JPS59103960A - Fuel injection controller - Google Patents
Fuel injection controllerInfo
- Publication number
- JPS59103960A JPS59103960A JP21359882A JP21359882A JPS59103960A JP S59103960 A JPS59103960 A JP S59103960A JP 21359882 A JP21359882 A JP 21359882A JP 21359882 A JP21359882 A JP 21359882A JP S59103960 A JPS59103960 A JP S59103960A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- pressure
- valve
- chamber
- pressure chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M59/00—Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
- F02M59/20—Varying fuel delivery in quantity or timing
- F02M59/36—Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
- F02M59/366—Valves being actuated electrically
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fuel-Injection Apparatus (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はディーゼル機関に用いられるユニットインジェ
クタの燃料噴射制御装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel injection control device for a unit injector used in a diesel engine.
ディーゼル機関は、燃料噴射を行なうために通常は燃料
を高圧化する噴射ポンプと、この噴射ポンプから圧送さ
れる燃料をノズルに供給する燃料噴射管と、高圧燃料を
噴射するノズルとを備えているが、これらを一体化した
ものとしてユニットインジェクタがあシ、このユニット
インジェクタを各気筒に配設した燃料噴射装置が例えば
5AEpaper750773号に提案されている。A diesel engine typically includes an injection pump that increases the pressure of fuel to perform fuel injection, a fuel injection pipe that supplies the fuel pumped from the injection pump to a nozzle, and a nozzle that injects the high-pressure fuel. However, there is a unit injector that integrates these, and a fuel injection device in which this unit injector is disposed in each cylinder is proposed, for example, in 5AEpaper No. 750773.
仁のようなユニットインジェクタの一例を第1図、第2
図に示すと、ユニットインジェクタlは、機関の回転に
同期して回転するカムシャフト2によす、ブツシュロッ
ド3、ロッカアーム4を介してプランジャ5を図中上下
動させることによって圧力室6内の燃料の圧力を高め、
この高圧燃料をノズル7のニードル室8に導き、ニード
ルバルブ9をバルブスプリング10に抗して持ち上げ、
スプレーチツゾ11の噴孔12よシ燃料を噴射するもの
である。Figures 1 and 2 show an example of a unit injector like Jin.
As shown in the figure, the unit injector 1 injects fuel into a pressure chamber 6 by moving a plunger 5 up and down in the figure through a bushing rod 3 and a rocker arm 4, which is driven by a camshaft 2 that rotates in synchronization with the rotation of the engine. increase the pressure of
This high-pressure fuel is introduced into the needle chamber 8 of the nozzle 7, and the needle valve 9 is lifted up against the valve spring 10.
Fuel is injected through the nozzle hole 12 of the spray tip 11.
この場合、燃料噴射量の制御はコン)o−ルラツク13
によって(コントロールラック13はガバナに連動する
)プランジャブッシング14を介してプランジャ5をそ
の軸線回シに回転させるこ。In this case, the fuel injection amount is controlled by the controller 13.
(The control rack 13 is interlocked with the governor) to rotate the plunger 5 about its axis via the plunger bushing 14.
とにより行なう。すなわち、プランジャ5の下降時にお
いて、スパイラル状の溝であるメータリングリセス15
の上部が前記ブッシング14のアッパポート16に、メ
ータリングリセス15の下部がロアポート17に、それ
ぞれ連通する時期を変更することによシ、圧力室6内で
の圧縮開始及び終了時期を変えて噴射量の制御を行って
いる。This is done according to the following. That is, when the plunger 5 descends, the metering recess 15, which is a spiral groove,
By changing the timing at which the upper part of the metering recess 15 communicates with the upper port 16 of the bushing 14 and the lower part of the metering recess 15 with the lower port 17, the injection start and end timings within the pressure chamber 6 are changed. Quantity is controlled.
しかしながら、このような従来のユニットインジェクタ
lにあっては、噴射量はいわゆる機械式(コントロール
ラック13によシブランジャ5を回転する)の制御であ
ったため、このようにあらかじめコントロールラック1
3により決定された噴射量、あるいは機械式の噴射時期
調整装置等で定められた噴射量は、大略直線的ないしは
緩やかな曲線で変化する(メータリングリセス15の形
状等に起因する)ように変更できるのみである。However, in such a conventional unit injector, the injection amount is controlled by a so-called mechanical method (the control rack 13 rotates the sibling plunger 5).
The injection amount determined by step 3 or the injection amount determined by a mechanical injection timing adjustment device, etc. is changed so that it changes approximately linearly or in a gentle curve (due to the shape of the metering recess 15, etc.). It is only possible.
したがって、機関の運転条件(回転数、出力、水温等)
の変化に対応して最適の噴射量を得ることができないと
いう問題点があった。。Therefore, engine operating conditions (rotation speed, output, water temperature, etc.)
There was a problem in that it was not possible to obtain the optimum injection amount in response to changes in the amount of fuel. .
したがって、この噴射量をいわゆる電気的に制御し、機
関、車輌の特性に、また、その運転条件・に応じて、正
確に燃費、排気、騒音、出力等に対し常に適切なマツチ
ングを行う仁とを目的とするものが特開昭54−507
26号公報に前記ユニットインジェクタとして提案され
ている。Therefore, it is important to control this injection amount electrically, and to always match it appropriately for fuel consumption, exhaust, noise, output, etc., depending on the characteristics of the engine and vehicle, as well as its operating conditions. The one aimed at is JP-A-54-507.
The unit injector is proposed in Japanese Patent No. 26.
しかしながら、このような従来のユニットインジェクタ
にあっては、電磁弁で高圧燃料の噴射ノズルへの供給を
直接的に制御する(噴射圧力を直接制御する)ようにな
されて■たため、例えば噴射圧力を1,000気圧とし
た場合、この圧力が電磁弁の弁体のシート部先端に作用
すると、たとえシート面積を直径1mm程度と極微小に
しても開弁に8 kg/ crl程度の力を必要とする
。−万、この電磁弁の応答速度については、小型高速デ
ィーゼル機関に適用する場合、例えばC600rep、
mではクランク角度で最大でもTDC前40’〜45°
の期間に燃料を噴射することが要求されておシ、この期
間はおよそl−6mqecであ、シ極めて短かく、さら
に、低負荷運転時にあってはこの噴射期間は約0.4
m5ecとさらに短時間に噴射を終了しなければならな
い。However, in such conventional unit injectors, the solenoid valve directly controls the supply of high-pressure fuel to the injection nozzle (directly controls the injection pressure). If the pressure is 1,000 atm and this pressure acts on the tip of the seat of the valve body of a solenoid valve, a force of about 8 kg/crl is required to open the valve, even if the seat area is as small as 1 mm in diameter. do. - Regarding the response speed of this solenoid valve, when applied to a small high-speed diesel engine, for example, C600rep,
For m, the maximum crank angle is 40' to 45 degrees before TDC.
It is required that fuel be injected during a period of approximately 1-6 mqec, which is extremely short, and furthermore, during low-load operation, this injection period is approximately 0.4 mqec.
Injection must be completed in an even shorter time, m5ec.
このような高い開弁力と速い応答速度を有する電磁弁を
得ることは、たとえ可能としても高価にならざるを得な
い。従ってこのような電磁弁は低速でかつ高価な大型デ
ィーゼル機関でなければ適用出来ないといり問題点があ
った。Even if it were possible to obtain a solenoid valve having such a high opening force and fast response speed, it would be expensive. Therefore, such a solenoid valve has a problem in that it can only be applied to large diesel engines that are slow and expensive.
そこで特願昭57−67980号では燃料噴射量を計量
する弁を別に設け、この計量弁を電磁弁の開閉駆動によ
って制御する装置を提案している。Therefore, Japanese Patent Application No. 57-67980 proposes a device in which a valve for measuring the amount of fuel injection is provided separately, and this metering valve is controlled by opening and closing of a solenoid valve.
この案では電磁弁が開くと燃料圧力がピストンを作動し
、このピストンが前記計量弁を駆動して圧力室の燃料圧
力を開放するようになっておシ、燃料供給ポンプからの
供給圧がピストンを駆動するため、ある程度の供給圧(
例えば5〜数lOKg/cd)が要求される。また制御
特性を良くするためには計量弁を大きくする必要があシ
、そうなるとピストンも大型となる。このためピストン
やポペット弁を小型化するにはなお充分ではない面があ
った。In this plan, when the solenoid valve opens, the fuel pressure operates the piston, which drives the metering valve to release the fuel pressure in the pressure chamber, and the supply pressure from the fuel supply pump is applied to the piston. , a certain amount of supply pressure (
For example, 5 to several lOKg/cd) is required. Furthermore, in order to improve control characteristics, it is necessary to make the metering valve larger, which in turn requires a larger piston. For this reason, it was still not sufficient to downsize pistons and poppet valves.
本発明はこの案をさらに改良する島のであシ、機関に同
期して回転するカムと、燃料供給ポンプによ多燃料供給
通路を介して燃料の供給される圧力室と、前記カムに応
動して圧力室の燃料を加圧するプランツヤと、圧力室と
連通し開弁圧以上で開くノズルと、前記圧力室に連通ず
る燃料供給通路に介装され開弁時に高圧燃料を逃がす計
量弁と、前記圧力室からの高圧燃料の一部を弁体背部に
導く圧力通路と、前記計量弁の後の燃料供給通路に介装
され弁体背部の圧力を開弁時に逃がす弁装置とから成る
ユニットインジェクタと、機関の運転状態を検出する手
段からの信号に基づき前記弁装置を開閉駆動する制御手
段とを設けることによシ、高圧燃料の一部を流し、前後
差圧を生じさせて計量弁の開作動を行ない、また弁体の
先端のシート径の差による駆動力で計量弁の閉作動を行
ない、弁装置は計量弁の弁体背部のスフ0リング室の圧
力を逃がすために使用して、弁装置の小型化を図る燃料
噴射制御装置を提供することを目的とする。The present invention further improves this idea by providing a cam that rotates in synchronization with the engine, a pressure chamber that is supplied with fuel to a fuel supply pump through multiple fuel supply passages, and a pressure chamber that responds to the cam. a nozzle that communicates with the pressure chamber and opens at a pressure equal to or higher than the valve opening pressure; a metering valve that is interposed in a fuel supply passage that communicates with the pressure chamber and releases high-pressure fuel when the valve is opened; A unit injector comprising a pressure passage that guides a portion of the high-pressure fuel from the pressure chamber to the back of the valve body, and a valve device that is interposed in the fuel supply passage after the metering valve and releases pressure from the back of the valve body when the valve is opened. By providing a control means for opening and closing the valve device based on a signal from a means for detecting the operating state of the engine, a portion of the high-pressure fuel is caused to flow and a differential pressure is generated between the front and rear to open and close the metering valve. The metering valve is closed by the driving force generated by the difference in seat diameter at the tip of the valve body, and the valve device is used to release the pressure in the air ring chamber at the back of the valve body of the metering valve. An object of the present invention is to provide a fuel injection control device that reduces the size of a valve device.
以下本発明を図示実施例に基づいて説明する。The present invention will be explained below based on illustrated embodiments.
第3図は本発明の一実施例の概略構成図で、図中ユニッ
トインジェクタ200本体21に穿設されたシリンダ2
2にプランジャ23が摺動可能に嵌合しておシ、プラン
ジャ23はプランジャ23の頭部と本体21との間に介
装されたスプリング24によシ図中上方に付勢されると
ともに、機関に同期して回転するカム25に頭部を当接
しておシ、カム25°の1回転毎にシランジャ23は押
し下げられ、圧力室26の燃料を加圧する。FIG. 3 is a schematic configuration diagram of an embodiment of the present invention. In the figure, a cylinder 2 bored in a unit injector 200
A plunger 23 is slidably fitted into the plunger 2, and the plunger 23 is urged upward in the figure by a spring 24 interposed between the head of the plunger 23 and the main body 21. When the head comes into contact with a cam 25 that rotates in synchronization with the engine, the sylanger 23 is pushed down every time the cam rotates 25°, pressurizing the fuel in the pressure chamber 26.
圧力室26は燃料タンク39に連通ずる燃料供給通路2
8に連通しておシ、燃料供給通路28に介装され機関に
同期して回転する燃料供給ボンデ37が燃料タンク39
内の燃料を圧力室26に供給するようになっている。The pressure chamber 26 is connected to a fuel supply passage 2 that communicates with a fuel tank 39.
8, a fuel supply bond 37 which is interposed in the fuel supply passage 28 and rotates in synchronization with the engine is connected to the fuel tank 39.
The fuel inside is supplied to the pressure chamber 26.
本体21の下部には圧力室26で加圧された高圧燃料を
図示しない燃焼室に噴射するノズル27が形成される。A nozzle 27 is formed in the lower part of the main body 21 for injecting high-pressure fuel pressurized in a pressure chamber 26 into a combustion chamber (not shown).
具体的にはノズル27は圧力室26と燃料通路29を介
して連通ずるニードル室27D、ニー)’ルパルブ27
C,スプリング27B1噴孔27E並びにスプリング室
27Aから構成されており、常時はスプリング27Bが
ニードルバルブ27Cを下方に付勢して噴孔27Eを閉
じているが、圧力室26の高圧燃料が燃料通路29を介
してニードル室27Dに伝わシ、この圧力がスプリング
27Bの付勢力(ノズル27の開弁圧)に打ち勝つと、
ニードルバルブ27Cを上方に付勢して噴孔27Eを開
き圧力室26の燃料が噴孔27Fから噴射されるように
なっている。Specifically, the nozzle 27 has a needle chamber 27D, a needle chamber 27D, which communicates with the pressure chamber 26 through a fuel passage 29.
C, a spring 27B, a nozzle hole 27E, and a spring chamber 27A. Normally, the spring 27B urges the needle valve 27C downward to close the nozzle hole 27E, but the high-pressure fuel in the pressure chamber 26 flows through the fuel passage. 29 to the needle chamber 27D, and when this pressure overcomes the biasing force of the spring 27B (the valve opening pressure of the nozzle 27),
The needle valve 27C is urged upward to open the nozzle hole 27E, and the fuel in the pressure chamber 26 is injected from the nozzle hole 27F.
圧力室26に連通ずる燃料供給通路28には計量弁35
並びにその後(図で右側)に弁装置としての電磁弁36
が介装される。この燃料供給通路28は燃料通路29と
も連通しており、圧力室26の高圧燃料は電磁弁36が
閉じると、計量弁35を介しては逃げられないだめ高圧
の燃料はノズル27に供給されることになる、
計量弁35には弁体35Aの背部にスプリング室35B
を形成しておシ、このスプリング室35Bに備えたスプ
リング35Cによシ弁体35Aは図で左方に付勢される
。さらに、弁体35Aには圧力室26からの高圧燃料を
スプリング室35Bに導く圧力通路35Dを穿設すると
ともに、この通路35Dの圧力室26側には圧力調整用
のオリフィス35Eを形成している。A metering valve 35 is provided in the fuel supply passage 28 communicating with the pressure chamber 26.
And after that (on the right side in the figure) there is a solenoid valve 36 as a valve device.
is interposed. This fuel supply passage 28 also communicates with a fuel passage 29, and when the solenoid valve 36 closes, the high-pressure fuel in the pressure chamber 26 cannot escape via the metering valve 35, so the high-pressure fuel is supplied to the nozzle 27. In other words, the metering valve 35 has a spring chamber 35B on the back of the valve body 35A.
The valve body 35A is biased to the left in the figure by a spring 35C provided in the spring chamber 35B. Furthermore, a pressure passage 35D is formed in the valve body 35A to guide high-pressure fuel from the pressure chamber 26 to the spring chamber 35B, and an orifice 35E for pressure adjustment is formed on the pressure chamber 26 side of this passage 35D. .
従って、仮に電磁弁36が開いたとすると、圧力室26
からの高圧燃料の一部は計量弁35の圧力通路35D、
スプリング室35Bから電磁弁36を経て燃料供給通路
28へ逃げる。この時圧力調整用のオリフィス35Eに
よってオリフィス35Eの前後差圧が生じ(オリフィス
35Eの後のスプリング室35B側の圧力がオリフィス
35E手前の圧力室26側の圧力よシも低くなる)、こ
の前後差圧によシ大きな駆動力が生じ、この駆動力によ
シ弁体35Aをスプリング35Cに抗して図で右方に迅
速に移動し計量弁を開く。ここで前後差圧による駆動力
を損わないようにスプリング35Cの付勢力を決めてお
シ、計量弁35が開くと、高圧燃料は燃料逃し通路31
へ逃げ、ノズル27に達する燃料圧力を開弁圧以下に下
け、燃料噴射を遮断するようになっている。Therefore, if the solenoid valve 36 opens, the pressure chamber 26
A portion of the high-pressure fuel from the metering valve 35 passes through the pressure passage 35D,
It escapes from the spring chamber 35B to the fuel supply passage 28 via the solenoid valve 36. At this time, a pressure difference between the front and rear of the orifice 35E is generated by the orifice 35E for pressure adjustment (the pressure on the spring chamber 35B side after the orifice 35E is also lower than the pressure on the pressure chamber 26 side in front of the orifice 35E), and this front and rear difference A large driving force is generated by the pressure, and this driving force quickly moves the valve body 35A to the right in the figure against the spring 35C to open the metering valve. Here, the biasing force of the spring 35C is determined so as not to impair the driving force due to the differential pressure between the front and rear. When the metering valve 35 opens, the high-pressure fuel flows through the fuel relief passage 3
The fuel pressure reaching the nozzle 27 is lowered below the valve opening pressure, and fuel injection is cut off.
また、電磁弁36が閉じるときは、オリフィス前後差圧
はなくなるがスプリング室35Cには圧力室26の高圧
燃料が導かれてお勺、この燃料圧力が弁体35Aに背圧
として働き大きな駆動力(実際には弁体35Aの先端の
シート径の差によシ生じる力)を生じ、この燃料圧力に
よる駆動力とスプリング35Cの付勢力とで弁体35A
を図で左方に移動して計量弁35を閉じる。When the solenoid valve 36 closes, the differential pressure across the orifice disappears, but the high-pressure fuel in the pressure chamber 26 is guided into the spring chamber 35C, and this fuel pressure acts as back pressure on the valve body 35A, creating a large driving force. (Actually, a force generated due to the difference in seat diameter at the tip of the valve body 35A) is generated, and the driving force due to this fuel pressure and the biasing force of the spring 35C cause the valve body 35A to
to the left in the figure and close the metering valve 35.
前述の電磁弁36は弁室36A、弁体36B。The above-mentioned solenoid valve 36 has a valve chamber 36A and a valve body 36B.
ソレノイド36Cから構成され、ソレノイド36Cが制
御回路40からの信号によシ通電されると、弁体36B
が弁室36Aを閉じて閉弁し、通電が解除されると開弁
してスプリング室35Bの圧力を燃料供給通路28に逃
がすものである、制御回路40は機関の運転条件を検出
する手段(例えば機関回転数を検出する回転数センサ4
1.7クセルヘタルの踏角を検出するアクセルセンサ4
2、機関の冷却水温を検出する水温センサ43、クラン
ク角を検出するクランク角センサ等)からの検出信号に
基づき、機関運転条件に最適な駆動ノ4ルス幅を持つ信
号をソレノイド36Cに出力し、電磁弁36を開閉制御
する。When the solenoid 36C is energized by a signal from the control circuit 40, the valve body 36B
The control circuit 40 closes the valve chamber 36A and opens the valve when the energization is removed to release the pressure in the spring chamber 35B to the fuel supply passage 28. For example, a rotation speed sensor 4 that detects the engine rotation speed
1. Accelerator sensor 4 that detects the pedal angle of 7 degrees
2. Based on the detection signals from the water temperature sensor 43 that detects the engine cooling water temperature, the crank angle sensor that detects the crank angle, etc.), a signal having a drive pulse width that is optimal for the engine operating conditions is output to the solenoid 36C. , controls the opening and closing of the solenoid valve 36.
シリンタ゛22の上部に形成される環状溝32は燃料戻
し通路33を介して燃料タンク39に連通ずるとともに
、燃料逃し通路31を介して計量弁35に、また燃料逃
し通路31から分岐する燃料逃し通路31Aを介してス
プリング室27Aにそれぞれ連通しておシ、余分な燃料
を燃料タンク39に戻すようになっている。An annular groove 32 formed in the upper part of the cylinder 22 communicates with a fuel tank 39 via a fuel return passage 33, and also communicates with a metering valve 35 via a fuel relief passage 31, and a fuel relief passage that branches from the fuel relief passage 31. They communicate with the spring chamber 27A via the spring chamber 31A, respectively, and return excess fuel to the fuel tank 39.
また、燃料供給通路28と燃料戻し通路33とを連通ず
る通路に介装される圧力調整弁38は燃料供給通路28
の燃料圧力を所定値に保ち、所定値以上になった時は開
弁して燃料を燃料戻し通路33に逃がすようになってい
る。Further, a pressure regulating valve 38 interposed in a passage that communicates the fuel supply passage 28 and the fuel return passage 33 is connected to the fuel supply passage 28.
The fuel pressure is maintained at a predetermined value, and when the pressure exceeds the predetermined value, the valve is opened to release the fuel to the fuel return passage 33.
以上の構成による作用を第3図囚〜(ト)に基づいて説
明する。The operation of the above configuration will be explained based on FIGS.
燃料供給ポンプ37によシ燃料タンク39の燃料は予圧
され、燃料供給通路28から、開弁している電磁弁36
、計量弁35を経て圧力室26に供給され、圧力室26
の圧力は燃料供給ポンプ37による供給圧力となってい
る(第3図0参照)。The fuel in the fuel tank 39 is pre-pressurized by the fuel supply pump 37, and the fuel is supplied from the fuel supply passage 28 to the solenoid valve 36, which is open.
, is supplied to the pressure chamber 26 via the metering valve 35, and the pressure chamber 26
The pressure is the supply pressure from the fuel supply pump 37 (see FIG. 30).
尚、第4図に示すように燃料供給通路28と圧力室26
とを、連通路45で直接連通し、その間に、通路28か
ら圧力室26側へは流れるが逆方向には閉となる逆止弁
46を介装すれば、よシ速やかなプランジャ23の吸入
行程を達成することができる。In addition, as shown in FIG. 4, the fuel supply passage 28 and the pressure chamber 26
If these are directly communicated through a communication passage 45 and a check valve 46 is interposed therebetween, which allows flow to flow from the passage 28 to the pressure chamber 26 side but closes in the opposite direction, the plunger 23 can be drawn in more quickly. The process can be accomplished.
機関に同期して回転するカム25によりプランジャ23
が下降しく第3図の)が下降始めの時点を示す)、圧力
室26の燃料を加圧するが、この時点では電磁弁36は
開いておシ、加圧される燃料の一部はオリフィス35E
1圧力通路35D1スプリング室35Bから電磁弁36
の弁室36Aを経て燃料供給通路28へ逃げる。このた
めオリフィス35Eの前後差圧が発生し、この前後差圧
による駆動力がスプリング35Cに抗して弁体35Aを
図で右に駆動し、計量弁35を開く。計量弁35が開く
と、加圧された燃料は燃料逃し通路31へ逃げるので、
ノズル27は開弁圧以上にならず、燃料は噴射されない
。The plunger 23 is driven by a cam 25 that rotates in synchronization with the engine.
() in Fig. 3 indicates the point at which it starts to descend), pressurizes the fuel in the pressure chamber 26, but at this point the solenoid valve 36 is open and a part of the pressurized fuel flows through the orifice 35E.
1 pressure passage 35D1 spring chamber 35B to solenoid valve 36
It escapes to the fuel supply passage 28 through the valve chamber 36A. Therefore, a differential pressure is generated across the orifice 35E, and the driving force due to this differential pressure drives the valve body 35A to the right in the figure against the spring 35C, thereby opening the metering valve 35. When the metering valve 35 opens, the pressurized fuel escapes to the fuel relief passage 31.
The nozzle 27 does not exceed the valve opening pressure and no fuel is injected.
シランジャ23がさらに下降し、所定のクランク角でソ
レノイド360に通電し電磁弁36が閉じると、スプリ
ング室35Bの燃料は逃げる場所がなくなるため、スプ
リング室35Bの燃料圧力が上昇し、オリフィス35E
による前後差圧がなくなる。この前後差圧がなくなった
状態では高圧燃料が弁体35Aに背圧として働き、弁体
35Aの先端のシート径の差によシ生ずる大きな駆動力
が、スプリング35Cとともに弁体35Aを図で左に付
勢し、電磁弁36が閉じた所定時開経過後に計量弁35
を閉じる。When the syringer 23 further descends and the solenoid 360 is energized at a predetermined crank angle to close the electromagnetic valve 36, there is no place for the fuel in the spring chamber 35B to escape, so the fuel pressure in the spring chamber 35B increases and the orifice 35E
The differential pressure between the front and rear is eliminated. In a state where this differential pressure between the front and rear is eliminated, high-pressure fuel acts as back pressure on the valve body 35A, and a large driving force generated due to the difference in seat diameter at the tip of the valve body 35A moves the valve body 35A along with the spring 35C to the left in the figure. After the electromagnetic valve 36 is closed for a predetermined period of time, the metering valve 35 is energized.
Close.
このため圧力室26の燃料は閉じ込められ、プランジャ
23の下降につれて圧力を増し、この高圧燃料が燃料通
路29を介してノズル27のニードル室27Dに伝わる
。ニードル室27Dの圧力がニードルバルブ27Cを下
方に付勢するスプリング27Bの付勢力(ノズル27の
開弁圧)以上になると、ニードルバルブ27Cを上方に
押し上げて噴孔27Eを開き、圧力室26の高圧燃料は
図示しない燃焼室に噴射される(第3図(Q参照)。For this reason, the fuel in the pressure chamber 26 is confined, increases in pressure as the plunger 23 descends, and this high-pressure fuel is transmitted to the needle chamber 27D of the nozzle 27 via the fuel passage 29. When the pressure in the needle chamber 27D exceeds the biasing force of the spring 27B (the opening pressure of the nozzle 27) that biases the needle valve 27C downward, the needle valve 27C is pushed upward to open the nozzle hole 27E, and the pressure chamber 26 is High-pressure fuel is injected into a combustion chamber (not shown) (see FIG. 3 (Q)).
プランジャ23がさらに下降し、人定のクランク角でソ
レノイド36Cへの通電をやめ、電磁弁36が開かれる
と、前述のように圧力室26の高圧燃料の一部がオリフ
ィス35E、圧力通路35Dを通して逃げることによジ
オリフイス35Eに前後差圧が生じ、この差圧による大
きな駆動力がスプリング35Cに抗して計量弁35を迅
速に駆動して開き、高圧燃料のほとんどを燃料逃し通路
31に逃すので、燃料通路29の圧力はすみやかに下降
し、ノズル27の開弁圧以下となって燃料の噴射を停止
する(第3図0参照)。When the plunger 23 further descends, the energization to the solenoid 36C is stopped at a predetermined crank angle, and the solenoid valve 36 is opened, a portion of the high pressure fuel in the pressure chamber 26 passes through the orifice 35E and the pressure passage 35D as described above. This escape creates a pressure difference between the front and back of the georifice 35E, and this pressure difference causes a large driving force to quickly drive the metering valve 35 open against the spring 35C, allowing most of the high-pressure fuel to escape into the fuel relief passage 31. , the pressure in the fuel passage 29 quickly decreases to below the opening pressure of the nozzle 27, and fuel injection is stopped (see FIG. 3, 0).
プランジャ23が最下点に達した後再び上昇を始めると
、圧力室26の圧力が低下するため計量弁35は再び閉
じるが電磁弁36は開いており、電磁弁36からスプリ
ング室35B、圧力通路35D、オリフィス35Eを経
て圧力室26に燃料が供給される(第3図0参照)。When the plunger 23 starts to rise again after reaching the lowest point, the pressure in the pressure chamber 26 decreases, so the metering valve 35 closes again, but the solenoid valve 36 is open, and from the solenoid valve 36 to the spring chamber 35B, the pressure passage Fuel is supplied to the pressure chamber 26 through the orifice 35D and the orifice 35E (see FIG. 30).
すなわち、燃料の噴射は電磁弁36を閉じた所定時間後
から電磁弁36を開くまでの間に行なわれることになる
。That is, fuel injection is performed from a predetermined time after the solenoid valve 36 is closed to when the solenoid valve 36 is opened.
従って電磁弁36を開閉するソレノイド36Cヘの通電
時期並びに通電時間を運転条件に応じて変えることによ
シ、ノズル27から噴射される燃料の噴射時期並びに噴
射量が制御される。Therefore, by changing the timing and duration of energization of the solenoid 36C that opens and closes the electromagnetic valve 36 according to the operating conditions, the timing and amount of fuel injected from the nozzle 27 can be controlled.
そして高圧燃料の供給を直接制御する計量弁35の開閉
駆動は、オリフィス前後差圧による駆動力によシ開き、
スプリング室35Bに導いた高圧燃料による背圧を利用
した弁体35Aの先端のシート径の差による駆動力とス
プリング35Cの付勢力とによシ閉じるため、電磁弁3
6としてはスプリング室35Bの圧力を逃がしあるいは
閉じ込めるだけでよく大きな駆動力は必要としない。The opening/closing drive of the metering valve 35, which directly controls the supply of high-pressure fuel, is driven by the driving force generated by the differential pressure across the orifice.
The solenoid valve 3 is closed by the driving force due to the difference in seat diameter at the tip of the valve body 35A using back pressure from the high-pressure fuel led to the spring chamber 35B and the biasing force of the spring 35C.
6, it is sufficient to release or confine the pressure in the spring chamber 35B and no large driving force is required.
従って、電磁弁が計量弁として使われ、高圧燃料を直接
制御するだめに高い開弁力と速い応答速度を要求される
特開昭54−50726号公報と異なシ、電磁弁36は
小型で安価なもので良い。Therefore, unlike JP-A-54-50726, in which a solenoid valve is used as a metering valve and requires a high opening force and fast response speed to directly control high-pressure fuel, the solenoid valve 36 is small and inexpensive. Anything is fine.
また燃料供給ポンプにある程度(例えば5〜数101’
fI/cJ)の供給圧を要求され、計量弁を駆動するた
めのピストンが必要である特願昭57−67980号と
異なり、燃料供給ポンプ37は低圧の安価なもので良く
、ピストンも不要で構成が簡単である。Also, the fuel supply pump has a certain amount of power (e.g. 5 to 101').
Unlike Japanese Patent Application No. 57-67980, which requires a supply pressure of fI/cJ) and requires a piston to drive the metering valve, the fuel supply pump 37 can be a low-pressure, inexpensive one, and a piston is not required. Easy to configure.
以上のように本発明によれば、高圧燃料の一部を流すこ
とによシ前後差圧を生じさせ、この差圧による駆動力で
計量弁の開作動を行ない、また高圧燃料による背圧を利
用した弁体の先端のシート径の差による駆動力とスプリ
ングの付勢力で計量弁の閉作動を行ない、弁装置は弁体
背部のスプリング室の圧力を逃がすために使用している
ので、弁装置は小型で安価なものでよく、また同時に燃
料供給ポンプも低圧で安価なものでよく、コストダウン
が図れるという効果が得られる。As described above, according to the present invention, a pressure difference is created between the front and rear by flowing a portion of the high-pressure fuel, and the driving force generated by this pressure difference is used to open the metering valve, and the back pressure caused by the high-pressure fuel is also reduced. The metering valve is closed using the driving force generated by the difference in seat diameter at the tip of the valve body and the biasing force of the spring, and the valve device is used to release the pressure in the spring chamber at the back of the valve body. The device may be small and inexpensive, and at the same time, the fuel supply pump may be low-pressure and inexpensive, resulting in the effect of reducing costs.
第1図は従来装置の概略構成図、第2図は第1図の要部
断面図、第3図は本発明の一実施例の概略構成図で同図
(2)〜■)はそれぞれ作用を説明する図、第4図は本
発明の他の実施例の概略構成図である。
20・・・ユニットインジェクタ、23・・・シランツ
ヤ、25・・・カム、26・・・圧力室、27・・・ノ
ズル、28・・・燃料供給通路、35・・・計量弁、3
5A・・・弁体、35B・・・スプリング室、35D・
・・圧力通路、35E・・・オリフィス、36・・・電
磁弁、37・・・燃料供給ポンプ、40・・・制御回路
。
特許出願人 日産自動車株式会社
第2図
第3図(A)
第ろ図(B)
第3図(C)
第3図(E)
三ff 4図
一θどFig. 1 is a schematic configuration diagram of a conventional device, Fig. 2 is a sectional view of the main part of Fig. 1, and Fig. 3 is a schematic configuration diagram of an embodiment of the present invention. FIG. 4 is a schematic diagram of another embodiment of the present invention. 20... Unit injector, 23... Silant gloss, 25... Cam, 26... Pressure chamber, 27... Nozzle, 28... Fuel supply passage, 35... Metering valve, 3
5A... Valve body, 35B... Spring chamber, 35D.
...Pressure passage, 35E... Orifice, 36... Solenoid valve, 37... Fuel supply pump, 40... Control circuit. Patent applicant: Nissan Motor Co., Ltd. Figure 2 Figure 3 (A) Figure 3 (B) Figure 3 (C) Figure 3 (E) 3ff 4 Figure 1θ
Claims (1)
燃料供給通路を介して燃料の供給される圧力室と、前記
カムに応動して圧力室の燃料を加圧するシランジャと、
圧力室と連通し開弁圧以上で開くノズルと、前記圧力室
に連通ずる燃料供給通路に介装され開弁時に高圧燃料を
逃がす計量弁と、前記圧力室からの高圧燃料の一部を弁
体背装置と、機関の運転状態を検出する手段からの信号
に基づき前記弁装置を開閉駆動する制御手段とを設けた
ことを特徴とする燃料噴射制御装置。A cam that rotates in synchronization with the engine, a pressure chamber to which fuel is supplied by a fuel supply pump via a fuel supply passage, and a sylanger that pressurizes fuel in the pressure chamber in response to the cam.
a nozzle that communicates with the pressure chamber and opens at a pressure equal to or higher than the valve opening pressure; a metering valve that is interposed in a fuel supply passage that communicates with the pressure chamber and releases high-pressure fuel when the valve opens; and a metering valve that releases a portion of the high-pressure fuel from the pressure chamber. 1. A fuel injection control device comprising: a body back device; and a control device that opens and closes the valve device based on a signal from a device that detects the operating state of the engine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21359882A JPS59103960A (en) | 1982-12-06 | 1982-12-06 | Fuel injection controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21359882A JPS59103960A (en) | 1982-12-06 | 1982-12-06 | Fuel injection controller |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62001437A Division JPS62189360A (en) | 1987-01-07 | 1987-01-07 | Fuel injecting and weighing device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59103960A true JPS59103960A (en) | 1984-06-15 |
JPH031508B2 JPH031508B2 (en) | 1991-01-10 |
Family
ID=16641835
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21359882A Granted JPS59103960A (en) | 1982-12-06 | 1982-12-06 | Fuel injection controller |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59103960A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60125754A (en) * | 1983-12-08 | 1985-07-05 | Toyota Motor Corp | Fuel injection pump for use in diesel engine |
JPS61187961U (en) * | 1985-05-16 | 1986-11-22 | ||
EP0205882A2 (en) * | 1985-06-14 | 1986-12-30 | Robert Bosch Gmbh | Fuel injection device |
JPS6264872U (en) * | 1985-10-14 | 1987-04-22 | ||
JPS6264870U (en) * | 1985-10-12 | 1987-04-22 | ||
WO1999024710A1 (en) * | 1997-11-12 | 1999-05-20 | Caterpillar Inc. | Fuel injection pump with a hydraulically-actuated spill valve |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5450724A (en) * | 1977-09-21 | 1979-04-20 | Daimler Benz Ag | Pump nozzle apparatus air compressed injection type internal combustion engine |
JPS5450726A (en) * | 1977-09-12 | 1979-04-20 | Gen Motors Corp | Fuel pump*injector unit |
JPS578358U (en) * | 1980-06-16 | 1982-01-16 | ||
JPS59157573U (en) * | 1983-04-08 | 1984-10-23 | 日産自動車株式会社 | Internal combustion engine fuel injection system |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS578358B2 (en) * | 1975-02-19 | 1982-02-16 |
-
1982
- 1982-12-06 JP JP21359882A patent/JPS59103960A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5450726A (en) * | 1977-09-12 | 1979-04-20 | Gen Motors Corp | Fuel pump*injector unit |
JPS5450724A (en) * | 1977-09-21 | 1979-04-20 | Daimler Benz Ag | Pump nozzle apparatus air compressed injection type internal combustion engine |
JPS578358U (en) * | 1980-06-16 | 1982-01-16 | ||
JPS59157573U (en) * | 1983-04-08 | 1984-10-23 | 日産自動車株式会社 | Internal combustion engine fuel injection system |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60125754A (en) * | 1983-12-08 | 1985-07-05 | Toyota Motor Corp | Fuel injection pump for use in diesel engine |
JPH0575908B2 (en) * | 1983-12-08 | 1993-10-21 | Toyota Motor Co Ltd | |
JPS61187961U (en) * | 1985-05-16 | 1986-11-22 | ||
JPH0441247Y2 (en) * | 1985-05-16 | 1992-09-28 | ||
EP0205882A2 (en) * | 1985-06-14 | 1986-12-30 | Robert Bosch Gmbh | Fuel injection device |
JPS6264870U (en) * | 1985-10-12 | 1987-04-22 | ||
JPH057498Y2 (en) * | 1985-10-12 | 1993-02-25 | ||
JPS6264872U (en) * | 1985-10-14 | 1987-04-22 | ||
JPH0429082Y2 (en) * | 1985-10-14 | 1992-07-15 | ||
WO1999024710A1 (en) * | 1997-11-12 | 1999-05-20 | Caterpillar Inc. | Fuel injection pump with a hydraulically-actuated spill valve |
US5979415A (en) * | 1997-11-12 | 1999-11-09 | Caterpillar Inc. | Fuel injection pump with a hydraulically-spill valve |
Also Published As
Publication number | Publication date |
---|---|
JPH031508B2 (en) | 1991-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6684853B1 (en) | Fuel injector with direct needle valve control | |
JP2001193602A (en) | Electronically controlled diesel fuel injection system | |
US5042718A (en) | Solenoid-valve-controlled fuel injection device, for an air-compressing internal combustion engine | |
US5115783A (en) | Method for varying the flow rate of fuel in a distributor-type electronic control fuel-injection pump | |
JPS61272461A (en) | Fuel injection valve for internal-combustion engine | |
JPS59103960A (en) | Fuel injection controller | |
US20020185112A1 (en) | Fuel injector with direct needle valve control | |
JPH02191865A (en) | Fuel injection device | |
CA2367618A1 (en) | Fuel pressure delay cylinder | |
JPS59119059A (en) | Unit injector | |
US20020174854A1 (en) | Fuel injector with direct needle valve control | |
JPS59183014A (en) | Hydraulic type valve driving device | |
US10519916B1 (en) | Flexible rate shape common rail fuel system and fuel injector for same | |
JP4016569B2 (en) | Hydraulic valve gear | |
JPS59141764A (en) | Fuel injection device | |
US20040099246A1 (en) | Fuel injector with multiple control valves | |
JPH0461189B2 (en) | ||
JP2600873B2 (en) | solenoid valve | |
KR100241037B1 (en) | Electronic control type high pressure fuel injector for diesel engine | |
JPH10205404A (en) | Accumulating type fuel injector | |
JPH0438912B2 (en) | ||
JPH1182220A (en) | Fuel injection controller of diesel engine | |
JPS6358247B2 (en) | ||
JPH04339167A (en) | Fuel injection device for diesel engine | |
JPS6019946A (en) | Fuel injector |