JPS59102936A - Composite polymer material for ultra-low temperature use - Google Patents
Composite polymer material for ultra-low temperature useInfo
- Publication number
- JPS59102936A JPS59102936A JP21287982A JP21287982A JPS59102936A JP S59102936 A JPS59102936 A JP S59102936A JP 21287982 A JP21287982 A JP 21287982A JP 21287982 A JP21287982 A JP 21287982A JP S59102936 A JPS59102936 A JP S59102936A
- Authority
- JP
- Japan
- Prior art keywords
- low temperature
- ultra
- composite material
- powder
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
【発明の詳細な説明】 本発明は超低温用向’A子級合月料に関する。[Detailed description of the invention] The present invention relates to A-grade agglomerates for ultra-low temperature applications.
更に詳しくは、特定形状のフレーク状粉体を特定のA量
分率含有する超低温特に−10σ℃以下の温度領域にお
いて、極めてすぐ扛た哩性率、強度、寸法精度等の力学
的性貝牙有する超低温用高分子複合材料に関する。More specifically, it contains a flake powder with a specific shape and a specific A content fraction, and has mechanical properties such as elasticity, strength, and dimensional accuracy that are extremely easily peeled off at ultra-low temperatures, particularly in the temperature range of -10σ℃ or lower. The present invention relates to a polymer composite material for ultra-low temperature use.
近年、各種産業分野において液化天然カス、液化窒素ガ
ス等の超低温流体が広く使用ざ2’しているが、これら
の超低温流体の貯蔵や輸込の装置羽料には9%ニッケル
鋼、アルミ合金等の余pA ’N料が使用されている。In recent years, ultra-low-temperature fluids such as liquefied natural scum and liquefied nitrogen gas have been widely used in various industrial fields, and 9% nickel steel and aluminum alloys are used for storage and import equipment for these ultra-low-temperature fluids. The remaining pA'N materials are used.
しかしながら、これらの金属材料は高価であり、その成
形加工にはきわめて高度な精密加工技術を安する。−刀
プラスチックスは軽量であり、射出成形、圧縮成形等に
よす置所可能な高分子材料であるが、プラスチックス仝
米の脆弱性のため、室温から使用低温度領域へ冷却する
際に形状、寸法変化がSG生する他、金属と組み合わせ
て使用する場合は金属との組み合わせ部位等に金属とプ
ラスチックスとの収縮率の差に赳因する内部応力による
クランクが生しやすい。さらに、これらのプラスチック
スからなる超低温用材料を塗料として用いる場合には、
使用低UKへ冷却する際、lたは室温と使用低温# +
bJでの熱サイクルを行なう際に塗膜にクラックを発生
しやすい。However, these metal materials are expensive, and their molding requires extremely advanced precision processing technology. - Sword plastics are lightweight polymeric materials that can be used for injection molding, compression molding, etc., but due to the fragility of plastics, they cannot be used when cooled from room temperature to the low temperature range of use. In addition to causing SG due to changes in shape and dimensions, when used in combination with metal, cranks are likely to occur at the combination site due to internal stress due to the difference in shrinkage rate between metal and plastic. Furthermore, when using ultra-low temperature materials made of these plastics as paints,
Use when cooling to low UK l or room temperature and use low temperature #+
Cracks are likely to occur in the coating film when performing thermal cycles at bJ.
本発明者らは、−1oo′c以下の超低温度領域におい
て使用しうる高分子材料を開発すべく鋭意研究した結果
、特定の形状ケ有するフレーク状粉体を特定の重量分率
高分子重合体に配合することにより、−1oo℃以下の
超低温度領域においてきわめて優れた力学的性質を有す
る高分子複合材料が得られることを見出し本発明に到っ
た。すなわち本発明は、1ffit平均アスペクト比が
15以上でかつ、 N=を平均フレーク径が35μm以
下のフレーク状粉体20〜50重量%と高分子重合体8
0〜50重量%からなる−100 ”C以下の超低温度
領域において浸れた力学的性質を有する超低温用高分子
複合材料である。As a result of intensive research to develop a polymer material that can be used in the ultra-low temperature range of -1oo'c or lower, the present inventors have discovered that flake-like powder having a specific shape can be made into a polymer material with a specific weight fraction. The present invention was based on the discovery that a polymer composite material having extremely excellent mechanical properties in the ultra-low temperature range of -100° C. or lower can be obtained by blending it with the above. That is, in the present invention, the average aspect ratio of 1ffit is 15 or more, and N = 20 to 50% by weight of flaky powder with an average flake diameter of 35 μm or less and a high molecular weight polymer of 8
The present invention is an ultra-low temperature polymer composite material containing 0 to 50% by weight and having excellent mechanical properties in the ultra-low temperature region below -100''C.
本発明において用いられる高分子重合体の種類としては
特に制限はなく、例えばポリエチレン、ポリプロピレン
等の脂肪族ポリオレフィン樹脂、ナイロン6.66.6
10.12等のポリアミド樹脂、ポリブチレンテレフタ
レート、ポリエチレンテレフタレート専の熱iJ銅注性
ポリエステル樹脂ポリカーボネート樹脂、ポリスルホン
樹脂、ポリフェニレンオキサイド樹脂、ポリアセタール
樹脂、軟質ボリウレタ/樹脂、エポキシ樹脂等をろける
ことができるが1本発明において用いら扛るこれらの樹
脂は、液体窒素中での三点曲げ法で!1111定される
曲げ破断歪が1%以上であることが好ましい。There are no particular restrictions on the type of polymer used in the present invention, and examples include aliphatic polyolefin resins such as polyethylene and polypropylene, and nylon 6.66.6.
Can melt polyamide resins such as 10.12, polybutylene terephthalate, polyethylene terephthalate, thermal iJ copper pourable polyester resins, polycarbonate resins, polysulfone resins, polyphenylene oxide resins, polyacetal resins, soft polyurethane/resins, epoxy resins, etc. However, these resins used in the present invention are processed by the three-point bending method in liquid nitrogen! It is preferable that the bending strain at break determined by 1111 is 1% or more.
三点曲げ法で測定される曲げ破断歪とは下記(」)式に
よりy=される1直である。The bending fracture strain measured by the three-point bending method is y = 1 straight according to the following equation ('').
曲げ破断歪(チ)−6dδ/z2xlO(J tl
)(1)式においてtはスパン艮、dは試験片厚さ、δ
は三点曲けにおいて試験片が破断する1県の要位である
。また、とrLらの樹脂の重合度に関しては特に制限は
ないが、液体窒素中における曲げ破1す〔歪が1%以上
とするためには重合度は商い方が望ましい。Bending strain at break (chi) -6dδ/z2xlO (J tl
) In formula (1), t is the span, d is the specimen thickness, and δ
is the key point where the test piece breaks during three-point bending. Furthermore, there is no particular restriction on the degree of polymerization of the resin of TorL et al., but it is desirable that the degree of polymerization be lower in order to achieve a bending failure of 1% or more in liquid nitrogen.
本発明において用いられるフレーク状粉体としては例え
ば白雲母(マスコバイト)、金雲母(70ゴバイト)等
の雲母粉体、ガラスフレーク、タルク、クレーおよびア
ルミ等の金属フレーク螢アげることができるが、とくに
雲母粉体は本発明の高分子複合材料には好ましく用いし
扛る0本発明におりるフレーク状粉体の重賞平均径は3
5μmn以丁、望ましくは30μm以下、さらに望まし
くは20μIn以Fであ#)、 My 鼠平均アスペ
クト比は15以上、望ましくは20以上、さらに望1し
くけ30以上である。車jれ平均フレーク径が35μm
11よシ大きいフレークを用いた被合材料は低温領域に
おける強度が低下し、また月(M平均アスペクト比が1
5未満のフレークを用いフチ、複合材料は強技力量低く
、また超低温への冷却に静しての寸法変化が大きいので
そ扛ぞれ用いることができない。The flaky powder used in the present invention includes, for example, mica powder such as muscovite (muscovite) and phlogopite (70 gobite), glass flakes, talc, clay, and metal flakes such as aluminum. However, mica powder is particularly preferably used in the polymer composite material of the present invention.The flaky powder of the present invention has an average diameter of 3.
5 μm or more, preferably 30 μm or less, more preferably 20 μIn or more F), and the mouse average aspect ratio is 15 or more, preferably 20 or more, and more preferably 30 or more. Average flake diameter is 35μm
The strength of the composite material using flakes larger than 11 decreases in the low temperature region, and the average aspect ratio of
Composite materials using flakes of less than 5% cannot be used because the strength of the workmanship is low and the dimensional change is large when cooled to an ultra-low temperature.
超低I晶用途に用いられる16分子俵合材料はその使用
低温度にあ・いて優れた強吐を刊することおよび室温か
ら使用低温度へ冷却する際に寸法変化が小きいことが要
求され、かかる高分子複合材料は室温から411i奨さ
れる歯分子複合椙科の形態とは異なる。例えば、本発明
の複合材料は、室温においてはフレーク状粉体の粒イ1
が太き吟程、高い曲げ強さを示すのに対し、−100℃
以下の超低温領域では逆に粒径が小さい程、商い曲げ強
さを示す0さらにまた、本発明の複合材料に用いられる
高分子重合体はs 1′fL捧室索中において辿り’i
lシた曲は破断歪が1−以上の富合坏であることが好互
しい。The 16-molecule pellet material used for ultra-low I crystal applications is required to have excellent strong ejection properties at the low operating temperatures and to have small dimensional changes when cooled from room temperature to the lower operating temperatures. , such polymeric composites are different from the morphology of the dental molecule composite oleracea, which is recommended from room temperature to 411i. For example, the composite material of the present invention has a particle size of flake powder at room temperature.
The thicker the wire, the higher the bending strength.
In the ultra-low temperature range below, conversely, the smaller the particle size, the greater the bending strength.
It is preferable that the 1-shaped piece is a Tomiai piece with a breaking strain of 1 or more.
なお、本発明におけるp、%量平均フレーク径とは、各
棟の目bIJさの標早ふるいケ用いて紛俸ケ湿式分級し
た粕釆をRosin −Ran皿ler線図にプロット
して測定に供した粉体の50重量係が通過するふるいの
目開きZSOをΦ7出し、下記(2)式により求めた値
である。In addition, in the present invention, p, % average flake diameter is measured by plotting the lees that have been wet-classified using a standard sieve with a diameter of 1/2 in each ridge on a Rosin-Ran plate ler diagram. The opening ZSO of the sieve through which 50 weight percent of the applied powder passes is determined by Φ7, and is the value determined by the following equation (2).
を二(’j’−t5o −(2)1+ま止置平
均フレーク径をあられす。−力、恵址平均アスヘクト比
は、西野−5,も川の水面粒す膜法(材料、vol、
27 、 Ni29B、P94)KLす611 >ii
サれる束II(平均フレーク厚さLより一ドtie
(81式により求めら7’Lる11αである。2 ('j' - t5o - (2) 1 + hold the average flake diameter.
27, Ni29B, P94) KLS611 >ii
Sold bundle II (one degree tie from average flake thickness L)
(7'L = 11α determined by formula 81.
α=t/l (81
αは41足平均アスペクト比であり、を−1(2フ式で
求めらnる垂箪士均フレーク径をあられす。本発明に2
ける複合材料中のフレーク状粉体の混合率は20〜50
iLDi%で央18しる。フレーク状粉体の混合率が2
0痙量%未滴の領域においては被合材料成形物の頻度が
低く、また冷却による寸法変化が犬さいので使用するこ
とができない。−万、フレーク状粉体の混合率が50貞
瀘チよジ多い領域においては成形加工時に靭ける粘度が
上昇して成形加工が山511tになるは〃1、複合材料
hz形物の強度も低下するので使用することかで@ない
。α=t/l (81 α is the average aspect ratio of 41 feet, and is -1 (the average flake diameter of the tanner, which is calculated using the 2F formula.
The mixing ratio of flake powder in the composite material is 20 to 50.
iLDi% is 18 in the middle. Mixing ratio of flake powder is 2
In the region where 0% sparse amount is not dropped, the frequency of moldings of the material to be joined is low, and the dimensional change due to cooling is too small, so it cannot be used. - 10,000, In the area where the mixing ratio of flaky powder is more than 50%, the viscosity that toughens during molding increases and the molding process reaches a peak of 511 tons. 1. The strength of the composite material hz shape also increases. It is not recommended to use it because it will decrease.
本発明の複合材料ではマド17ソクス樹脂とフレーク状
粉体の界面の接着を改良するためにシランはアミノ基、
エポキシ基、ビニル基等の41)J 脂マトリックスと
親A11性を有するノ吉、Xはアルコキンル2!8また
はハ【7ゲン基)にょシ与えら1するシラン化合物であ
る。/う/カップリング剤は予めフレーク状粉体の表面
に付着させておいても、またフレーク状粉体を・1すj
脂と混練する際に直接添加してもよい。*うG明Vこお
いて用いられるシランカップリング剤の種人目について
は住守に市1]1奴はないが、アミノ基、エポキシ基、
ビニル基等を有するシランカップリング剤が良好な幼果
を発揮することが多い。In the composite material of the present invention, the silane has an amino group,
41) A silane compound such as an epoxy group or a vinyl group that has affinity for A11 with a fat matrix, and X is an alkoxyl group or a silane compound. / U / Even if the coupling agent is attached to the surface of the flake-like powder in advance, the flake-like powder may be
It may be added directly when kneading with fat. *There is no name for the type of silane coupling agent used in this article, but there are amino groups, epoxy groups,
Silane coupling agents containing vinyl groups often produce good young fruits.
シランカップリング剤の添加率は一般的にはフレーク状
粉体のM量の0.1〜3貞量チ、望ましくは0.3〜2
mjt%である。シランカッブリフグ剤ヲ用いてフレー
クとマトリックス樹脂の経血接着強度全改良することに
より複合材料成形物の低温領域における強度をさらeこ
改良することができ、使用温度への冷却に際しての複合
材料成形物の形状、寸法変化も小さくすることができる
。The addition rate of the silane coupling agent is generally 0.1 to 3% of the amount of M in the flaky powder, preferably 0.3 to 2%.
mjt%. By completely improving the menstrual adhesive strength between the flakes and the matrix resin using a silane coating agent, it is possible to further improve the strength of the composite material molded product in the low temperature range, and the strength of the composite material when cooled to the operating temperature can be improved. Changes in shape and dimensions of the molded product can also be reduced.
本うも明の矢金材料VCは必Wtこ応じてガラス繊維、
炭素繊維、有機繊維等の強化材や、炭酸カルシウム、硫
酸バリウム、ウォラストツーイト、ガラスピーズ、シリ
カ粉等の充てん材を併用することができる。その他、着
色剤、滑剤、安定剤、可塑剤、帯電防止剤等、公知の添
加剤を加えることは何らさしつかえない。Akira's arrow material VC must be glass fiber,
Reinforcing materials such as carbon fibers and organic fibers, and fillers such as calcium carbonate, barium sulfate, wollastotite, glass peas, and silica powder can be used in combination. In addition, there is no problem in adding known additives such as colorants, lubricants, stabilizers, plasticizers, and antistatic agents.
本発明による複合材料は次のように加工して用いられる
。熱OT塑性樹脂をマトリックスとする複合材料につい
ては、押出機、ニーグー、ロール等を用いてフレーク状
粉体と樹脂を溶融混線して複合物を作製した後、射出成
形、押出成形、圧縮成形、カレンター成形等により構造
部品、壁械部品、電機部品、シート、棒、パイプ等、任
意の形状に成形して使用さILる。−力、熱硬化性樹脂
紫マトリックスとする桟付材料については、未硬化樹脂
液にフレークを混合した後、圧縮成形、射出成形、トラ
ンスファー成形、スプレーアッフ、ハンドレイアップ等
それぞれの樹カ行に適した方法で成形、硬化させること
により、tK構造部品機械部品、*機部品等として用い
られる。葦だ同様に調製されたフレーク混合未硬化樹脂
液を塗料、ライニング材料として用い又もよい。The composite material according to the present invention is processed and used as follows. For composite materials with thermo-OT plastic resin as a matrix, after melting and mixing the flake powder and resin using an extruder, Ni-Goo, roll, etc. to create a composite, it can be processed by injection molding, extrusion molding, compression molding, It can be used by forming into any shape such as structural parts, wall parts, electrical parts, sheets, rods, pipes, etc. by calender molding etc. - For the material with thermosetting resin purple matrix, after mixing flakes with uncured resin liquid, it is suitable for compression molding, injection molding, transfer molding, spray-up, hand lay-up, etc. By molding and curing using the same method, it can be used as tK structural parts, machine parts, *machine parts, etc. An uncured resin liquid mixed with flakes prepared in the same manner as the reed may also be used as a paint or lining material.
以下、実施例をあげて本発明を更に具体的に説明するが
、不発明tよ、こ才りらの実施例Vこより何ら制限され
るものではない。Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited in any way by the Examples V of the inventors and coworkers.
実施例1〜6 比較1!/!I I〜5フレーク形状が
異なる金雲母粉体、悼限粘度13、9 dt/yのポリ
ブナレンテレフタレート樹脂(Iu トP B ’l’
トNIM ) 、γ−アミノプロピルトリエトキシラ
ンを原材料として用いゾこ一連の実験全行った。雲母粉
体とγ−アミノプロピルトリエトキシシランとP B
T−iヘンシェルミキサーでフレンドしたフンンド吻を
1軸押出機に供給して250’Cテ16 taフレンド
してコンパウンドケ得た。該コンパウンドを射出成形機
に供給して250″Gで射出成形を行い、100XI0
0X2tarの正方形板の試験片を得た。ゲートは0.
75m厚のフィルムゲートである。該試験片より溶融樹
脂の流動力向(MD)に幅10關の試験片を切り出し、
室温および液体窒素中(19f)C)で三点曲げ法によ
り曲げ強度を測定した。なお本実験に用いたPBT樹脂
の液体窒素中で測定した曲げ破断歪は4.2%であった
。Examples 1-6 Comparison 1! /! I ~ 5 Phlogopite powder with different flake shapes, polybunalene terephthalate resin (Iu to P B 'l') with a limiting viscosity of 13, 9 dt/y
A series of experiments were carried out using γ-aminopropyltriethoxylan as a raw material. Mica powder, γ-aminopropyltriethoxysilane and P B
The Hund's proboscis mixed in a Ti Henschel mixer was fed to a single-screw extruder and mixed at 250'C to obtain a compound. The compound was fed to an injection molding machine and injection molded at 250″G to form a 100XI0
A square plate test piece of 0×2 tar was obtained. The gate is 0.
It is a 75m thick film gate. A test piece with a width of 10 mm was cut out from the test piece in the flow force direction (MD) of the molten resin,
The bending strength was measured by the three-point bending method at room temperature and in liquid nitrogen (19f)C). The bending strain at break of the PBT resin used in this experiment measured in liquid nitrogen was 4.2%.
該試験片を厚さ10聴の鉄板にボルトで固ントし、室温
(24時間)、液体窒素浸漬(24時間)の熱サイクル
テストを10回くり返しクラックの発生の有無を目視観
察した。第1表に寂ける実施t・l」1.2、比較例1
.2より明らかなように、室温での測定においては、雲
母のフンーク径は犬さくなる程複合材料の曲げ強度が高
くなるが−1960での6(1]定で&;1 実母のフ
レーク径が小さいはと曲げ一1虫吸は^くなり11丁に
哀+tのフレーク径が35μrn以下の領域に#?いて
曲げグ虫ノ糺が格4反に尚くなることがりJらかである
。また実施例3と比較例3の結果から明らかなように、
雲母のアスペクト比が10丑で低下すると一196℃に
おける曲げ強度が低下するIヨか、熱1イクルテストに
より成形品にクラックが発生する。また実姑例4.5、
比較レリ1.5を比較すれば明らかなように雲母混合率
が2゜重量%未満の領域(比較例1)においては熱サイ
クルテストによりクラックが発生し、また実母混合率が
5015(,1枝チを越える領域(比較例5)において
Cま一196CにおVjる曲は強度が低下する。また実
施例1と実施例6の結果を比較す7Lば明らかなように
、シランカップリング剤を用いた方が−196℃に」・
・ける曲げ強度がさらに畠くなる。The test piece was fixed with bolts to a steel plate with a thickness of 10 mm, and a thermal cycle test of room temperature (24 hours) and liquid nitrogen immersion (24 hours) was repeated 10 times, and the presence or absence of cracks was visually observed. Table 1 shows the implementation t・l”1.2, Comparative Example 1
.. As is clear from 2, when measured at room temperature, the smaller the Funk diameter of mica, the higher the bending strength of the composite material. It is obvious that the small dovetail bending 11 insect suction becomes ^, and the bending gummushi no taji becomes even worse when the flake diameter of 11 fingers is in the region of 35 μrn or less. Furthermore, as is clear from the results of Example 3 and Comparative Example 3,
When the aspect ratio of mica decreases by 10 degrees, the bending strength at -196° C. decreases, or cracks occur in the molded product during a one-cycle thermal test. Also, mother-in-law example 4.5,
As is clear from comparison with Comparative Reli 1.5, cracks occur in the thermal cycle test in the region where the mica mixing ratio is less than 2% by weight (Comparative Example 1), and when the mica mixing ratio is 5015 (, 1 branch). In the region exceeding 196C (Comparative Example 5), the strength of the track from C to 196C decreases.Also, as is clear from 7L when comparing the results of Example 1 and Example 6, when the silane coupling agent is It is better to use it at -196℃.”
・The bending strength is further increased.
実施例7、比較例6〜8
実施例1〜6で用いたPi3Tに、実施例1と同様の方
法でカラスフレーク、カラス繊維、ガラスピーズ、タル
クイC強化拐として置針して複合材料を得た(実hm例
7、比較例6.7.8 )。これらの材料の性目目は第
1表に示したように、ガラスフレーク強化P B ’I
”は低温度曲はす2口度、ヒートサイクルテストの両者
において満足しつる結果を与えるが、ガラス繊維、ガラ
スピーズ、タルク強化P B Tは熱サイクルテストで
クランクを発生した。Example 7, Comparative Examples 6 to 8 Pi3T used in Examples 1 to 6 was placed with needles as crow flakes, crow fibers, glass peas, and Tarkui C reinforced fibers in the same manner as in Example 1 to obtain a composite material. (Actual hm Example 7, Comparative Example 6.7.8). The properties of these materials are shown in Table 1.
” gave satisfactory results in both the low temperature bending test and the heat cycle test, but the glass fiber, glass beads and talc reinforced PBT produced cranks in the heat cycle test.
実施例8〜10 冒密度ポリエチレン、低温佃十衝撃タイフ′ボリフ。Examples 8-10 Condensed polyethylene, low temperature Tsukuda impact tief'borif.
ロヒ゛レン、ナイロン6をマトリックス例月「トシ、と
gらに実施例1と同様の方法により雲母粉体を配合して
複合材料を作製した(実施セl18.9.10)o混線
および射出成形の際のシリンダ一温度は重密度ポリエチ
レンの場合にね月80℃、ポリプロビレ/のS倉には2
30℃、ナイロン6の場合には240℃とした。g4I
、1 衣に結果を示すように、いずれの複合材料につい
ても満足し得る結果が得られた。なお、本実施例で使用
した樹脂試験片について液体屋素中で測定した曲げ破断
歪は高密度ポリエチレンの場合2.5%、低温耐衝撃タ
イプポリプロピレンの場合3.8%、ナイロン6の場合
3.5≠でめつlヒ。A composite material was prepared by adding mica powder to a matrix of nylon and nylon 6 in the same manner as in Example 1 (Practical cell 118.9.10). The temperature of the cylinder at this time is 80℃ in the case of heavy density polyethylene, and 2℃ in the case of polypropylene.
The temperature was 30°C, and in the case of nylon 6, it was 240°C. g4I
As shown in Figure 1, satisfactory results were obtained for all composite materials. The bending strain at break measured in a liquid chamber for the resin test pieces used in this example was 2.5% for high-density polyethylene, 3.8% for low-temperature impact-resistant polypropylene, and 3 for nylon 6. .5≠ and it's a big hit.
実施例11
ポリスチレン’+J Ah ?マトリックス<+’1月
aとし、これに雲母粉末を一〇し7こビ4合材ネ・F釦
芙扇a1」1の場合と同じ方法で作製、ドr−訓し7゛
こ。混練および射出成形の際のシリンダ一温度は200
’Cとした。なお、本実施例に使用しIC樹脂試験片
について液体窒素中で測定し7こ曲は破ICIr歪は0
.8%であった。Example 11 Polystyrene'+J Ah? A matrix was prepared and prepared in the same manner as in the case of 1. Mica powder was added to it, and 7 pieces of 4 pieces of composite material were prepared in the same manner as in the case of 1. The cylinder temperature during kneading and injection molding is 200℃.
'C. The IC resin test piece used in this example was measured in liquid nitrogen, and the ICIr strain was 0.
.. It was 8%.
第1表に、l清朱を示すように、液体イ(素中で611
j定した曲げ強さがべ・へ・低いものの、はぼ病足し1
(する結果が得られた。Table 1 shows liquid I (611
Although the determined bending strength is very low, it is still effective.
(The result was obtained.
実施例12、比較1刈9
分子J11約300.エポキシ当鼠190、水温にオケ
る粘JLiが)l+ノ1 (Jボイスのビスフェノール
A/りljンジルエーデル型エボヤン4MI Jli′
jと、ポリアミド系硬化剤(・・−サミドI 40 )
’e5jj(%’>比で9/1で配合し−C?)A
16我ケ拝製した。該混合液に旅1に記述したし゛蚤母
初捧γ配付し、該雲14栃体(記合混合欣ケ厚さ10r
1の枦夫・奴にii!J (J、 5 ml!lの浮き
に塗布し、硬化させた。1jj(雲母わIC配合エポキ
シ樹脂を塗布した鉄板を用いて実施例1の場合と同様の
方法で熱サイクルテスト全実施した。実施例12の@計
は熱サイクルテスト後も塗膜し′こクランクの発生はみ
とめら21’Lなかつだが、上し咬声]9の剤1成9勿
についてはクラックが光生じた。なふ・本実施1+lJ
工・よび比較例に用いたエポキシ樹ノ猶試顔片の液体屋
話中で測定した曲げ破N)i歪は3.1%でめった。Example 12, Comparison 1 Hari 9 Molecule J11 approximately 300. Epoxy this mouse 190, viscous JLi that is suitable for water temperature) l + no 1 (J Voice's bisphenol A / lj njiledel type Eboyan 4MI Jli'
j, and a polyamide curing agent (...-Samide I 40 )
'e5jj (%'> ratio of 9/1 -C?)A
16 I made it. Distribute the fleas described in Journey 1 to the mixed liquid, and add 14 pieces of the cloud (the thickness of the mixed liquid is 10 r).
ii to the first Atsuo guy! A heat cycle test was carried out in the same manner as in Example 1 using an iron plate coated with an epoxy resin containing mica IC. The coating film of Example 12 did not show any cracks even after the heat cycle test, but cracks did occur in the case of Agent 1 of Example 19. F・Book implementation 1+lJ
The bending fracture N)i strain of the epoxy wood trial piece used in the engineering and comparative examples measured in a liquid bath was 3.1%.
Claims (3)
上で、かつ、重量平均フレーク径が35μIn以下のフ
レーク状粉体20〜50 jfi 1−11%と篩分子
重合体80〜50M tri %からなる−100−c
以下の超低温度領域において優れた力学的性質を有する
超低温用高分子複合材料。(1) -jlK L=l Consists of 20-50 jfi 1-11% of flaky powder with average aspect ratio of 15 or more and weight average flake diameter of 35 μIn or less and 80-50M tri% of sieve molecular polymer -100-c
Ultra-low temperature polymer composite material with excellent mechanical properties in the following ultra-low temperature range.
曲げ破断歪が1%以上の重合体である特許請求の範囲第
(1)項に記載の超低温用高分子複合材料。(2) The polymer composite material for ultra-low temperature use according to claim (1), wherein the polymer has a bending strain at break measured in a liquid suspension of 1% or more.
(」)項または第(2)項に記載の超低温用高分子複合
材料。(3) The ultra-low temperature polymer composite material according to claim 1 or 2, wherein the flaky powder is mica.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21287982A JPS59102936A (en) | 1982-12-03 | 1982-12-03 | Composite polymer material for ultra-low temperature use |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21287982A JPS59102936A (en) | 1982-12-03 | 1982-12-03 | Composite polymer material for ultra-low temperature use |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59102936A true JPS59102936A (en) | 1984-06-14 |
JPH0361693B2 JPH0361693B2 (en) | 1991-09-20 |
Family
ID=16629770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21287982A Granted JPS59102936A (en) | 1982-12-03 | 1982-12-03 | Composite polymer material for ultra-low temperature use |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59102936A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6254755A (en) * | 1985-09-03 | 1987-03-10 | Sumitomo Bayer Urethane Kk | Reinforced resin molding |
JPS62132962A (en) * | 1985-12-04 | 1987-06-16 | Polyplastics Co | Thermoplastic resin composition for molding |
JPS63120756A (en) * | 1986-11-10 | 1988-05-25 | Kuraray Co Ltd | Filled resin composition |
JPH04224920A (en) * | 1990-12-26 | 1992-08-14 | Kanegafuchi Chem Ind Co Ltd | Side protector for automobile |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55108426A (en) * | 1979-02-14 | 1980-08-20 | Matsushita Electric Works Ltd | Thermosetting resin molding material |
-
1982
- 1982-12-03 JP JP21287982A patent/JPS59102936A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55108426A (en) * | 1979-02-14 | 1980-08-20 | Matsushita Electric Works Ltd | Thermosetting resin molding material |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6254755A (en) * | 1985-09-03 | 1987-03-10 | Sumitomo Bayer Urethane Kk | Reinforced resin molding |
JPS62132962A (en) * | 1985-12-04 | 1987-06-16 | Polyplastics Co | Thermoplastic resin composition for molding |
JPH0525258B2 (en) * | 1985-12-04 | 1993-04-12 | Horipurasuchitsukusu Kk | |
JPS63120756A (en) * | 1986-11-10 | 1988-05-25 | Kuraray Co Ltd | Filled resin composition |
JPH04224920A (en) * | 1990-12-26 | 1992-08-14 | Kanegafuchi Chem Ind Co Ltd | Side protector for automobile |
Also Published As
Publication number | Publication date |
---|---|
JPH0361693B2 (en) | 1991-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02173047A (en) | Fiber-reinforced thermoplastic resin composition | |
JPS60229949A (en) | Reinforced polyarylene sulfide forming composition and formed product | |
Maine et al. | Mica reinforced plastics: a review | |
US4582864A (en) | Carbonaceous filler-containing vinylidene fluoride resin composition | |
CN105542309A (en) | High-strength polypropylene reinforced plastic septic tank and processing technology thereof | |
JPS59102936A (en) | Composite polymer material for ultra-low temperature use | |
US4283326A (en) | PBT Molding compositions containing mica and a composite polymer | |
Liang et al. | Mechanical, thermal, and flow properties of HDPE–mica composites | |
US4362832A (en) | Thermoplastic polymer/glass fiber/bis-maleimide molding compositions | |
JPS59193957A (en) | Polyamide composition | |
Barbosa et al. | Processability and mechanical properties of ternary composites PP/EPDM/GF | |
CN108239390A (en) | A kind of PA6 alloy materials of toughening modifying and preparation method thereof | |
JPH0532896A (en) | Blow molding polyarylene sulfide resin composition and blow molding product thereof | |
Yang et al. | Mechanical properties of glass bead-filled linear low-density polyethylene | |
KR930008196B1 (en) | Polyphenylene sulfide resin composition | |
KR100616723B1 (en) | Nanocomposite composition containing regenerated polyamide | |
JPH05239354A (en) | Poly(arylene sulfide) composition | |
JPH02292365A (en) | Glass-filled aromatic sulfide/sulfone polymer composition and its manufacture | |
JPH02302469A (en) | Mixture of polyarylene sulfide, glass fiber, and maleimide | |
JPS63245467A (en) | Resin composition | |
CA1136314A (en) | Molding composition and injection molded article | |
CN102174257B (en) | Force-measuring sensing elastic composite material and preparation method thereof | |
KR930008195B1 (en) | Polyphenylene sulfide resin composition | |
JPS5936143A (en) | High-performance resin composition | |
JPS61174262A (en) | Resin composition |