[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPS59103171A - Mechanical translator - Google Patents

Mechanical translator

Info

Publication number
JPS59103171A
JPS59103171A JP57212024A JP21202482A JPS59103171A JP S59103171 A JPS59103171 A JP S59103171A JP 57212024 A JP57212024 A JP 57212024A JP 21202482 A JP21202482 A JP 21202482A JP S59103171 A JPS59103171 A JP S59103171A
Authority
JP
Japan
Prior art keywords
word
field vector
translated
translation
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57212024A
Other languages
Japanese (ja)
Other versions
JPH0225215B2 (en
Inventor
Hiroshi Kushima
串間 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57212024A priority Critical patent/JPS59103171A/en
Publication of JPS59103171A publication Critical patent/JPS59103171A/en
Publication of JPH0225215B2 publication Critical patent/JPH0225215B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/20Natural language analysis
    • G06F40/237Lexical tools
    • G06F40/242Dictionaries
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/40Processing or translation of natural language

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Machine Translation (AREA)

Abstract

PURPOSE:To attain selection of translated multivocal words by comparing a subject field vector with the field vector of each translated word and selecting the translated word having the most coincident translated word field vector. CONSTITUTION:A field vector synthesizing part 11 adds successively the field vector V of each word prepared for a buffer 22 by a vector adder 23 and stores the result vector S to a subject field vector register 24. At the same time, a translated word selecting part 7 actuates an inner product arithmetic part 12, reads a translated word field vector out of the buffer 22 with a switching process 25 to give it to an inner product arithmetic part 26 and carries out an inner product operation between the vector S of the register 24 and the translated word field vector. A comparing part 13 compares the vector S with the translated word field vector by a maximum detector 27 to detect the maximum value. A translated word deciding part 14 sets the translated word code to an output buffer 29 with extraction 28 of translated word for the translated word corresponding to the maximum translated word field vector value. The part 7 repeats the same processing for every word of the original sentence and extracts all translated words to deliver them through an output part 8.

Description

【発明の詳細な説明】 (5)発明の技術分野 本発明は機械翻訳装置、特に電子計算機によって入力原
文を翻訳して出力する装置であって、入力原文中に現わ
れる1つの単語に対する訳語が複数個ある場合に、最も
適切な訳語を比較的簡易に選出できるようにした機械翻
訳装置に関するものである。
Detailed Description of the Invention (5) Technical Field of the Invention The present invention relates to a machine translation device, particularly a device that uses an electronic computer to translate and output an input original text, which translates and outputs a plurality of translated words for one word appearing in the input original text. The present invention relates to a machine translation device that can relatively easily select the most appropriate translation word when there are many translated words.

+Bl  技術の背景と問題点 第1図は一般的な機械翻訳装置の構成例を示す。+BL Technology background and problems FIG. 1 shows an example of the configuration of a general machine translation device.

機械翻訳装置においては、自然言語をデジタル情報とし
て入力し2例えば英語から日本語9日本語から英語とい
うように自動翻訳して結果を出力する。第1図において
、制御部1は命令をフェッチして実行し1機械翻訳装置
全体を制御するものである。入力部2から入力された翻
訳対象となる原文は、単ハ1(分割部3によって各単語
に分割される。分割された各単語について、辞書検索部
4は。
In a machine translation device, natural language is input as digital information, and the result is automatically translated, for example, from English to Japanese, and from Japanese to English. In FIG. 1, a control unit 1 fetches and executes instructions to control the entire machine translation apparatus. The original text to be translated inputted from the input unit 2 is divided into words by the division unit 3. For each divided word, the dictionary search unit 4 calculates the number of words.

磁気ディスク装置9等に予め用意された単語辞書■0を
検索する。単凸吾辞書10には、翻訳される計語の各単
語について、その属性、訳語等が登録されている9次に
、(1″4文解析部5は、検索結果に従って、主部・述
部等の構文を解析する。語順決定部6は、その解析結果
に基ついで、単語を訳語に変換した場合に、その訳語を
並べる順序を決定する。訳語選択部7は、原文中の各単
語に対応する訳語がm数個ある場合に、その中の1つを
選択するものである。出力部8は、訳語選択部7が選択
した訳語を1語順決定部6が決定した語順に従って並べ
、訳文を作成して出力する。
The word dictionary ■0 prepared in advance in the magnetic disk device 9 or the like is searched. In the single-convex dictionary 10, attributes, translations, etc. are registered for each word of the dictionary to be translated. The word order determining unit 6 analyzes the syntax of parts, etc. Based on the analysis result, the word order determining unit 6 determines the order in which the translated words are arranged when the words are converted into translated words.The translated word selecting unit 7 When there are m translations corresponding to , one of them is selected.The output unit 8 arranges the translations selected by the translation word selection unit 7 according to the word order determined by the word order determination unit 6, Create and output the translation.

本発明は、特に上記訳語選択の部分に関連している。例
えは+  I frt、nction Jという言葉を
日本語に訳す場合に、「機能」と訳さなけれはならない
とぎもあるし、「関数」と訳さなけれはならないとぎも
ある。従来の機械翻訳装置は、このようにある単語に複
数の訳語が考えられるときに1次のような方式によって
、訳語を選択するようにされていた。
The present invention particularly relates to the above-mentioned translation word selection part. For example, when translating the words + I frt and nction J into Japanese, there are some words that have to be translated as "functions," and other words that have to be translated as "functions." In conventional machine translation devices, when a plurality of translations for a certain word can be considered, the translation is selected using a first-order method.

第1の方式は、翻訳対象の単語に対応する複数の訳語を
出力し9人間が選択するものである。しかし、この方式
によれば1人手がかかるため、自動翻訳という機械翻訳
の目的に反することとなる。
The first method is to output a plurality of translated words corresponding to the word to be translated and nine people select them. However, this method requires one person's effort, which goes against the purpose of machine translation, which is automatic translation.

第2の方式は2例えば数学の分野、スポーツの分野、・
・・というように翻訳対象の原文が用いられている分野
毎に、別々の単語辞書を用意するものである。この方式
によれば、複数の単語辞書を用意しなけれはならず、煩
雑となるだけでなく9例えば、新聞記事を翻訳する場合
など、翻訳対象の分野を予め知り得ないことが多く、使
用できる範囲が限られてしまう。他の方式として、いわ
ゆる知識ペースを用いた高度の意味処理による選択方式
が研究されでいる。しかし、この方式は計算機の処理量
が極めて大きくなるため、大規模なシステムでなりれば
利用することができないという問題がある。
The second method is 2For example, the field of mathematics, the field of sports, etc.
Separate word dictionaries are prepared for each field in which the original text to be translated is used. According to this method, it is necessary to prepare multiple word dictionaries, which is not only complicated, but also difficult to use because, for example, when translating newspaper articles, the field to be translated is often not known in advance. The range is limited. As another method, a selection method based on advanced semantic processing using so-called knowledge pace has been studied. However, this method requires an extremely large amount of computer processing, so there is a problem that it cannot be used in a large-scale system.

tel  発明の目的と構成 本発明は上記問題点の解決を図り、高度の意味処理を用
いることなく、適切な訳語を迅速に選択する機械翻訳装
置を提供することを目的としでいる。そのため1本発明
は、単語辞書に登録される単語と、その単語に対応する
各訳語のそれぞれについて、その単語または訳語が用い
られる各分野との適合性を強さとして示す単語分野ベク
トルまたは訳語分野ベクトルを付与し、原文に現われる
単語の単語分野ベクトルを合成することによって得られ
る対象分野ベクトルと、各訳語分野ベクトルとの比較に
よって、最も一致する訳語分野ベクトルをもつ訳語を選
出するようにしたものである。
tel OBJECTS AND STRUCTURE OF THE INVENTION The present invention aims to solve the above-mentioned problems, and aims to provide a machine translation device that quickly selects appropriate translated words without using advanced semantic processing. Therefore, 1 the present invention provides a word field vector or a translated word field that indicates, as strength, the compatibility between a word registered in a word dictionary and each translated word corresponding to the word, and each field in which the word or translated word is used. The target field vector obtained by assigning vectors and composing the word field vectors of words that appear in the original text and each translated word field vector are compared to select the translated word with the most matching target field vector. It is.

すなわち1本発明の機械翻訳装置は、原文を入力して、
該入力原文を各単語に分割し、単語辞書に登録された原
文単語に対応する訳語を抽出して。
In other words, the machine translation device of the present invention inputs an original text,
The input original text is divided into words, and translated words corresponding to the original text words registered in the word dictionary are extracted.

訳文を構成し出力する機械翻訳装置においで、上記単語
辞書は、各登録単語毎に予め定められた分野の個数を次
元とし、当該単語と上記各分野との適合度をそれぞれ成
分とする単語分野ベクトル情報を保持するとともに、上
記登録単語の各訳語毎に、上記単語分野ベクトルに対応
するベクトルであって当該訳語と上記各分野との適合度
を成分とする訳語分野ベクトル情報を保持し、翻訳対象
の単語群から得られる複数の上記単語分野ベクトルを合
成して対象分野ベクトルを生成する合成部と。
In a machine translation device that composes and outputs a translated sentence, the word dictionary has a word field whose dimension is the number of fields predetermined for each registered word, and whose components are the degree of compatibility between the word and each of the above fields. In addition to holding vector information, for each translated word of the registered word, translation word field vector information, which is a vector corresponding to the word field vector and whose component is the degree of compatibility between the translated word and each of the above fields, is stored and translated. a synthesis unit that generates a target domain vector by synthesizing the plurality of word domain vectors obtained from the target word group;

該合成部によって合成された対象分野ベクトルと1つの
単語に対する複数の上記各訳語分野ベクトルとを比較し
、最も類似する訳語分野ベクトルを有する訳語を当該単
語の訳語として決定する訳語選択部とをそなえたことを
特徴としでいる。以下図面を参照しつつ説明する。
a translation word selection unit that compares the target field vector synthesized by the synthesis unit and the plurality of translation word field vectors for one word, and determines the translation having the most similar translation word field vector as the translation of the word; It is characterized by This will be explained below with reference to the drawings.

+D+  発明の実施例 第2図は本発明に係る単語辞書の構成例、″)v3図お
よび第4図は分野ベクトルについての説明図。
+D+ Embodiment of the Invention FIG. 2 is an example of the configuration of a word dictionary according to the present invention, and FIG. 3 and 4 are explanatory diagrams of field vectors.

N15図は本発明の一実施例構成を示す。Diagram N15 shows the configuration of an embodiment of the present invention.

単語辞書は、翻訳対象となる原言語の各単語と。A word dictionary contains each word in the source language to be translated.

それに対応する訳語とが、予め登録されて記憶されてい
るもので、1つの単語については1例えば第2図図示の
ようなフィールド構成を持つ。キー10−1は、原言語
の単語についての文字コード列等によるキー情報をもつ
。属性フィールド10−2には、その単語の品詞種別環
一般的な単語情報が格納される。単語分野ベクトル・フ
ィールド10−3には、後に詳述する如く、その単語が
使用される各分野との適合度を示すベクトル情報が格納
される。訳語フィールド10−4には、キーl0−1に
対応する訳語が、その単語の訳語として適当な訳語数の
分だけ格納される。さらに、訳語分野ベクトル・フィー
ルド10−5には、その各訳語ごとに、その訳語が用い
られる各分野との適合度を示すベクトル情報が登録時に
設定される。
The corresponding translation words are registered and stored in advance, and one word has a field structure as shown in FIG. 2, for example. The key 10-1 has key information such as character code strings for words in the source language. The attribute field 10-2 stores general word information such as part-of-speech type ring of the word. The word field vector field 10-3 stores vector information indicating the degree of compatibility with each field in which the word is used, as will be described in detail later. The translation word field 10-4 stores translation words corresponding to the key l0-1 as many as the appropriate number of translation words for the word. Further, in the translation word field vector field 10-5, for each translated word, vector information indicating the degree of compatibility with each field in which the translated word is used is set at the time of registration.

単語分野ベクトル、訳語分野ベクトルおよび後述する対
象分野ベクトルは、第3図に示す要素をもつ。ベクトル
の次元は、広く言葉が用いられる分野を分類し、あり得
る分野の個数を次元とするよう定められる。そして、ベ
クトルの各要素は。
The word field vector, the translation word field vector, and the target field vector, which will be described later, have the elements shown in FIG. The dimension of the vector is determined by classifying the fields in which the word is widely used, and the number of possible fields is determined as the dimension. And each element of the vector is.

例えば先頭の第1分野は「数学」の分野、第2分野は「
スポーツ」の分野というように、各ベクトルに共通に分
野の内容が定められる。
For example, the first field at the beginning is the field of "mathematics", and the second field is "
The content of the field is commonly defined for each vector, such as the field of "sports".

例えば[τeαctorJという英語の単語を0日本語
に訳す場合、ある場合には「原子炉jと訳すのが適当で
あるし、ある場合には「反応器」と訳さなければならな
いときがある。一般に、原子カニ学の分野では、[原子
炉jと訳すのが適当で、化学の分野では、「反応器Jと
訳したほうが適当な場合が多いであろう。このような場
合に+ rraactorJの単語に対する訳語「原子
炉]についての訳語分野ベクトルは、原子カニ学の分野
の成分が大きな値を持つように定められる。一方、訳語
[反応器jについての訳語分野ベクトルは、化学の分野
の成分が大きな値を持つようにされる。
For example, when translating the English word [τeαctorJ] into Japanese, in some cases it is appropriate to translate it as ``nuclear reactor j,'' and in other cases it is necessary to translate it as ``reactor.'' In general, in the field of atomic science, it is appropriate to translate it as [reactor j], and in the field of chemistry, it is often more appropriate to translate it as "reactor J".In such cases, the word + rraactorJ is used. The translation field vector for the translation word "nuclear reactor" is determined such that the component in the field of atomic science has a large value.On the other hand, the translation field vector for the translation word "reactor j" is determined such that the component in the field of chemistry has a large value. It is made to have a large value.

単語分野ベクトルについても、同様にそれぞれの分野と
の適合度が、各成分の値として定められる。例えは、 
 「that Jとか「this J等といった特色の
ないすべての分野に共通に用いられる言葉は。
Similarly, for the word field vector, the degree of compatibility with each field is determined as the value of each component. For example,
``That J,'' ``this J, etc. are words that are commonly used in all non-distinct fields.

どのベクトル成分にも小さな値が割り当てられる。Every vector component is assigned a small value.

n個の分野に分類されているとすると1例えば第4図図
示の如(、n次元ベクトル空間において。
Assuming that the fields are classified into n fields, for example, as shown in FIG. 4 (in an n-dimensional vector space.

分野ベクトルVが与えられることとなる。すなわち、1
つの分野ベクトルVは、方向と強さとを持ち、用いられ
る分野との関連において、単語または訳語の個性を示す
と考えてよい。
A field vector V will be given. That is, 1
Each field vector V has a direction and strength, and can be considered to indicate the individuality of a word or a translated word in relation to the field in which it is used.

次に、第5図を参照し、これらの分野ベクトルに基づい
て訳語を決定する本発明の一実施例構成を説明する。
Next, referring to FIG. 5, a configuration of an embodiment of the present invention will be described in which translated words are determined based on these field vectors.

第5図において、符号2ないし10は木1図に対応し、
11は翻訳対象の原文に現われる単語についでの単語分
野ベクトルを合成して、対象分野ベクトルを生成する分
野ベクトル合成部、12は対象分野ベクトルと各訳語分
野ベクトルとについて、内債を演算する内積演算部、1
3は内積演算結果を比較する比較部、14は比較結果に
基づいて訳語を決定して抽出する訳語決定部、20は入
力バッファ、21は原文の単語データ、22はバッファ
、23はベクトル加算器、24は対象分野ベクトル・レ
ジスタ、25は切換処理命令群、26は内債演算命令群
、27は最大値検出命令群、28は訳語抽出命令群、2
9は出カバソファを表わす。
In FIG. 5, numerals 2 to 10 correspond to tree 1,
Reference numeral 11 denotes a field vector synthesis unit that generates a target field vector by synthesizing word field vectors associated with words that appear in the original text to be translated, and 12 an inner product that calculates the internal value of the target field vector and each translated word field vector. Arithmetic unit, 1
3 is a comparison unit that compares the inner product calculation results; 14 is a translation determination unit that determines and extracts a translated word based on the comparison result; 20 is an input buffer; 21 is word data of the original text; 22 is a buffer; 23 is a vector adder. , 24 is a target field vector register, 25 is a group of switching processing instructions, 26 is a group of internal calculation instructions, 27 is a group of maximum value detection instructions, 28 is a group of translated word extraction instructions, 2
9 represents the cover sofa.

入力部2は入力バッファ20に翻訳対象の原文を入力す
る。単語分割部3は入力した原文を9例えばスペース・
データに従って、単語に分割する。
The input unit 2 inputs the original text to be translated into the input buffer 20 . The word dividing unit 3 divides the input original text into 9 spaces, for example.
Divide into words according to data.

辞書検索部4は9分割した各単語について、単語辞書1
0を検索し9例えは′:)V2図に示したような単語情
報をバッファ22に読み出す。この単語情報をもとに、
構文解析部5は構文を解析し1語順決定部6は訳語が選
択された場合の訳語の語順を決定する。以上の処理は従
来と同様でよい。
The dictionary search unit 4 searches the word dictionary 1 for each word divided into nine parts.
0 is searched, and word information as shown in FIG. Based on this word information,
The syntactic analysis unit 5 analyzes the syntax, and the one-word order determining unit 6 determines the word order of the translated word when the translated word is selected. The above processing may be the same as the conventional one.

分野ヘクトル合成部11は、バッファ22に用意された
各単語の単語分野ベクトル■を、ベクトル加算器23に
よって、順次加算し、結果を対象分野ベクトル・レジス
タ24に格納する。なお。
The field vector synthesis unit 11 sequentially adds the word field vectors of each word prepared in the buffer 22 using a vector adder 23, and stores the result in the target field vector register 24. In addition.

加算にあたってオーバーフローが生じないように適当な
係数が掛けられる。例えは、対象分野ベクトルを3.原
文の単語数を雷、オ(番目の単語分野ベクトルをV(O
とすると、対象分野ベクトル・レジスタ24に格納され
る対象分野ベクトルSは次のようになる。
An appropriate coefficient is multiplied to prevent overflow during addition. For example, if the target field vector is 3. Let the number of words in the original text be thunder, and let the O(th word field vector be V(O
Then, the subject field vector S stored in the subject field vector register 24 is as follows.

この対象分野ベクトルSは、翻訳対象の原文が現に用い
られでいる分野の特徴を示していると考えてよい。
This target field vector S may be considered to indicate the characteristics of the field in which the original text to be translated is currently used.

訳語選択部7は、ます内積演算部12を起動する。内債
演算部12は、切換処理命令群25によって、バッファ
22から、1つの単語について複数の訳語がある場合に
、その各訳語の訳語分野ベクトルを読み出しで、内積演
算命令群26に与える。内債演算命令群26によって、
対象分野ベクトル・レジスタ24の対象分野ベクトル3
と各訳語分野ベクトルとの内積演算が行われる。例えは
The translation word selection section 7 activates the inner product calculation section 12 . When there are a plurality of translations for one word, the internal bond calculation unit 12 uses the switching processing instruction group 25 to read the translation field vector of each translation from the buffer 22 and provides it to the inner product calculation instruction group 26. By the internal debt operation instruction group 26,
Target field vector 3 of target field vector register 24
An inner product operation is performed between and each target word field vector. For example.

オi番目の単語のオTj′番目の訳語分野ベクトルをV
3(i)で表わすと、ベクトルの内積S−V j(S)
が、j=1.2.・・・k(kは訳語数)のそれぞれに
ついで。
The Tj′-th translation field vector of the i-th word is
3(i), the inner product of vectors S−V j(S)
However, j=1.2. ... after each k (k is the number of translated words).

算出される。この内債の大きさは、各訳語分野ベクトル
V 3 (*)と対象分野ベクトルSとの一致の程度を
示すことは言うまでもない。
Calculated. Needless to say, the size of this internal value indicates the degree of coincidence between each translated word field vector V 3 (*) and the target field vector S.

比較部13は、最大値検出命令群27によって。The comparison unit 13 uses the maximum value detection command group 27.

上記各内積3−V3(s)を比較し、最大の値をもつも
のを検出する。訳語決定部14は、訳語抽出命令群28
によって、対象分野ベクトルとの内債が最大となる訳語
分野ベクトルV10(S)に対応する訳語Tjo(1)
を、当該単語の訳語とし、出力バッファ29にその訳語
のコードを設定する。訳語選択部7は。
The above inner products 3-V3(s) are compared and the one having the maximum value is detected. The translation determination unit 14 uses a translation extraction command group 28
Therefore, the translation word Tjo(1) corresponding to the translation word field vector V10(S) that has the maximum internal bond with the target field vector
is set as the translation of the word, and the code of the translation is set in the output buffer 29. The translation selection section 7 is.

原文のすべての単語について、同様に処理を繰り返し、
すべての訳語について抽出できたならば。
Repeat the process for all words in the original text,
If all translated words could be extracted.

出力部8を呼び出す。出力部8は、出力バッファ29上
の翻訳結果を1例えば、ラインプリンタ等に印字出力す
る。
Call the output section 8. The output unit 8 prints out the translation result on the output buffer 29 to, for example, a line printer.

上記分野ベクトル合成部11においで、単語分野ベクト
ルを合成する場合、原文の1センテンス毎に合成しても
よいし2.また1例えば対象分野ベクトル・レジスタ2
4の内容を各センテンス毎にクリアしないようにし9合
成の範囲を一連の文章または所定個数の単語群となるよ
うにしてもよい。
When the field vector synthesis unit 11 synthesizes word field vectors, it may be synthesized for each sentence of the original sentence. Also 1 For example, target field vector register 2
Instead of clearing the contents of 4 for each sentence, the range of 9 synthesis may be a series of sentences or a predetermined number of word groups.

なお、単語辞書10に登録する単語分野ベクトルおよび
各訳語の訳語分野ベクトルは、単語辞書IOの作成時に
1例えば経験によって適当な値が定められ設定されるが
、学習によってざらに適当な値に更新されるようにして
もよい。
Note that the word field vectors registered in the word dictionary 10 and the translation field vectors of each translated word are determined and set to appropriate values based on experience, for example, at the time of creating the word dictionary IO, but they are roughly updated to appropriate values through learning. It is also possible to do so.

(El  発明の詳細 な説明した如く本発明によれは、高度の意味処理を行う
ことなく、比較的少ない計算機処理時間とメモリとを使
用するだけで、多義語の訳語の選択が可能となる。
(El) As described in detail, according to the present invention, a translation of a polysemous word can be selected without performing sophisticated semantic processing and by using relatively little computer processing time and memory.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般的な機械翻訳装置の構成例、;第2図は本
発明に係る単語辞書の構成例、第3図および木4図は分
野ベクトルについての説明図、第5図は本発明について
の一実施例構成を示す。 図中、7は訳語選択部、10は単語辞書、11は分野ベ
クトル合成部、12は内債演算部、13は比較部、14
は訳語決定部を表わす。 特許出願人 富士通株式会社
Figure 1 is an example of the configuration of a general machine translation device; Figure 2 is an example of the configuration of a word dictionary according to the present invention; Figures 3 and 4 are explanatory diagrams of field vectors; Figure 5 is an example of the invention. An embodiment of the configuration is shown below. In the figure, 7 is a translation selection section, 10 is a word dictionary, 11 is a field vector synthesis section, 12 is a domestic debt calculation section, 13 is a comparison section, 14
represents the translation word determination section. Patent applicant Fujitsu Limited

Claims (1)

【特許請求の範囲】 原文を入力して、該入力原文を各単語に分割し。 単語辞書に登録された原文単語に対応する訳語を抽出し
で、訳文を構成し出力する機械翻訳装置において、上記
単語辞書は、各登録単語毎に予め定められた分野の個数
を次元とし、当該単語と上記各分野との適合度をそれぞ
れ成分とする単語分野ベクトル情報を保持するとともに
、上記登録単語の各訳語毎1こ、上記単語分野ベクトル
に対応するベクトルであって当該訳語と上記各分野との
適合度を成分とする訳語分野ベクトル情報を保持し。 翻訳対象の単語群から得られる複数の上記単語分野ベク
トルを合成して対象分野ベクトルを生成する合成部と、
該合成部によって合成された対象分野ベクトルと1つの
単語に対する複数の上記各訳語分野ベクトルとを比較し
、最も類似する訳語分野ベクトルを有する訳語を当該単
語の訳語として決定する訳語選択部とをそなえたことを
特徴とする機械翻訳装置。
[Claims] An original text is input, and the input original text is divided into words. In a machine translation device that extracts translated words corresponding to original words registered in a word dictionary to compose and output a translated sentence, the word dictionary has a dimension of the number of fields determined in advance for each registered word, and In addition to holding word field vector information whose components are the degree of compatibility between a word and each of the above fields, one for each translation of the registered word, a vector corresponding to the above word field vector that contains the corresponding translation and each of the above fields. It holds translation field vector information whose component is the degree of compatibility with the target word. a synthesis unit that generates a target domain vector by synthesizing the plurality of word domain vectors obtained from a group of words to be translated;
a translation word selection unit that compares the target field vector synthesized by the synthesis unit and the plurality of translation word field vectors for one word, and determines the translation having the most similar translation word field vector as the translation of the word; A machine translation device characterized by:
JP57212024A 1982-12-02 1982-12-02 Mechanical translator Granted JPS59103171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57212024A JPS59103171A (en) 1982-12-02 1982-12-02 Mechanical translator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57212024A JPS59103171A (en) 1982-12-02 1982-12-02 Mechanical translator

Publications (2)

Publication Number Publication Date
JPS59103171A true JPS59103171A (en) 1984-06-14
JPH0225215B2 JPH0225215B2 (en) 1990-06-01

Family

ID=16615604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57212024A Granted JPS59103171A (en) 1982-12-02 1982-12-02 Mechanical translator

Country Status (1)

Country Link
JP (1) JPS59103171A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6175957A (en) * 1984-09-21 1986-04-18 Fujitsu Ltd Mechanical translation processor
JPS6329881A (en) * 1986-07-23 1988-02-08 Fujitsu Ltd Machine translation device
JPS63278174A (en) * 1987-05-11 1988-11-15 Ricoh Co Ltd Translation device
JPH07262188A (en) * 1994-03-14 1995-10-13 Internatl Business Mach Corp <Ibm> Processing method of language discrimination
JPH07334506A (en) * 1994-06-14 1995-12-22 Nec Field Service Ltd Machine translation device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6175957A (en) * 1984-09-21 1986-04-18 Fujitsu Ltd Mechanical translation processor
JPS6329881A (en) * 1986-07-23 1988-02-08 Fujitsu Ltd Machine translation device
JPH0439705B2 (en) * 1986-07-23 1992-06-30
JPS63278174A (en) * 1987-05-11 1988-11-15 Ricoh Co Ltd Translation device
JPH07262188A (en) * 1994-03-14 1995-10-13 Internatl Business Mach Corp <Ibm> Processing method of language discrimination
JPH07334506A (en) * 1994-06-14 1995-12-22 Nec Field Service Ltd Machine translation device

Also Published As

Publication number Publication date
JPH0225215B2 (en) 1990-06-01

Similar Documents

Publication Publication Date Title
US5895446A (en) Pattern-based translation method and system
US5227971A (en) Apparatus for and method of selecting a target language equivalent of a predicate word in a source language word string in a machine translation system
US7447623B2 (en) Machine translation
EP0262938B1 (en) Language translation system
JPH09128396A (en) Preparation method for bilingual dictionary
WO2003038664A2 (en) Machine translation
US5088039A (en) System for translating adverb phrases placed between two commas through a converter using tree-structured conversion rules
JPS59103171A (en) Mechanical translator
JP4018668B2 (en) Sino-Japanese machine translation device, Sino-Japanese machine translation method, and Sino-Japanese machine translation program
JP3471253B2 (en) Document classification method, document classification device, and recording medium recording document classification program
JP2005025555A (en) Thesaurus construction system, thesaurus construction method, program for executing the method, and storage medium with the program stored thereon
JP3085394B2 (en) Translated word selection method in multi-sentence translation and machine translation system using the same
JP2771976B2 (en) Language analyzer
KR950013129B1 (en) Method and apparatus for machine translation
JP2838984B2 (en) General-purpose reference device
JP3258079B2 (en) Compound word dictionary registration device
JP2715875B2 (en) Multilingual summary generator
JPH06325082A (en) Machine translation system
JP3253311B2 (en) Language processing apparatus and language processing method
JPH03225468A (en) Machine translation device
JPH0290364A (en) Method and system for mechanical translation
JPH04130577A (en) Natural language processor
JPH0251764A (en) Index production system
JPH03148762A (en) Machine translation device
JPH0444981B2 (en)