JPS59102930A - Molding process - Google Patents
Molding processInfo
- Publication number
- JPS59102930A JPS59102930A JP57211342A JP21134282A JPS59102930A JP S59102930 A JPS59102930 A JP S59102930A JP 57211342 A JP57211342 A JP 57211342A JP 21134282 A JP21134282 A JP 21134282A JP S59102930 A JPS59102930 A JP S59102930A
- Authority
- JP
- Japan
- Prior art keywords
- nitrogen gas
- molding machine
- silane
- molding
- grafted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/285—Feeding the extrusion material to the extruder
- B29C48/295—Feeding the extrusion material to the extruder in gaseous form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/022—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/285—Feeding the extrusion material to the extruder
- B29C48/29—Feeding the extrusion material to the extruder in liquid form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/05—Filamentary, e.g. strands
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/0005—Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Abstract
Description
【発明の詳細な説明】 形品の製造方法に関する。[Detailed description of the invention] Concerning a method for manufacturing shaped articles.
近時シラングラフト化ボリオレフィンは成形した後水分
とシラノール縮合触媒の存在−Fで容易に架橋しイ!I
る事から、その優れた耐熱性、耐ストレスクラソク性を
利用して市,腺、パイプやフィルムなど多方面に利用さ
れつつある。Recently, silane-grafted polyolefins can be easily crosslinked in the presence of moisture and a silanol condensation catalyst after molding. I
Due to its excellent heat resistance and stress resistance, it is being used in a wide range of applications such as pipes, pipes, and films.
その製造方法は、ポリオレフィン樹脂にシランカノプリ
ング剤と遊1ffiEラジカル発生剤を加え、押出機で
遊離ラジカル発生剤の分解温度以上の高温で混練し、シ
ラングラフト化ボリオレフィンを製造し、それとは別に
シラノール縮合触媒を添加したマスターパッチを製造す
る。このシラングラフト化ボリオレフィンとシラノール
縮合触媒を含有したマスターバッチを所定の比率で混合
して成形機に投入し、成形品を作り、その後水分の存在
下で架橋させるものである。しかし、シラングラフト化
ボリオレフィンとシラノール縮合触媒の混合物から成形
品を作る際、大きな問題となっているのが、シリンダー
内での架橋現象によるブツの発生とさらに、目脂の大量
発生である。!侍に電力ケーブルの絶縁層被覆やパイプ
押出さらにシート・フィルムの押出成形の場合では、イ
ンダイ先・端に付着する目脂によシ連続生産性、歩留、
さらには、成形品の性能に多大なる影響を及ぼし場合に
よっては生産を困難なものとしており、7ラン架橋ポリ
オレフイン利用の大きな障害となっているのが現状であ
る。The manufacturing method involves adding a silane canopring agent and a free radical generator to a polyolefin resin, and kneading the mixture in an extruder at a high temperature higher than the decomposition temperature of the free radical generator to produce a silane-grafted polyolefin. A master patch containing a silanol condensation catalyst is produced. A masterbatch containing this silane-grafted polyolefin and a silanol condensation catalyst is mixed at a predetermined ratio and charged into a molding machine to produce a molded article, which is then crosslinked in the presence of moisture. However, when making molded articles from a mixture of a silane-grafted polyolefin and a silanol condensation catalyst, the major problems are the formation of lumps due to the crosslinking phenomenon within the cylinder and the generation of large amounts of eye oil. ! In the case of insulating layer coating for power cables, pipe extrusion, and extrusion molding of sheets and films, it is necessary to eliminate eye grease that adheres to the in-die tip and end, improving continuous productivity, yield, etc.
Furthermore, it has a great influence on the performance of molded products, making production difficult in some cases, and is currently a major obstacle to the use of 7-run crosslinked polyolefins.
本発明者はこの状況を打破するため鋭意検討した結果、
窒素ガスを利用することにより目脂防止とシリンダー内
での架橋の防止に驚くべき効果のある事を見出し、本発
明を完成するに至った。As a result of intensive study to overcome this situation, the inventor found that
We have discovered that the use of nitrogen gas has a surprising effect on preventing eye oil and crosslinking within the cylinder, and have completed the present invention.
即ち、本発明はシラングラフト化ポリオレフィンにシラ
ノール縮合触媒を加えて成形する際に成形機の旧料供給
口への窒素ガスの吹き込み及び/又はアウトダイ出口へ
の窒素ガ扶の吹きつけを行うことにより、目脂発生及び
成形機内部での架橋を防止することを’t?徴とする成
形方法を提供するものである。さらに詳しくは本発明は
、シラングラフト化ポリオレフィンとシラノール縮合触
媒の混合物から成形品を作る際、又はシラングラフト化
ポリオレフィン単体を成形する場合ポツパー内に窒素ガ
スを吹き込むことにより、電カケープルの絶縁層被覆や
パイプ成形のインダイ先端の目脂を防止し、さらにシリ
ンダー内での架橋を防止する事により、長時間連続生産
でのブツ発生を防止する。さらにシリンダー内での架橋
防止によジシラン架橋ポリオレフィンでは困難とされて
いる射出成形においても、表面外観の良好な、かつ物性
面のバラツキの少ない成形品を得る事が可能となり事実
上、射出成形の分野にも適用出来る事になった。さらに
押出成形においては、アウトダイ先端に付着する目脂も
大きな問題であり、かつこの目脂発生原因をシリンダー
、ダイ等の内面での現象によるものと考えていたのであ
るが、ダイ先端の目脂発生する部分に押出成形開始時か
ら蟹素ガスを吹きつける事により全く目脂が発生しな−
いという篤くべき事実を発見した。この事実よシ前記し
たインダイの目脂もこのアウトダイの目脂も発生原因と
して、(8融樹脂が吐出した瞬間に触れる空気中の酸素
及び水分が大きな影響を及はしていると推定される。さ
らにこの原因推定はシラングラフト化ポリオレフィンに
とどまらず一般のポリオレフィン樹脂やその他の樹脂に
ついても適用される。That is, in the present invention, when a silanol condensation catalyst is added to a silane-grafted polyolefin and molded, nitrogen gas is blown into the old material supply port of the molding machine and/or nitrogen gas is blown into the out-die outlet. , to prevent the formation of eye oil and crosslinking inside the molding machine? The present invention provides a molding method with a characteristic feature. More specifically, in the present invention, when a molded article is made from a mixture of a silane-grafted polyolefin and a silanol condensation catalyst, or when a single silane-grafted polyolefin is molded, nitrogen gas is blown into the popper to cover the insulating layer of the electrical cable. By preventing oil from forming on the tip of the in-die during pipe molding and by preventing crosslinking within the cylinder, it prevents the occurrence of lumps during long-term continuous production. Furthermore, even in injection molding, which is difficult with disilane cross-linked polyolefin due to the prevention of cross-linking in the cylinder, it is possible to obtain molded products with a good surface appearance and less variation in physical properties, making it possible to virtually eliminate injection molding. It can now be applied to other fields as well. Furthermore, in extrusion molding, eye oil that adheres to the tip of the out die is a big problem, and the cause of this eye oil generation was thought to be a phenomenon on the inner surface of the cylinder, die, etc. By spraying crab gas from the beginning of extrusion molding on the areas where eye oil is generated, no eye oil will be generated at all.
I discovered a serious fact. Based on this fact, it is estimated that oxygen and moisture in the air that comes into contact with the moment the molten resin is discharged have a major influence on the cause of the above-mentioned in-dye eye discharge and out-die discharge. Furthermore, this cause estimation is applied not only to silane-grafted polyolefins but also to general polyolefin resins and other resins.
又、本発明では窒素ガスを使用しているが、これは実際
の生産上経済的にみて窒素ガスのみ使用ト」能であると
考えているためであり、他の不活性ガスも同様の効果が
みられる事は言うまでもない。In addition, although nitrogen gas is used in the present invention, this is because it is believed that it is possible to use only nitrogen gas from an economic point of view in actual production, and other inert gases may also have the same effect. Needless to say, you can see it.
本発明は以」一記載したように、窒素ガスを利用する小
により、シラングラフト化ポリオレフィンにシラノール
縮合触媒を加えて、成形する際又は、シラングラフト比
ポリオレフィン単体で成形する際の目脂発生を防止し、
かつシリンダー内での架橋彷、象を防止17得るように
なった事は、シラングラフト化ポリオレフィンの適用範
囲を大きく広げるものであシ、その工業面での意義は非
常に太きいものである。As described above, the present invention uses nitrogen gas to add a silanol condensation catalyst to a silane-grafted polyolefin to prevent the generation of eye oil when molding or when molding a silane-grafted polyolefin alone. prevent,
Moreover, the ability to prevent cross-linking within the cylinder 17 greatly expands the scope of application of silane-grafted polyolefins, and has great industrial significance.
以下実施例により本発明を具体的に説明する。The present invention will be specifically explained below using Examples.
実施例
低密度ポリエチレン(MI : 2. O11部:0.
922)ベースのビニルトリメトキシシランをグラフト
させたシランクラフト化ポリエチレン95重財部にジブ
チルSISジラウレー) (DBTDL ) 1 重
址部を添加L 7’こ低密度ホIJエチレンペースのマ
スターバッチ5 M f4部を混合し、65mmΦの押
出機のホッパーに投入し1.2祁Φ径の鋼心に0.5陥
厚みで電線積法押出を行なう時に、アウトダイの出口に
対して3方自から審ス・コガスの気流を肌に少し感じる
程度(ボンベ2次圧、0.5 kdJ以下)で吹きつり
だ。Example Low density polyethylene (MI: 2. O11 parts: 0.
922) Base silane-crafted polyethylene grafted with vinyltrimethoxysilane 95 heavy parts to dibutyl SIS dilauray) (DBTDL) 1 heavy part added L 7' low density ho IJ ethylene paste masterbatch 5 M f 4 parts When mixing and putting into the hopper of a 65mmΦ extruder and extruding it into a steel core with a diameter of 1.2Φ with a thickness of 0.5mm using the wire lamination method, there were It's blowing when you can feel the airflow of cogas on your skin (secondary cylinder pressure, 0.5 kdJ or less).
比較例として蟹Xガスを全く便用せずに同じ電π9被覆
押出を行なったところ、T制の結果をイIIた。As a comparative example, the same electron π9 coating extrusion was carried out without using Crab X gas at all, and the results of the T system were excellent.
実施例2
高密度ポリエチレン(ΔlI:1.o、密1jp (1
955)ベースにビニルトリメトキシシランをグラフト
したシラングラフト化ポリエチレン95重埜fallに
I)I)TDL 1重量部を添加した高密度ポリエチレ
ンペースのマスターパッチ5声」4部を混ぜ、さらにi
n+密反ポリエチレンペースのカーボンマスターバッチ
を5重を化部混合した後、90門Φの押出機のホッパー
に投入した。その際ホッパーと押出機本体との接続部分
上部に71Φの穴を設けその穴に細い釘1パイプを差し
込みシリンダーの材料供給口に窒素ガスを吹き込んだ。Example 2 High-density polyethylene (ΔlI: 1.o, density 1jp (1
955) Mix 4 parts of silane-grafted polyethylene 95-based fall with vinyltrimethoxysilane grafted with 4 parts of a high-density polyethylene paste master patch 5 parts to which 1 part by weight of TDL has been added, and further i
After mixing 5 layers of carbon masterbatch with n+ tight anti-polyethylene paste, the mixture was charged into the hopper of a 90-port Φ extruder. At that time, a 71Φ hole was made at the top of the connection between the hopper and the extruder body, and a thin nail pipe was inserted into the hole, and nitrogen gas was blown into the material supply port of the cylinder.
さらに押出機先端アウトダイ出口に上下左右4方向から
窒素ガスを吹きつけるようにし、外径341Φ肉厚み2
,5覇のバイブを押出した。Furthermore, nitrogen gas was blown onto the extruder tip out-die outlet from four directions: top, bottom, left and right, and the outer diameter was 341Φ and the wall thickness was 2.
, I pushed out the vibe of the 5th victory.
比較例2
窒素ガスを1史用せず実施例2と同寸法のパイプ押出を
行なっ:””’−。Comparative Example 2 Pipe extrusion with the same dimensions as in Example 2 was performed without using nitrogen gas for a period of time.
実施例3
低密度ポリx f v ン(Ml : 5. O1密度
0.922)ベースのビニルトリエトキシシランをグラ
フトさせたシラングラフト化ポリオレフィン95重h1
部に、DB′rDL 1重量部を添加した低密度ポリエ
チレンペースのマスターバラ−y−5重積部ヲγIL合
シ、3502の射出成形様で円筒状の容器(外径10門
Φ肉厚2mm)を成形する際に、実施例■と同様にして
ホッパーから窒素ガスを吹き込んだ。Example 3 Silane-grafted polyolefin 95h1 grafted with vinyltriethoxysilane based on low density polyxfv (Ml: 5.O1 density 0.922)
A cylindrical container made by injection molding of 3502 (outer diameter 10 gates Φ wall thickness 2 mm ), nitrogen gas was blown from the hopper in the same manner as in Example (2).
成形品については外観と引張試Ei>でiT価を行なっ
た。Regarding the molded products, the iT value was determined based on the appearance and tensile test Ei>.
比較例3
窒素ガスを使用せずに実施例3と同一の成形を行なった
。Comparative Example 3 The same molding as in Example 3 was performed without using nitrogen gas.
特許出願人 住友ベークライト株式会社−21!Patent applicant Sumitomo Bakelite Co., Ltd.-21!
Claims (1)
を加えて成形する際に成形機の材料供給口への窒素ガス
の吹き込み及び/又はアウトダイ出口への窒素ガスの吹
きつけを行うことによシ、目脂発生及び成形機内部での
架橋を防止することを/r¥徴とする成形方法When adding a silanol condensation catalyst to a silane-grafted polyolefin and molding it, blowing nitrogen gas into the material supply port of the molding machine and/or blowing nitrogen gas into the out-die outlet can prevent the generation of eye oil and Molding method characterized by preventing crosslinking inside the molding machine
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57211342A JPS59102930A (en) | 1982-12-03 | 1982-12-03 | Molding process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57211342A JPS59102930A (en) | 1982-12-03 | 1982-12-03 | Molding process |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59102930A true JPS59102930A (en) | 1984-06-14 |
Family
ID=16604372
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57211342A Pending JPS59102930A (en) | 1982-12-03 | 1982-12-03 | Molding process |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59102930A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2592052A1 (en) * | 1985-09-20 | 1987-06-26 | Kabelmetal Electro Gmbh | LONGIFORM PRODUCT CONSISTING OF A CROSSLINKED POLYMER BY GRAFTING UNSATURATED SILANE COMBINATIONS |
JPS649715A (en) * | 1987-07-01 | 1989-01-13 | Fujikura Ltd | Extruding crosslinking method for insulator |
JPH02208017A (en) * | 1989-02-08 | 1990-08-17 | Fujikura Ltd | Extrusion method |
JPH0650080U (en) * | 1992-12-11 | 1994-07-08 | 株式会社精工舎 | Display with internal illumination |
-
1982
- 1982-12-03 JP JP57211342A patent/JPS59102930A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2592052A1 (en) * | 1985-09-20 | 1987-06-26 | Kabelmetal Electro Gmbh | LONGIFORM PRODUCT CONSISTING OF A CROSSLINKED POLYMER BY GRAFTING UNSATURATED SILANE COMBINATIONS |
JPS649715A (en) * | 1987-07-01 | 1989-01-13 | Fujikura Ltd | Extruding crosslinking method for insulator |
JPH02208017A (en) * | 1989-02-08 | 1990-08-17 | Fujikura Ltd | Extrusion method |
JPH0650080U (en) * | 1992-12-11 | 1994-07-08 | 株式会社精工舎 | Display with internal illumination |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3990479A (en) | Method of making radiation cured elastomeric articles from thermoplastic elastomers and articles made therefrom | |
KR20150068295A (en) | Polyolefin-based resin expanded beads | |
JPS59102930A (en) | Molding process | |
JPS61197641A (en) | Manufacture of electroconductive bridged polyolefin foam | |
FI62116C (en) | SAETT ATT FRAMSTAELLA TVAERBUNDNA FORMADE PRODUCT FRAON TVAERBINDBARA OLEFIN- ELLER VINYLCHLORIDEPOLYMERMATERIAL | |
JPS63254142A (en) | Production of polypropylene foam | |
GB2061967A (en) | Process for the manufacture of shrink articles | |
JPH06136066A (en) | Production of silane-grafted resin composition and production of molded article of silane-cross-linked resin composition | |
JPS57133130A (en) | Surface treating method of molded polyamide resin article | |
JP3594686B2 (en) | Foam resin composition, foam molding material, and foam molded article | |
DE2331301A1 (en) | Process for the production of foam molded articles from olefin polymers | |
JPH07179705A (en) | Method for crosslinking fluororubber composition and its crosslinked molded product | |
JPH03179031A (en) | Production of crosslinked polyethylene pipe | |
JPH0440379B2 (en) | ||
GB2201677A (en) | Process for producing a shaped, extruded product from a crosslinkable polymeric composition | |
DE1504355A1 (en) | Molded articles made from polypropylene foams with a cellular structure and process for producing the same | |
KR100345299B1 (en) | A Plastic Foam Composition containing Used Agricultural Film and A Method for Manufacturing Foam Using It | |
JPS5829808B2 (en) | Polyolefin resin | |
JPH04356539A (en) | Polymer composition for expansion molding | |
JPS63195917A (en) | Manufacture of foam insulated wire | |
JPS59232125A (en) | Production of silane-crosslinked polyolefin molding | |
JPS62106947A (en) | Production of silane-modified ethylene polymer molding | |
JPH08180745A (en) | Foamed coaxial cable | |
JPH01117210A (en) | Manufacture of forming insulator wire | |
JPS61228029A (en) | Painting of polypropylene resin molded article |