JPS59114802A - Fluid cooling type resistor - Google Patents
Fluid cooling type resistorInfo
- Publication number
- JPS59114802A JPS59114802A JP22466282A JP22466282A JPS59114802A JP S59114802 A JPS59114802 A JP S59114802A JP 22466282 A JP22466282 A JP 22466282A JP 22466282 A JP22466282 A JP 22466282A JP S59114802 A JPS59114802 A JP S59114802A
- Authority
- JP
- Japan
- Prior art keywords
- resistor
- fluid
- heat
- cooled
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Details Of Resistors (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
不発明は、列えば半導体変換装置等の冷却効率を向上し
て信頼性を高めるために使用される流体冷却形抵抗器に
関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fluid-cooled resistor used to improve cooling efficiency and reliability of, for example, semiconductor conversion devices.
近年電力用半導体変換装置などは、容輩の増大が著しく
、これにともなって損失が増加している。この損失の増
加に対処するため、水、油。In recent years, the capacity of power semiconductor conversion devices and the like has increased significantly, and losses have increased accordingly. To cope with this increased loss, water, oil.
フロン等の冷媒を用いて冷却することにより冷却効率を
向上する方法がある。この場合、半導体素子とともに抵
抗器なども同じ冷媒を用いて冷却することが望ましい。There is a method of improving cooling efficiency by using a refrigerant such as Freon. In this case, it is desirable to cool the resistor and the like as well as the semiconductor element using the same coolant.
このような方式の従来の抵抗器として第1図に示すもの
がある〇この抵抗器は、金属製箱体1の表面に抵抗体2
を接着したものである。金属製箱体1は、内部に冷却水
が通るもので、純水に対する耐腐食性の浚れた材負で形
成されている。また金属製箱体1には、冷却水を導入、
排出するだめの口金1m、lbが取付けられている。更
に金属製箱体1内には数箇所に#:3が設けられ、水圧
による変形を防ぐようにしている。A conventional resistor of this type is shown in FIG. 1. This resistor has a resistor 2 on the surface of a metal box 1.
is glued together. The metal box 1 allows cooling water to pass therethrough, and is made of dredged material that is resistant to corrosion against pure water. In addition, cooling water is introduced into the metal box 1,
A 1m, lb. cap for discharging is attached. Furthermore, #3 is provided at several locations inside the metal box 1 to prevent deformation due to water pressure.
箱体1の表面に接着した抵抗体2は、適当な絶縁処理が
施こされた板状をなし、口出し線4、電気端子s?ci
I、ている。この口出し線4は、発熱しないよう抵抗率
の低い銅などの金属線を用い、抵抗線にクロム線等)と
ロー付けされている。なお図中6は取付足である。The resistor 2 adhered to the surface of the box 1 is in the form of a plate that has been appropriately insulated, and has lead wires 4 and electrical terminals s? ci
I am. This lead wire 4 is made of a metal wire such as copper having low resistivity so as not to generate heat, and is brazed to a resistance wire (eg, chrome wire). Note that 6 in the figure is a mounting foot.
このように構成された抵抗器は、電気端子5から通電す
ることによシ抵抗体2が発熱する。In the resistor configured in this way, the resistor 2 generates heat when electricity is supplied from the electric terminal 5.
一方、口金1aから冷却水が流入し、箱体1の中を通過
して口金1bから流出する。このとき箱体1の壁面を通
して抵抗体2と熱交換がなされ、抵抗体2が冷却される
。On the other hand, cooling water flows in from the cap 1a, passes through the inside of the box 1, and flows out from the cap 1b. At this time, heat is exchanged with the resistor 2 through the wall surface of the box 1, and the resistor 2 is cooled.
しかしこの抵抗器は、抵抗体2を箱体1に単に接着して
いるため、抵抗体2とm=触しておシ、冷却効率が悪い
。このため装置が大型化するとともに、抵抗器の冷却に
ばらつきが生じやすい。従来は、箱体1内に水路を施こ
して、冷却効率を上げ、抵抗体2を均一に冷却するよう
にしているが十分冷却効率が商いとはいえず、しかも圧
力損失が大きくなる問題がある。However, in this resistor, since the resistor 2 is simply bonded to the box 1, it is in contact with the resistor 2, resulting in poor cooling efficiency. This increases the size of the device and tends to cause variations in the cooling of the resistors. Conventionally, a water channel was installed inside the box 1 to increase the cooling efficiency and cool the resistor 2 uniformly, but the cooling efficiency was not sufficient and there was a problem of large pressure loss. be.
また抵抗体2は箱体1の平板状側面に貼シ付けるので、
密着性が悪く、剥れやすい。更に口出し線4はロー付け
されているので、フラックス等による腐食のおそれがお
る。Also, since the resistor 2 is pasted on the flat side of the box 1,
Poor adhesion and easy to peel off. Furthermore, since the lead wire 4 is brazed, there is a risk of corrosion due to flux or the like.
本発明は、上記挙悄に鑑みてなされたもので1そめ目的
とするところは、冷却効率が尚く、装置を小型化できる
とともに均一な冷却を図れ、更に圧力損失が少なく、抵
抗体の密層性が良く、口出し線の腐食を防止できる流体
冷却形抵抗器を得んとするものである。The present invention has been made in view of the above-mentioned problems, and its first purpose is to improve cooling efficiency, reduce the size of the device, achieve uniform cooling, reduce pressure loss, and improve the density of the resistor. The object is to obtain a fluid-cooled resistor that has good layer properties and can prevent corrosion of lead wires.
以下本発明を図示する実施しUを参照して説明する。The invention will now be described with reference to an illustrative embodiment U.
本発明に係る流体冷却形抵抗器は、第2図〜第5図に示
すように金m製パイプ11の外周に螺旋状の躊12を形
成し、この溝12に抵抗体13を巻回している。金属製
ノぐイア’llは、冷却媒体(水、油、フロン等)が流
通するもので、銅、アルミニウム、ステンレス鋼等、耐
腐食性の優れた材質で形成され、両端に口金11a。As shown in FIGS. 2 to 5, the fluid-cooled resistor according to the present invention has a spiral groove 12 formed on the outer periphery of a gold pipe 11, and a resistor 13 wound around this groove 12. There is. The metal nozzle is one through which a cooling medium (water, oil, fluorocarbon, etc.) flows, and is made of a highly corrosion-resistant material such as copper, aluminum, or stainless steel, and has caps 11a at both ends.
11bを形成している。また両端下部に取例建24、J
4を設けている。なお図示しないが金属製パイプ11の
外周に絶縁性の薄膜をコーティングして、絶縁性を尚め
るようにしてもよい。11b. In addition, at the bottom of both ends are 24, J
There are 4. Although not shown, the outer periphery of the metal pipe 11 may be coated with an insulating thin film to improve insulation.
更に金属#パイflJの内面には第4図に示すように直
線条溝15が形成され、冷却効″率を高めるようにして
いる。Further, as shown in FIG. 4, straight grooves 15 are formed on the inner surface of the metal #pi flJ to improve the cooling efficiency.
この金属製ノやイブ11に巻回された抵抗体13は、抵
抗線16にクロム線等)に絶縁破膜17を施して構成さ
れ、上記溝12に埋め込まれた状態で巻回している。絶
縁被膜17は、シリコン樹脂、ポリアミド樹脂などの耐
熱性樹脂類紫単独あるいはこれとガラス實、マグネシア
等の無機賞材料とを仮台したもので形成されている。ま
た抵抗体13は、溝12に外径又は厚みの1/!以上埋
め込まれている。更に抵抗体13は、図示する例では一
本の溝12に巻回しているが、2本以上のs12を設け
てそれぞれに抵抗体13を巻回し、並列あるいは直列に
接続するようにしてもよい。The resistor 13 wound around the metal tube 11 is constructed by applying a broken insulation film 17 to a resistance wire 16 (such as a chrome wire), and is wound while being embedded in the groove 12. The insulating coating 17 is formed of a heat-resistant resin such as silicone resin or polyamide resin alone, or a temporary base of this and an inorganic material such as glass or magnesia. Further, the resistor 13 is placed in the groove 12 by 1/! of the outer diameter or thickness! More embedded. Furthermore, although the resistor 13 is wound around one groove 12 in the illustrated example, it is also possible to provide two or more s12 and wind the resistor 13 around each of them and connect them in parallel or in series. .
抵抗体12の口出し線18は、第6図に示すように抵抗
線16の端部を低抵抗率金属製パイプ19(銅、アルミ
ニウム等)に頁通して、同パイプ19と抵抗線16とを
21所以上圧接して構成され、電気端子20に接続して
いる。この電気端子20は、圧着端子を用いて圧接して
構成されている。なお口出しf#18は、絶縁性を高め
るため、耐熱性を有する熱収縮チューブ21が施こされ
ている。The lead wire 18 of the resistor 12 is made by passing the end of the resistance wire 16 through a low resistivity metal pipe 19 (copper, aluminum, etc.) and connecting the pipe 19 and the resistance wire 16, as shown in FIG. It is constructed by pressure contacting at 21 or more locations and is connected to the electrical terminal 20. This electrical terminal 20 is constructed by pressure contact using a crimp terminal. Note that a heat-shrinkable tube 21 having heat resistance is applied to the opening f#18 in order to improve insulation properties.
このように抵抗体13を巻回した金桟製パイプ11の外
周面には、耐熱性を会する熱収縮チューブ22が被aさ
れ、金属製パイプ11への密層性を^めるとともに抵抗
器全体の均熱化を図シ、絶縁性を強化している0
なお図示する実施例では金属製パイプ11の内面に直線
条害15を有しているが、スパイラル条屑、冷却フィン
等を設けてもよく、又これらを設けないものでもよい。The outer circumferential surface of the metal pipe 11 around which the resistor 13 is wound is covered with a heat-shrinkable tube 22 that provides heat resistance, thereby increasing the closeness of the metal pipe 11 and providing resistance. In addition, in the illustrated embodiment, the inner surface of the metal pipe 11 has linear striations 15, but spiral strips, cooling fins, etc. They may be provided, or they may not be provided.
この抵抗器は、磁気端子20から通電されて、抵抗体1
3が発熱する。一方冷却媒体は、口金11aから流入し
、金JA製パイプ11を流通する。この際金属製ノ母イ
ブ11を通して伝導された抵抗体13の熱を受は取り、
口金11bから外部へ導出される。This resistor is energized from the magnetic terminal 20, and the resistor 1
3 has a fever. On the other hand, the cooling medium flows in from the cap 11a and flows through the gold JA pipe 11. At this time, the heat of the resistor 13 conducted through the metal motherboard 11 is received and removed.
It is led out from the base 11b.
しかしてこの抵抗器は、抵抗体13を溝12に埋め込ん
だ状態で巻回するため、抵抗体13が金M製パイfll
に面接触することとなシ、冷却効率が高い。従って装置
を小型化できるとともに、均熱化を図ることができる。However, since the lever resistor is wound with the resistor 13 embedded in the groove 12, the resistor 13 is made of gold M
Cooling efficiency is high due to surface contact. Therefore, the device can be made smaller and the temperature can be equalized.
また金属製ノ9イブ11内を冷却媒体が流通するため、
冷却通路が直線状となり、圧力損失が少ない。更に金J
A製パイプ11は、箱体に比べて耐圧力性が萬<、梁等
を設ける必要がなくなる。また口出し巌18は、圧接法
によるため、7ラツクス等の腐食のおそれが々い。In addition, since the cooling medium flows through the metal nozzle 11,
The cooling passage is straight, reducing pressure loss. Furthermore, gold J
The A-made pipe 11 has a higher pressure resistance than a box body, and there is no need to provide a beam or the like. Further, since the opening sill 18 is made by pressure welding, there is a high risk of corrosion such as 7 lux.
史に抵抗体13の1/2以上tl−溝12に埋め込んで
いるので、抵抗体13に流れる電流の変化によって生ず
る磁釆が金属製パイプ11に渦電流を生せしめ、渦電流
損として消費される。このため低誘導性とすることがで
き、とくにこの効果は、周波数が高くなればよシ著しい
。Since more than 1/2 of the resistor 13 is embedded in the TL-groove 12, the magnetic clasp generated by changes in the current flowing through the resistor 13 generates eddy current in the metal pipe 11, which is consumed as eddy current loss. Ru. Therefore, it is possible to achieve low inductivity, and this effect is particularly significant as the frequency becomes higher.
このことは、この抵抗器を用いて周波数とインダクタン
スとの関係を調べた実験列から確認された。その結果を
第7図に示す。図中プロット(・)は金属製パイプとし
て20+a+φの溝付銅パイプを用いたもの(本発明品
)である◇又プロット0は、金属製ノ母イブとして20
mφの溝なし銅パイプを用いたもの(比較し」)である
。プロット(ハ)は、20簡φのエポキシパイグ(比較
例)を用いたものである。This was confirmed from a series of experiments in which the relationship between frequency and inductance was investigated using this resistor. The results are shown in FIG. The plot (・) in the figure is the one using a grooved copper pipe of 20+a+φ as the metal pipe (product of the present invention) ◇ Also, the plot 0 is the one using the grooved copper pipe of 20+a+φ as the metal pipe.
This is the one using mφ grooveless copper pipe (comparison). Plot (c) is the one using a 20-diameter epoxy pipe (comparative example).
以上の如く本発明によれば、抵抗体を面接触させること
によシ、冷却効率を高め、小形化。As described above, according to the present invention, by bringing the resistor into surface contact, the cooling efficiency is increased and the size is reduced.
均熱化を図れ、更に圧力損失が少なく、口出し線の腐食
を防止し、又低誘導性であるなどの効果を奏する。It has the following effects: uniform heating, low pressure loss, prevention of lead wire corrosion, and low inductivity.
第1図(イ)は従来の半導体変換装置用流体冷却形抵抗
器の正面図、同図(ロ)は側面図、第2図〜第7図は本
発明の一実施列を示し、第2図は抵抗器の正面図、第3
図は同側面図、第4図は第2図のIV−IV線に沿う断
面図、第5図は第3図のv−■線に沿う断面図、第6図
は抵抗体の口出し線の@面図、第7図はインダクタンス
の周波数特性を比較例とともに示す線図である。
11・・・金属製パイプ、1lapHb・・・口金、1
2・・・錦、13・・・抵抗体、14・・・取付足、1
5・・・直線条溝、16・・・抵抗器、12・・・絶縁
被膜、18・・・口出し線、19・・・低抵抗率金属製
ノZイブ、20・・・電気端子、21・・・熱収縮チュ
ーブ、22・・・熱収縮チューブ。
第4図 第5図
第 614
第7図
凰浚数(にH2)FIG. 1(a) is a front view of a conventional fluid-cooled resistor for a semiconductor converter, FIG. 1(b) is a side view, and FIGS. 2 to 7 show one embodiment of the present invention. The figure is a front view of the resistor, the third
The figure is a side view of the same side, Figure 4 is a sectional view taken along line IV-IV in Figure 2, Figure 5 is a sectional view taken along line v--■ in Figure 3, and Figure 6 is a sectional view of the lead wire of the resistor. 7 is a diagram showing the frequency characteristics of inductance along with a comparative example. 11...Metal pipe, 1lapHb...Bag, 1
2... Brocade, 13... Resistor, 14... Mounting foot, 1
5... Straight groove, 16... Resistor, 12... Insulating coating, 18... Lead wire, 19... Low resistivity metal knob, 20... Electrical terminal, 21 ... Heat shrink tube, 22 ... Heat shrink tube. Figure 4 Figure 5 Figure 614 Figure 7
Claims (6)
旋状の溝を形成し、該溝に抵抗線の表面に絶縁被膜を形
成した抵抗体を巻回してなる流体冷却形抵抗器。(1) Metal A through which the cooling medium flows? A fluid-cooled resistor is a fluid-cooled resistor in which a spiral groove is formed on the outer periphery of a coil, and a resistor having an insulating film formed on the surface of a resistance wire is wound around the groove.
無慎質材料とを複合したもので形成してなる特許請求の
範囲第1項記載の流体冷却形抵抗器。(2) The fluid-cooled resistor according to claim 1, wherein the insulating rupture film is formed of a heat-resistant resin or a composite of a heat-resistant resin and a heat-resistant unstructured material.
なる特許請求の範囲第1項記載の流体冷却形抵抗器。(3) The fluid-cooled resistor according to claim 1, wherein the metal #pipe has grooves or cooling fins on its inner surface.
、抵抗体の直径又は厚さの1/2よシ深く埋め込んで巻
回してなる特許請求の範囲第1項記載の流体冷却形抵抗
器。(4) The fluid-cooled type according to claim 1, wherein the resistor is embedded and wound in a layer formed on the outer periphery of a shiny metal tube to a depth of more than 1/2 of the diameter or thickness of the resistor. Resistor.
#パイプに貫通して、同パイプと抵抗線とを2箇所以上
圧接してなる特許請求の範囲第1項記載の流体冷却形抵
抗器。(5) The lead wire of the resistor is a fluid according to claim 1, in which the end of the resistance wire penetrates a low resistivity metal pipe, and the pipe and the resistance wire are pressed together at two or more places. Cooled resistor.
性の熱収縮チューブを被膜してなる特許請求の範囲第1
項記載の流体冷却形抵抗器。(6) Claim 1, which is made by coating a heat-resistant heat-shrinkable tube on the entire outer periphery of a metal pipe around which a resistor is wound.
Fluid-cooled resistor as described in .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22466282A JPS59114802A (en) | 1982-12-21 | 1982-12-21 | Fluid cooling type resistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22466282A JPS59114802A (en) | 1982-12-21 | 1982-12-21 | Fluid cooling type resistor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59114802A true JPS59114802A (en) | 1984-07-03 |
JPS6243321B2 JPS6243321B2 (en) | 1987-09-12 |
Family
ID=16817238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22466282A Granted JPS59114802A (en) | 1982-12-21 | 1982-12-21 | Fluid cooling type resistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59114802A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6161802U (en) * | 1984-09-27 | 1986-04-25 | ||
WO2022069490A1 (en) * | 2020-10-01 | 2022-04-07 | Heine Resistors Gmbh | Liquid-cooled brake resistor with turbulator |
WO2022069491A1 (en) * | 2020-10-01 | 2022-04-07 | Heine Resistors Gmbh | Liquid-cooled brake resistor |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0363131U (en) * | 1989-10-26 | 1991-06-20 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4711331U (en) * | 1971-03-09 | 1972-10-11 | ||
JPS5063541U (en) * | 1973-10-12 | 1975-06-10 |
-
1982
- 1982-12-21 JP JP22466282A patent/JPS59114802A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4711331U (en) * | 1971-03-09 | 1972-10-11 | ||
JPS5063541U (en) * | 1973-10-12 | 1975-06-10 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6161802U (en) * | 1984-09-27 | 1986-04-25 | ||
JPH0319201Y2 (en) * | 1984-09-27 | 1991-04-23 | ||
WO2022069490A1 (en) * | 2020-10-01 | 2022-04-07 | Heine Resistors Gmbh | Liquid-cooled brake resistor with turbulator |
WO2022069491A1 (en) * | 2020-10-01 | 2022-04-07 | Heine Resistors Gmbh | Liquid-cooled brake resistor |
Also Published As
Publication number | Publication date |
---|---|
JPS6243321B2 (en) | 1987-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0219692A2 (en) | Method for producing heat sink and heat sink thus produced | |
US3295089A (en) | Semiconductor device | |
US6344686B1 (en) | Power electronic component including cooling means | |
US2783418A (en) | Metal rectifiers | |
US10867741B2 (en) | Pseudo edge-wound winding using single pattern turn | |
JPS59114802A (en) | Fluid cooling type resistor | |
JP2004303648A (en) | Sheet heater | |
US2151787A (en) | Electrical capactor | |
JPH0498773A (en) | Superconducting cable connection section | |
JP2002075613A (en) | Heating coil for induction heating device | |
JPS61271804A (en) | Superconductive electromagnet | |
JPS6027151A (en) | Composite metallic filament for mounting semiconductor element | |
JPS6362084B2 (en) | ||
US2929036A (en) | Electrical coil construction | |
JPS6199301A (en) | Power thermistor | |
JPH01276707A (en) | Coil cooling device, normal conducting magnet provided with same and manufacture thereof | |
JPS609107A (en) | Electromagnetic coil | |
JPS6112097A (en) | Heat dissipating device of electric element | |
JPS581923A (en) | Cable conductor induction heating facility | |
JPS5859513A (en) | Method of cooling power cable | |
SU1145495A1 (en) | Process for manufacturing multilayer cooled winding for work-coil | |
JPS59117206A (en) | Foil winding transformer | |
JPS6240006A (en) | Connection of lead-covered power cable | |
JPS59130010A (en) | Internal cooling type power cable | |
JPS5831685B2 (en) | superconducting wire |