸化水素を有効酸素換算で50 ppm添加
したのち、液pHを3に調整(しゆるやかに攪拌しなが
ら15分間の酸化反応処理を行ない、酸化反応処理水に
苛性ソーダを加えてpH7に保ちながら30分間空気攪
拌を行ない第1鉄を水酸化第2鉄に酸化し、この水酸化
第2鉄フロツクを沈降分離した第3工程処理水の水質を
分析した結果を表−1に示す。Example 1 Waste physical condition FeCA3 was added as a ferric salt to biologically nitrified and denitrified treated water of leachate wastewater at 600 p in terms of iron atoms.
pm was added, the pH was adjusted to 4 with caustic soda, and the organic matter and chromaticity components in the leached wastewater were coagulated and separated together with ferric hydroxide flocs. e S 04 in terms of iron atoms is 600
After adding 50 ppm of hydrogen peroxide in terms of effective oxygen, adjust the pH of the solution to 3 (carry out oxidation reaction treatment for 15 minutes while stirring gently, then add caustic soda to the oxidation reaction treated water to maintain pH 7). Table 1 shows the results of analyzing the quality of the water treated in the third step, in which ferrous iron was oxidized to ferric hydroxide by air stirring for 30 minutes, and the ferric hydroxide flocs were separated by sedimentation.
実施例 2
実施例1の第2工程における酸化触媒としてFeSO4
に代えてFeCl3を用い、他は実施例1と同一方法同
一条件にて処理し表−2の結果を得た。Example 2 FeSO4 as an oxidation catalyst in the second step of Example 1
The results shown in Table 2 were obtained by using the same method and conditions as in Example 1, except that FeCl3 was used instead of FeCl3.
実施例 3
前記実施例1の廃棄物理立場浸出汚水の生物学的硝化脱
窒処理水に代えて、凍原消化槽脱離液の活性汚泥処理水
について実施例1と同一方法にてFeCl3 (100
ppm100ppによる凝集処理水になる第1工程処理
水と過酸化水素(30ppmash)および鉄塩触媒と
してFe504(100ppmasFe)を添加して5
時間の酸化反応を行った第3工程処理水の水質を表−3
に示す。Example 3 Instead of the biologically nitrified and denitrified treated water of the waste physical leachate wastewater of Example 1, the activated sludge treated water of the frozen ground digestion tank desorbed liquid was treated in the same manner as in Example 1 with FeCl3 (100%
The 1st step treated water becomes coagulated water with 100 ppm of hydrogen peroxide (30 ppmash) and Fe504 (100 ppmas Fe) as an iron salt catalyst is added.
Table 3 shows the quality of the water treated in the 3rd step after the oxidation reaction.
Shown below.
実施例 4
基布し尿処理場の生物処理水(COD112mV/11
色度370°)に対して第2鉄塩としてFeCl3を鉄
原子換算で50■/l添加し、苛性ソーダでpHを4に
調整し凝集沈殿処理した第1工程処理水に鉄塩触媒とし
てFeSO4および過酸化水素を加え、ゆるやかに攪拌
しながら10分間の酸化反応を行い、次に苛性ソーダを
加えてpHを7に調整し、析出した水酸化第2鉄フ田ツ
クを沈降分離した第3工程処理水のCODの測定結果を
第2図に示す。Example 4 Biologically treated water of base human waste treatment plant (COD112mV/11
FeSO4 and FeSO4 as iron salt catalysts were added to the first step treated water, which was subjected to coagulation and precipitation after adjusting the pH to 4 with caustic soda and coagulating and precipitating. Hydrogen peroxide was added and an oxidation reaction was carried out for 10 minutes with gentle stirring, then caustic soda was added to adjust the pH to 7, and the precipitated ferric hydroxide was separated by sedimentation in the third step. Figure 2 shows the measurement results of water COD.
同時に比較例として、同じし尿生物処理水を対象として
、本発明の第1工程のみからなるpH4における凝集沈
殿処理を行った場合のFeCl3凝集剤の添加量と処理
水のCODの測定結果を同じく第2図に示す。At the same time, as a comparative example, the measurement results of the amount of FeCl3 flocculant added and the COD of the treated water when the coagulation-sedimentation treatment at pH 4 consisting of only the first step of the present invention was performed on the same human waste biologically treated water were also shown. Shown in Figure 2.
また、同じ、シ尿生物処理水を対象として本発明の第1
工程を行わず、直接FeSO4及び過酸化水素を注入し
、硫酸にてpHを3に調整したのち10分間の酸化反応
を行い、酸化反応処理水に苛性ソーダを加えてpHを7
に調整し、水酸化第2鉄フロツクを沈降分離した第2工
程及び第3工程のみを実施した処理水のCOD測定結果
も第2図に示す。In addition, the first method of the present invention targets the same urine biologically treated water.
Without performing any process, FeSO4 and hydrogen peroxide were directly injected, the pH was adjusted to 3 with sulfuric acid, the oxidation reaction was carried out for 10 minutes, and the pH was adjusted to 7 by adding caustic soda to the oxidation reaction treated water.
FIG. 2 also shows the COD measurement results of the treated water that was adjusted to 100% and subjected to only the second and third steps in which ferric hydroxide flocs were separated by sedimentation.
この結果、第1工程のみによる処理及び第2、第3工程
のみによる処理に比して本発明の方法による処理では薬
品添加量が減少するのみならず、CODの処理限界値が
大幅に改善された。As a result, compared to the treatment using only the first step and the treatment using only the second and third steps, the treatment according to the method of the present invention not only reduces the amount of chemicals added, but also significantly improves the treatment limit value of COD. Ta.
例えば、処理水のCODを25■/lにするのに要する
薬注量ならびにスラッジ発生量を表−3に示す。For example, Table 3 shows the amount of chemical injection and the amount of sludge generated required to bring the COD of treated water to 25 .mu./l.
このように、本発明の方法では第1工程の凝集処理のみ
を行った場合に比してFe塩の添加量が1/3、スラッ
ジ発生量が172.6となり、第2、第3工程のみの処
理方法に比しても、Fe塩の添加量が1 / 1.6、
H20□の添加量が1 / 2.5、スラッジ発生量が
1/1.7となった。As described above, in the method of the present invention, the amount of Fe salt added is 1/3 and the amount of sludge generated is 172.6 compared to when only the coagulation treatment in the first step is performed, and only in the second and third steps. Compared to the treatment method, the amount of Fe salt added is 1/1.6,
The amount of H20□ added was 1/2.5, and the amount of sludge generated was 1/1.7.
第1図は本発明の工程説明図、第2図は処理水のCOD
とH20□添加量又はFeCl3あるいはF e S
04添加量との関係を示す図である。
1・・・・・・第1混和槽、第2・・・・・・第1pH
調整槽、3・・・・・・中間固液分離槽、4・・・・・
・第2混和槽、5・・・・・・酸化反応槽、6・・・・
・・第2pH調整槽、7・・・・・・最終固液分離槽、
8〜15・・・・・・管、16・・・・・・凝集剤、1
7・・・・・・pH調整剤、17′・・・・・・アルカ
リ剤、18・・・・・・凝集助剤、19・・・・・・鉄
塩、20・・・・・・過酸化水素、21・・・・・・還
元剤、22〜23・・・・・・管。Figure 1 is an explanatory diagram of the process of the present invention, Figure 2 is the COD of treated water
and H20□ addition amount or FeCl3 or FeS
04 is a diagram showing the relationship with the amount added. 1...1st mixing tank, 2nd...1st pH
Adjustment tank, 3... Intermediate solid-liquid separation tank, 4...
・Second mixing tank, 5... Oxidation reaction tank, 6...
...Second pH adjustment tank, 7...Final solid-liquid separation tank,
8-15...Tube, 16...Flocculant, 1
7...pH adjuster, 17'...alkaline agent, 18...coagulation aid, 19...iron salt, 20... Hydrogen peroxide, 21...Reducing agent, 22-23...Tube.
Claims (1)
2鉄塩を主とする凝集剤を添加して、pH3乃至5.5
の範囲に調整したのち懸濁物質、有機物質ならびに色度
成分を水酸化第2鉄フロツクと共に凝集分離する第1工
程と9第1工程の処理水に新たに鉄塩、過酸化水素を添
加して有機物ならびに色度成分を酸化分解する第2工程
およびその酸化処理水にアルカリを加えてpH4以上で
鉄塩触媒を水酸化鉄フロックとして析出して、凝集分離
させる第3工程から成る一連の工程を含むことを特徴と
する有機性排水の処理方法。1 In a method for treating organic wastewater, a flocculant mainly containing ferric salt is added to organic wastewater to adjust the pH to 3 to 5.5.
Iron salt and hydrogen peroxide are newly added to the treated water of the 1st step and 9th step, in which suspended solids, organic substances, and color components are coagulated and separated together with ferric hydroxide flocs. A series of steps consisting of a second step of oxidatively decomposing organic substances and color components, and a third step of adding an alkali to the oxidized water and precipitating the iron salt catalyst as iron hydroxide flocs at pH 4 or higher and coagulating and separating them. A method for treating organic wastewater, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53106817A JPS591117B2 (en) | 1978-08-31 | 1978-08-31 | How to treat organic wastewater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53106817A JPS591117B2 (en) | 1978-08-31 | 1978-08-31 | How to treat organic wastewater |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5534135A JPS5534135A (en) | 1980-03-10 |
JPS591117B2 true JPS591117B2 (en) | 1984-01-10 |
Family
ID=14443360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP53106817A Expired JPS591117B2 (en) | 1978-08-31 | 1978-08-31 | How to treat organic wastewater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS591117B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108314170A (en) * | 2018-01-18 | 2018-07-24 | 同济大学 | A kind of high efficiency dispersion applied to wastewater treatment fluidizes the preparation method and application method of state micron iron powder |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2712192B1 (en) * | 1993-11-09 | 1996-02-09 | Egretier Jean Michel | Process for processing fatty residues recovered in industrial or commercial establishments. |
JP2000237772A (en) * | 1999-02-24 | 2000-09-05 | Nippon Steel Corp | Advanced treatment of water |
CN107399799A (en) * | 2017-07-28 | 2017-11-28 | 中国石油集团川庆钻探工程有限公司长庆井下技术作业公司 | A kind of method for eliminating fracturing outlet liquid measure COD disturbing factors |
-
1978
- 1978-08-31 JP JP53106817A patent/JPS591117B2/en not_active Expired
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108314170A (en) * | 2018-01-18 | 2018-07-24 | 同济大学 | A kind of high efficiency dispersion applied to wastewater treatment fluidizes the preparation method and application method of state micron iron powder |
CN108314170B (en) * | 2018-01-18 | 2021-04-30 | 同济大学 | Preparation method and use method of high-efficiency dispersed fluidized micron iron powder applied to wastewater treatment |
Also Published As
Publication number | Publication date |
---|---|
JPS5534135A (en) | 1980-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3389628B2 (en) | Treatment method for wastewater containing terephthalic acid | |
EP0378521B1 (en) | Water purification process | |
CN104787960A (en) | Treatment technology and treatment system of leather waste water | |
CN112551744A (en) | Method for treating wastewater by utilizing acidic coagulated Fenton oxidation | |
JPS591117B2 (en) | How to treat organic wastewater | |
KR100707975B1 (en) | Treatment method for livestock waste water including highly concentrated organic materials | |
WO1994013591A1 (en) | Process for treating waste water | |
JP2621090B2 (en) | Advanced wastewater treatment method | |
CN115259573A (en) | Treatment method of high-sulfate organic wastewater in petroleum refining industry | |
JPH0585240B2 (en) | ||
JPS591119B2 (en) | Advanced treatment method for organic wastewater | |
JPH0141110B2 (en) | ||
CN113620538A (en) | Process for treating high-concentration pit bottom wastewater of Maotai-flavor liquor | |
JPS6339309B2 (en) | ||
JPH0679715B2 (en) | Biological treatment method of organic wastewater | |
JPH11319889A (en) | Treatment of selenium-containing waste water and device therefor | |
CN104478167A (en) | Treatment process and treatment system of chromium-containing wastewater in leather wastewater | |
JPS591118B2 (en) | How to treat organic wastewater | |
CN111470722A (en) | Treatment method of rubber processing wastewater difficult to biodegrade | |
CN215924703U (en) | Hazardous waste landfill leachate evaporation treatment system | |
CN104478166A (en) | Treatment process and treatment system of sulfide-containing wastewater in leather wastewater | |
CN216687835U (en) | Wastewater treatment system for fine chemical production process | |
KR102277551B1 (en) | Processing Method of Non-biodegradable Organic Wastewater Based on Improved Oxidation Treatment | |
CN220283848U (en) | Treatment device for waste liquid containing polychlorinated acetone | |
CN114573088B (en) | Method for treating wastewater by using iron-tannic acid through synchronous oxidation/coagulation and application |